Usability of arc fault circuit interrupters with network function

Document Type : Article

Authors

1 Department of Fire Safety, Kyungil University, 38428, 50 Gamasilgil, Hayangup Gyeongsan Gyeongbuk, South Korea.

2 .Hetko Inc., Gayang-Technotown #602-2, 07531, 217 Heojun-ro, Gangseo-Gu Seoul, South Korea.

Abstract

The existing arc fault circuit interrupters have the function to interrupt overloads, ground fault, arc fault and all but neither is there the monitoring function to allow external monitoring nor the notification function to notify the fire safety manager. This is a study on arc fault circuit interrupters with the network function that have not been studied so far. We intend to install these arc fault circuit interrupters in places such as server rooms, pigsties, chicken farms, markets, cultural assets, skyscrapers, and facto-ries where large loss may occur if the fire safety managers do not recognize the electricity shutdown in order to increase the efficiency of electricity management. If an overload, a short circuit or an arc is detected while power is supplied to the load, the microprocessor generates a trip signal and cuts off the power by this trip signal. This situation is monitored in real time by ex-ternal monitoring and notified to the fire safety manager. The fire safety manager can immediately recognize the situation where the arc fault circuit interrupter interrupts the circuit and take the necessary action to manage the electricity efficiently.

Keywords

Main Subjects


1. Kwangsu, K. Korea electric safety corporation", 2015  Electric Disaster Statistical Analysis, pp. 112{114  (2016).  2. Kim, J.-H., Lee, D.-S., and Lee, H.-S. Design of a  door hinge with the function of preventing a door  from getting closed", In Conference Proceedings of  Ergonomics Society of Korea, pp. 170{171 (2013).  3. National Institute of Standards and Technology  <http://www.nist.gov> (Oct. 10 2017).  4. Qi, P., Jovanovic, S., Lezama, J., and Schweitzer, P.  Discrete wavelet transform optimal parameters estimation  for arc fault detection in low-voltage residential  power networks", Electric Power Systems Research,  143, pp. 130{139 (2017).  5. Guo, F., Li, K., Chen, C., Liu, Y., Wang, X., and  Wang, Z. Series arc fault identi_cation method based  on wavelet approximate entropy", Transactions of  China Electrotechnical Society, 31(24), pp. 164{172  (2016).  6. Chae, S., Park, J., and Oh, S. Series DC arc fault  detection algorithm for DC microgrids using relative  magnitude comparison", IEEE Journal of Emerging  and Selected Topics in Power Electronics, 4(4), pp.  1270{1278 (2016).  7. Jovanovic, S., Chahid, A., Lezama, J., and Schweitzer,  P. Shunt active power _lter-based approach for arc  fault detection", Electric Power Systems Research,  141, pp. 11{21 (2016).  8. Liu, Y.-W., Wu, C.-J., and Wang, Y.-C. Detection of  serial arc fault on low-voltage indoor power lines by using  radial basis function neural network", International  Journal of Electrical Power and Energy Systems, 83,  pp. 149{157 (2016).  9. Hatton, P.C., Bathaniah, M., Wang, Z., and Balog,  R.S. Arc generator for photovoltaic arc fault detector  testing", In IEEE Photovoltaic Specialists Conference,  IEEE, USA (2016).  10. Zhu, H.,Wang, Z., McConnell, S., Hatton, P.C., Balog,  R.S., and Johnson, J. High _delity 'replay' arc fault  detection testbed", In IEEE Photovoltaic Specialists  Conference, IEEE, USA (2016).  11. Zhu, H.,Wang, Z., and Balog, R.S. Real time arc fault  detection in PV systems using wavelet decomposition",  In IEEE Photovoltaic Specialists Conference, IEEE,  USA (2016).  12. Wang, Z. and Balog, R.S. Arc fault and ash detection  in photovoltaic systems using wavelet transform  and support vector machines", In IEEE Photovoltaic  Specialists Conference, IEEE, USA (2016).  13. Zhao, Y., Zhang, X., Dong, Y., and Li, W.  Characteristics analysis and detection of AC arc  fault in SSPC based on wavelet transform", In  AUS 2016-2016 IEEE/CSAA International Conference  on Aircraft Utility Systems, pp. 476{477 (2016).  https://ieeexplore.ieee.org/document/7748097/metric  -s#metrics  14. Liu, W., Zhang, X., Ji, R., Dong, Y., and Li, W. Arc  fault detection for AC SSPC in MEA with HHT and  ANN", In AUS 2016-2016 IEEE/CSAA International  Conference on Aircraft Utility Systems, pp. 7{8 (2016).  https://ieeexplore.ieee.org/abstract/document/  7748012  15. Johnson, J., Pahl, B., Luebke, C., Pier, T., Miller,  T., Strauch, J., Kuszmaul, S., and Bower, W. Photovoltaic  DC arc fault detector testing at Sandia national  laboratories", In Photovoltaic Specialists Conference  (PVSC), IEEE, USA (2011).  16. Strobl, C. and Meckler, P. Arc faults in photovoltaic  systems, electrical contacts (HOLM)", In 2010 Proceedings  of the 56th IEEE Holm Conference on IEEE,  USA (2010).  17. Yao, X., Herrera, L., Huang, Y., and Wang, J. The  detection of DC arc fault: experimental study and fault  recognition", In Applied Power Electronics Conference  and Exposition (APEC), 2012 Twenty-Seventh Annual  IEEE, IEEE, USA (2012).  H.-S. Kong and W.-J. Ra/Scientia Iranica, Transactions A: Civil Engineering 27 (2020) 607{613 613  18. Johnson, J. and Armijo, K. Parametric study of PV  arc-fault generation methods and analysis of conducted  DC spectrum", In Photovoltaic Specialist Conference  (PVSC), IEEE, USA (2014).  19. Sidhu, T.S., Sagoo, G.S., and Sachdev, M.S. Multisensor  secondary device for detection of low-level  arcing faults in metal-clad MCC switchgear panel",  IEEE Transactions on Power Delivery, 17(1), pp. 129{  130 (2002).  20. Chen, S. and Li, X. PV series arc fault recognition  under di_erent working conditions with joint detection  method, electrical contacts", In Proceedings of the Annual  Holm Conference on Electrical Contacts, IEEE,  USA (2016).  21. Dual Function AFCI/GFCI Circuit Breaker <http://  w3.usa.siemens.com/powerdistribution/us/en/product  -portfolio/circuit-breakers/residential-circuit-breakers  /pages/dual-function.aspx> (Nov. 11 2017).