References
1. Murayama, S., Endo, M., Hashiba, T., Yamamoto, K.,
and Sasaki, H. (Eds.), Geotechnical aspects for the
excavating performance of the shield machines", In
The 21st Annual Lecture in Meeting of Japan Society
of Civil Engineers (1966).
2. Krause, T. Shielding tunnel with liquid and earthsupported
local chest" [Schildvortrieb mit Flussigkeitsund
erdgestutzter ortsbrust], PhD Thesis, Technical
University Carolo-Wilhelmina, Brunswick (1987).
3. Horn, N. Horizontal earth pressure on the vertical surfaces
of the tunnel tubes", In National Conference of
the Hungarian Civil Engineering Industry, Budapest,
pp. 7-16 (in German) (1961).
4. Davis, E.H., Gunn, M.J., Mair, R.J., and Seneviratne,
H.N. The stability of shallow tunnels and underground
openings in cohesive material", Geotechnique,
30(4), pp. 397-416 (1980).
5. Muhlhaus, H.B. Lower bound solutions for circular
tunnels in two and three dimensions", Rock Mech Rock
Eng., 18, pp. 37-52 (1985).
6. Leca, E. and Dormieux, L. Upper and lower bound
solutions for the face stability of shallow circular
tunnels in frictional material", Geotechnique, 40(4),
pp. 581-606 (1990).
7. Zhang, C., Han, K., and Zhang, D. Face stability
analysis of shallow circular tunnels in cohesivefrictional
soils", Tunnelling and Underground Space
Technology, 50, pp. 345-357 (2015).
8. Atkinson, J.H. and Potts, D.M. Stability of a shallow
circular tunnel in cohesionless soils", Geotechnique,
27(2), pp. 203-215 (1977).
9. Atkinson, J.H. and Cairncross, A.M. Collapse of a
shallow tunnel in a Mohr-Coulomb material", In Role
of Plasticity in Soil Mechanics, Cambridge, pp. 202-
206 (1973).
10. Cairncross, A.M. Deformation around model tunnels
in sti clay", PhD Thesis, University of Cambridge
(1973).
11. Seneviratne, H.N. Deformations and pore-pressures
around model tunnels in soft clay", PhD Thesis,
University of Cambridge (1979).
12. Mair, R.J. Centrifugal modelling of tunnel construction
in soft clay", PhD Thesis, University of Cambridge
(1979).
13. Chambon, P. and Corte, J.F. Shallow tunnels in
cohesionless soil: stability of tunnel face", J. Geotech.
Eng., 120(7), pp. 1148-1165 (1994).
14. Kirsch, A. Experimental investigation of the face
stability of shallow tunnels in sand", Acta. Geotech.,
5, pp. 43-62 (2010).
15. Idiger, G., Aklik, P., Wei, W., and Borja, I. Centrifuge
model test on the face stability of shallow
tunnel", Acta Geotech, 6, pp. 105-117 (2011).
16. Wu, B.R., and Lee, C.J. Ground movements and
collapse mechanisms induced by tunneling in clayey
soil", International Journal of Physical Modelling in
Geotechnics, 3, pp. 15-29 (2003).
17. Chehade, F.H. and Shahrour, I. Numerical analysis
of the interaction between twin tunnels: in
uence
of the relative position and construction procedure",
Tunnelling and Underground Space Technology, 23, pp.
210-214 (2008).
18. Osman, A.S. Stability of unlined twin tunnels in
undrained clay", Tunnelling and Underground Space
Technology, 25, pp. 290-296 (2010).
19. Mirhabibi, A. and Soroush, A. Eects of surface
buildings on twin tunnelling-induced ground settlements",
Tunnelling and Underground Space Technology,
29, pp. 40-51 (2012).
20. Sloan, S.W. and Assadi, A. Undrained stability of a
square tunnel in a soil whose strength increases linearly
with depth", Computers and Geotechnics, 12(4), pp.
321-346 (1991).
21. Lyamin, A.V. and Sloan, S.W. Stability of a plane
strain circular tunnel in a cohesive frictional soil", In:
Proceedings of the J.R. Booker Memorial Symposium,
Sydney, Australia, pp. 139-153 (2000).
22. Lyamin, A.V., Jack, D.L., and Sloan, S.W. Collapse
analysis of square tunnels in cohesive-frictional soils",
In: Proceedings of the First Asian-Pacic Congress on
Computational Mechanics, Sydney, Australia, pp. 405-
414 (2001).
1120 T. Vo-Minh et al./Scientia Iranica, Transactions A: Civil Engineering 25 (2018) 1105{1121
23. Yamamoto, K., Lyamin, A.V., Wilson, D.W., Sloan,
S.W., and Abbo, A.J. Stability of a single tunnel in
cohesive-frictional soil subjected to surcharge loading",
Canadian Geotechnical Journal, 48(12), pp. 1841-1854
(2011).
24. Yamamoto, K., Lyamin, A.V., Wilson, D.W., Sloan,
S.W., and Abbo, A.J. Stability of a circular tunnel
in cohesive-frictional soil subjected to surcharge loading",
Computers and Geotechnics, 38(4), pp. 504-514
(2011).
