Effect of stress direction on the undrained monotonic and cyclic behavior of dense sands

Document Type : Article

Authors

1 Department of Civil Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran

2 Department of Civil, Water, and Environmental Engineering, Shahid Beheshti University, Tehran, Iran

Abstract

Geotechnical design may be unsafe if the anisotropic behaviour of soil is not considered. The behaviour of anisotropic materials depends on the principal stresses and their directions. A detailed experimental programme was conducted to study the effect of stress direction on the monotonic and cyclic behaviour of dense sand. A total of 20 undrained tests were performed at a constant mean confining stress (σ'0m) constant intermediate principal stress ratio (b= (σ23)/(σ13)), and principal stress directions (α). Two fine sands, Babolsar and Toyoura, were selected as the test materials. The isotropic consolidated specimens were prepared using the wet tamping technique. The results showed that the major principal stress direction had little considerable effect on the mobilized friction angle at steady state or phase transformation. The results showed that stress direction had a significant effect on the non-coaxiality between the principal strain increment direction and the principal stress direction. The soil fabric was led to significant non-coaxiality value before the peak shear strength. Increasing the octahedral shear strains decreased the non-coaxiality value due to destruction of the soil particle interlock (soil fabric). The effect of stress direction on non-coaxiality and excess pore water pressure generation was also investigated.

Keywords

Main Subjects


1. Roscoe, K.H., Bassett, R.H., and Cole, E.R. Principal  axes observed during simple shear of a sand", Proceedings  of the Geotech Conference, Oslo, 1, pp. 231{237  (1967).  2. Arthur, J.R.F., Chua, K.S., and Dunstan, T. Induced  anisotropy in a sand", Geotechnique, 27, pp. 13{30  (1977). http://dx.doi.org/10.1680/geot.1985.35.4.471  3. Yu, H.S., Plasticity and Geotechnics, Springer (2006).  4. Airey, D.W., Budhu, M., and Wood, D.M. Some  aspects of the behaviour of soils in simple shear",  In Development in Soil Mechanics and Foundation  Engineering, P.K. Banerjee and R. Butter_eld, Eds.,  Elsevier, 2, pp. 185{213 (1985).  5. Saada, A.S. and Baah, A.K. Deformation and failure  of a cross anisotropic clay under combined stresses",  Proc. 3rd Pan Am. Conf. Soil Mech., Caracas, 1, pp.  67{88 (1967).  6. Lade, P.V. Torsion shear tests on cohesionless soil",  Proc. 5th Pan Am. Conf. Soil Mech., Buenos Aires, 1,  pp. 117{127 (1975).  7. Hight, D.W., Gens, A., and Symes, M.J. The  development of a new hollow cylinder apparatus  for investigating the e_ects of principal rotation in  Soils", Geotechnique, 33(4), pp. 355{383 (1983).  http://dx.doi.org/10.1680/geot.1983.33.4.355  8. Lade, P.V., Nam, J., and Hong, W.P. Shear  banding and cross-anisotropic behavior observed  in laboratory sand tests with stress rotation",  Can. Geotech. J., 45(1), pp. 74{84 (2008).  http://dx.doi.org/10.1139/T07-078  9. Lade, P.V., Nam, J., and Hong, W.P. Interpretation  of strains in torsion shear tests", Computers  and Geotechnics, 36, pp. 211{225 (2009).  https://doi.org/10.1016/j.compgeo.2008.02.001  10. Rodriguez, N.M. and Lade, P.V. E_ects of principal  stress directions and mean normal stress on failure  criterion for cross-anisotropic sand", Journal of Engineering  Mechanics, 139(11), pp. 1592{1601 (2013).  DOI: 10.1061/(ASCE)EM.1943-7889.0000595  11. Arthur, J.R.F. and Menzies, B.K. Inherent anisotropy  in a sand", G_eotechnique, 22(1), pp. 115{128 (1972).  12. Oda, M. Initial fabric and their relations to mechanical  properties of granular material", Soils and  Foundations, 12(1), pp. 17-36 (1972).  13. Matsuoka, H. A microscopic study on shear mechanism  of granular materials", Soils and Foundations,  14(1), pp. 29{43 (1974).  14. Nemat-Nasser, S. A micromechanically-based constitutive  model for frictional deformation of granular  materials", Journal of the Mechanics and Physics of  Solids, 48(6-7), pp. 1541{1563 (2000).  15. Matsuoka, H. and Geka, H. A stress-strain model  for granular materials considering mechanism of fabric  change", Soils and Foundations, 23(2), pp. 83{97  (1983).  16. Rothenburg, L. and Bathurst, R.J. Analytical study  of induced anisotropy in idealized granular materials",  G_eotechnique, 39(4), pp. 601{614 (1989).  17. Oda, M. Inherent and induced anisotropy in plasticity  theory of granular soils", Mechanics of Materials,  16(1-2), pp. 35{45 (1993).  18. Li, X.S. and Dafalias, Y.F. Constitutive modeling  of inherently anisotropic sand behaviour", Journal  of Geotechnical and Geoenvironmental Engineering,  128(10), pp. 868{880 (2002).  19. Guo, P.J. and Stolle, D.F. On the failure of granular  materials with fabric e_ects", Soils and Foundations,  45(4), pp. 1{12 (2005).  20. Radjai, F. and Az_ema, E. Shear strength of granular  materials", European Journal of Environmental and  Civil Engineering, 13(2), pp. 203{218 (2009).  21. Wrzesi_nski, G. and Lechowicz, Z. Inuence of the  rotation of principal stress directions on undrained  F. Jafarzadeh and M. Zamanian/Scientia Iranica, Transactions A: Civil Engineering 27 (2020) 551{565 563  shear strength", Annals of Warsaw University of Life  Sciences-SGGW, Land Reclamation, 45(2), pp. 183{  192 (2013).  22. Al-Rkaby, A.H., Chegenizadeh, A., and Nikraz, H.R.  Directional-dependence in the mechanical characteristics  of sand: a review", International Journal of  Geotechnical Engineering, 10(5), pp. 499{509 (2016).  23. Casagrande, A. and Carillo, N. Shear failure of  anisotropic materials", J. Boston Soc. Civil Eng.,  31(4), pp. 122{135 (1944).  24. Parkin, A.K., Gerrard, C.M., and Willougby, D.R.  Discussion on deformation of sand in shear", Journal  of Soil Mechanics and Foundation Division, 94(1), pp.  336{340 (1968).  25. Arthur, J.R.F. and Assadi, A. Ruptured sand sheared  in plane strain", Proceeding 9th International Conference  on Soil Mechanics and Foundation Engineering,  Tokyo, pp. 19{22 (1977).  26. Li, X. and Yu, H.S. Inuence of loading direction  on the behaviour of anisotropic granular materials",  International Journal of Engineering Science, 47, pp.  1284{1296 (2009).  27. Yang, L.T., Li, X., Yu, H.S., and Wanatowski, D. A  laboratory study of anisotropic geomaterials incorporating  recent micromechanical understanding", Acta  Geotechnica, 11(5), pp. 1{19 (2015a).  28. Yang, Y., Fei, W., Yu, H.S., Ooi, J., and Rotter, M.  Experimental study of anisotropy and non-coaxiality  of granular solids", Granular Matter., 17(2), pp. 189{  196 (2015b).  29. Symes, M.J., Gens, A., and Hight, D.W. Undrained  anisotropy and principal stress rotation in saturated  sand", Geotechnique, 34(1), pp. 11{27 (1984).  30. Wong, R.K.S. and Arthur, J.F.R. Induced and inherent  anisotropy in sand", G_eotechnique, 35(4), pp.  471{481 (1985).  31. Chan, F.W.K. and Brown, S.F. Signi_cance of principal  stress rotation in pavements", Proceedings of the  13th International Conference on Soil Mechanics and  Foundation Engineering, New Delhi, India, pp. 1823{  1826 (1994).  32. Towhata, I., Kawasaki, Y., Harada, N., and Sunaga,  M. Contraction of soil subjected to tra_c-type stress  application", Proceedings of the International Symposium  on Pre-Failure Deformation Characteristics of  Geomaterials, Sapporo, Japan, pp. 305{310 (1994).  33. Yang, Z.X., Li, X.S., and Yang, J. Undrained  anisotropy and rotational shear in granular soil",  Geotechnique, 57(4), pp. 371{384 (2007).  34. Lade, P.V. and Duncan, J.M. Cubical triaxial tests on  cohesionless soil", Journal of the Soil Mechanics and  Foundation Division, ASCE, 99(SM10), pp. 793{811  (1973).  35. Ochiai, H. and Lade, P.V. Three-dimensional behavior  of sand with anisotropic fabric", J. Geotech. Eng.,  109(10), pp. 1313{1328 (1983).  36. Tatsuoka, F. Stress-strain behavior of an idealized  anisotropic granular material", Soils and Foundations,  20(3), pp. 75{90 (1980).  37. Shibuya, S. Undrained behaviour of granular materials  under principal stress rotation", PhD. Thesis,  Imperial College of Science, Technology and Medicine,  University of London (1985).  38. Shibuya, S. and Hight, D.W. On the stress path  in simple shear", Geotechnique, 37(4), pp. 511{515  (1987).  39. Shibuya, S., Hight, D.W., and Jardine, R.J. Fourdimensional  local boundary surfaces of an isotropically  consolidated loose sand", Soils and Foundations,  43(2), pp. 89{103 (2003a).  40. Shibuya, S., Hight, D.W., and Jardine, R.J. Local  boundary surfaces of a loose sand dependent on consolidation  path", Soils and Foundations, 43(3), pp. 85{93  (2003b).  41. Azami, A., Pietruszczak, S., and Guo, P. Bearing capacity  of shallow foundations in transversely isotropic  granular media", International Journal for Numerical  and Analytical Methods in Geomechanics, 34(8), pp.  771{793 (2010).  42. Bahadori, H., Ghalandarzadeh, A., and Towhata, I.  E_ect of non-plastic silt on anisotropic behaviour  of sand", Soil and Foundations, 48(4), pp. 531{545  (2008).  43. Keyhani, R. and Haeri, S.M. Evaluation of the e_ect  of anisotropic consolidation and principle stress rotation  on undrained behaviour of silty sands", Scientia  Iranica, 20(6), pp. 1637{1653 (2013).  44. Jafarzadeh, F. and Zamanian, M. E_ect of intermediate  principal stress parameter on cyclic behaviour of  Sand", Scientia Iranica, 21(5), pp. 1566{1576 (2014).  45. Lade, P., Rodriguez, N., and Van Dyck, E.  E_ects of principal stress directions on 3D  failure conditions in cross-anisotropic sand", J.  Geotech. Geoenviron. Eng., 140(2), 04013001 (2014).  DOI: http://dx.doi.org/10.1061/(ASCE)GT.1943{  5606.0001005  46. Sadrekarimi, A. E_ect of the mode of shear on static  liquefaction analysis", J. Geotech. Geoenviron. Eng.,  140(12), 04014069 (2014).  DOI: 10.1061/(ASCE)GT.1943-5606.0001182  47. Sadrekarimi, A. Static liquefaction analysis considering  principal stress directions and anisotropy",  Geotechnical and Geological Engineering, 34(4), pp.  1135{1154 (2016).  48. Khayat, N., Ghalandarzadeh, N., and Jafari, M.K.  Grain shape e_ect on the anisotropic behaviour of siltsand  mixtures", Proceedings of the ICE - Geotechnical  Engineering, 167(3), pp. 281{296 (2012).  49. ASTM Standard test method for particle-size analysis  of soils", D422-63 (2007).  http://dx.doi.org/10.1520/D0422-63R07E02  564 F. Jafarzadeh and M. Zamanian/Scientia Iranica, Transactions A: Civil Engineering 27 (2020) 551{565  50. ASTM Standard test methods for maximum index  density and unit weight of soils using a vibratory  table", D4253-00 (2003).  http://dx.doi.org/10.1520/D4253-16  51. ASTM Standard test methods for minimum index  density and unit weight of soils and calculation of  relative density", D4254-00 (2003).  http://dx.doi.org/10.1520/D4254-16  52. ASTM Standard test methods for speci_c gravity  of soil solids by water pycnometer", D854-02 (2006).  http://dx.doi.org/10.1520/D0854-14  53. Ladd, R.S. Preparing test specimens using under  compaction", Geotechnical Testing Journal, ASTM,  1(1), pp. 16{23 (1978).  54. Hoeg, K., Dyvik, R., and Sandbaekken, G. Strength  of undistrubed versus reconstituted silt and silty sand  specimens", Journal of Geotechnical and Geoenvironmental  Engineering, 126(7), pp. 606{617 (2000). DOI:  10.1061/(ASCE)1090-0241(2000)126:7(606)  55. Boulanger, R.W., Seed, R.B., Chan, C.K., Seed,  H.B., and Sousa, J. Liquefaction behaviour of saturated  sands under unidirectional and bi-directional  monotonic and cyclic simple shear loading", Rep. No.  UCB/GT/91-08, Univ. of California, Berkeley, Calif.  (1991).  56. Polito, C., Green, R., and Lee, J. Pore pressure  generation models for sands and silty soils  subjected to cyclic loading", J. Geotech. Geoenviron.  Eng., 134(10), pp. 1490{1500 (2008). DOI:  10.1061/(ASCE)1090-0241(2008)134:10(1490)  57. Terzaghi, K., Peck, R.B., and Mesri, G., Soil Mechanics  in Engineering Practice, 3rd Ed., London: Wiley  (1996).  58. Lee, K.L. and Seed, H.B. Drained strength characteristics  of sands", J. Soil Mech. Found. Div., ASCE,  93(SM6), pp. 117{141 (1967).  59. Negussey, D., Wijewickreme, W.K.D., and Vaid, Y.P.  Constant volume friction angle of granular materials",  Can. Geotech. J., 25(1), pp. 50{55 (1988).  60. Been, K. and Je_eries, M.G. A state parameter for  sands", Geotechnique, 35(2), pp. 99{112 (1985). Doi:  10.1680/geot.1985.35.2.99  61. Wan, R.G. and Guo, R.G. A pressure and density  dependent dilatancy model for granular materials,  Soils Found., 39(6), pp. 1{12 (1999).  62. Dietz, M.S. and Lings, M.L. Postpeak strength of  interfaces in a stress-dilatancy framework", J. Geotech.  Geoenviron. Engng., 132(11), pp. 1474{1484 (2006).  63. Sadrekarimi, A. and Olson, S.M. Critical state friction  angle of sands", G_eotechnique, 61(9), pp. 771{783  (2011).  64. Yang, S.L., Sandven, R., and Grande, L. Steadystate  lines of sand-silt mixtures", Canadian Geotechnical  Journal, 43(11), pp. 1213{1219 (2006). Doi:  10.1139/t06-069  65. Mahmood, A. and Mitchell, J.K. Fabric-property  relationships in _ne granular materials", Clays and  Clay Minerals, 22, pp. 397{408 (1974).  66. Miura, K., Miura, S., and Toki, S. Deformation  behaviour of anisotropic dense sand under principal  stress axes rotation", Soils and Foundations, 26(1), pp.  36{52 (1986).  67. Luan, M., Xu, C., He, Y., Guo, Y., Zhang, Z., Jin, D.,  and Fan, Q. Experimental study on shear behaviour  and an improved constitutive model of saturated sand  under complex stress condition", In Proceedings of the  Fourth International Conference on Soft Soil Engineering,  D.H. Chan and K.T. Law, Eds., CRC Press,  Vancouver, Canada, pp. 73{92 (2007).  68. Guo, P. Modi_ed direct shear test for anisotropic  strength of sand", Journal of Geotechnical and Geoenvironmental  Engineering, ASCE, 134(9), pp. 1311{  1318 (2008).  69. Towhata, I. and Ishihara, K. Undrained strength  of sand undergoing cyclic rotation of principal stress  axes", Soils and Foundations, 25(2), pp. 135{147  (1985).  70. Riemer, M.F. and Seed, R.B. Factors a_ecting the  apparent position of steady state line", J. Geotech.  Geoenviron. Engng, ASCE, 123(3), pp. 281{288  (1997).  71. Cai, Y. An experimental study of non-coaxial soil  behaviour using hollow cylinder testing", Doctoral  dissertation, University of Nottingham (2010).  72. Cai, Y., Yu, H.S., Wanatowski, D., and Li, X. Noncoaxial  behaviour of sand under various stress paths",  Journal of Geotechnical and Geoenvironmental Engineering,  139(8), pp. 1381{1395 (2012).  73. Logeswaran, P. Behaviour of sands under generalized  loading and drainage conditions", PhD Thesis, Carleton  University, Ottawa, Canada, p. 273 (2010).  74. Vipulanantham, M. Initial stress state and stress  history e_ects on liquefaction susceptibility of Sands",  M.Sc. Thesis, Carleton University, Ottawa, Canada, p.  180 (2011).