25. Sahoo, J.P. and Kumar, J. Stability of long unsupported
twin circular tunnels in soils", Tunnelling
and Underground Space Technology, 38, pp. 326-335
(2013).
26. Yamamoto, K., Lyamin, A.V., Wilson, D.W., Sloan,
S.W., and Abbo, A.J. Stability of dual circular tunnels
in cohesive-frictional soil subjected to surcharge
loading", Computers and Geotechnics, 50, pp. 41-54
(2013).
27. Yamamoto, K., Lyamin, A.V., Wilson, D.W., Sloan,
S.W., and Abbo, A.J. Stability of dual square tunnels
in cohesive-frictional soil subjected to surcharge
loading", Canadian Geotechnical Journal, 51, pp. 829-
843 (2014).
28. Wilson, D.W., Abbo, A.J., Sloan, S.W., and Lyamin,
A.V. Undrained stability of dual square tunnels",
Acta Geotechnica, 10(5), pp. 665-682 (2015).
29. Wilson, D.W., Abbo, A.J., Sloan, S.W., and Lyamin,
A.V. Undrained stability of dual circular tunnels",
International Journal of Geomechanics, 14(1), pp. 69-
79 (2014).
30. Hughes, T.J.R. Reduced and selective integration
techniques in the nite element analysis of plates",
Nuclear Engineering and Design, 46, pp. 203-222
(1978).
31. Hughes, T.J.R., The Finite Element Method, Dover
Publications: Prentice-Hall (2000).
32. Piltner, R. and Taylor, R.L. Triangular nite elements
with rotational degrees of freedom and enhanced strain
modes", Computers and Structures, 75, pp. 361-368
(2000).
33. Simo, J.C. and Rifai, M.S. A class of mixed assumed
strain methods and the method of incompressible
modes", International Journal for Numerical Methods
in Engineering, 29, pp. 1595-1638 (1990).
34. Cardoso, R.P.R., Yoon, J.W., Mahardika, M.,
Choudhry, S., Alves de Sousa, R.J., and Fontes
Valente, R.A. Enhanced assumed strain (EAS) and
assumed natural strain (ANS) methods for one-point
quadrature solid-shell elements", International Journal
for Numerical Methods in Engineering, 75, pp. 156-
187 (2008).
35. Bonet, J. and Burton, A.J. A simple average nodal
pressure tetrahedral element for incompressible and
nearly incompressible dynamic explicit applications",
Communications in Numerical Methods in Engineering,
14, pp. 437-449 (1998).
36. Chen, J.S., Wu, C.T., and Yoon, S. A stabilized
conforming nodal integration for Galerkin meshfree
method", International Journal for Numerical Methods
in Engineering, 50, pp. 435-466 (2001).
37. Yoo, J.W., Moran, B., and Chen, J.S. Stabilized
conforming nodal integration in the natural-element
method", International Journal for Numerical Methods
in Engineering, 60, pp. 861-890 (2004).
38. Liu, G.R. and Nguyen-Thoi, T., Smoothed Finite
Element Methods, New York: CRC Press (2010).
39. Liu, G.R., Dai, K.Y., and Nguyen-Thoi, T. A
smoothed nite element for mechanics problems",
Computer and Mechanics, 39, pp. 859-877 (2007).
40. Liu, G.R., Nguyen-Thoi, T., Nguyen-Xuan, H., and
Lam, K.Y. A node based smoothed nite element
method (NS-FEM) for upper bound solution to solid
mechanics problems", Computer and Structures, 87,
pp. 14-26 (2009).
41. Nguyen-Thoi, T., Liu, G.R., Lam, K.Y., and Zhang,
G.Y. A face-based smoothed nite element method
(FS-FEM) for 3D linear and nonlinear solid mechanics
problems using 4-node tetrahedral elements", International
Journal for Numerical Methods in Engineering,
78, pp. 324-353 (2009).
42. Liu, G.R., Nguyen-Thoi, T., and Lam, K.Y. An edgebased
smoothed nite element method (ES-FEM) for
static, free and forced vibration analyses of solids",
Journal of Sound and Vibration, 320, pp. 1100-1130
(2009).
43. Liu, G.R., Nguyen-Thoi, T., Dai, K.Y., and Lam, K.Y.
Theoretical aspects of the smoothed nite element
method (SFEM)", International Journal for Numerical
Methods in Engineering, 71, pp. 902-930 (2007).
44. Liu, G.R., Nguyen-Xuan, H., and Nguyen-Thoi, T. A
theoretical study of S-FEM models: properties, accuracy
and convergence rates", International Journal for
Numerical Methods in Engineering, 84, pp. 1222-1256
(2010).
45. Nguyen-Xuan, H., Rabczuk, T., Nguyen-Thoi, T.,
Tran, T.N., and Nguyen-Thanh, N. Computation
of limit and shakedown loads using a node-based
smoothed nite element method", International Journal
for Numerical Methods in Engineering, 90, pp. 287-
310 (2012).
46. Le, C.V., Nguyen-Xuan, H., Askes, H., Bordas, S.,
Rabczuk, T., and Nguyen-Vinh, H. A cell-based
smoothed nite element method for kinematic limit
analysis", International Journal for Numerical Methods
in Engineering, 83, pp. 1651-1674 (2010).
47. Nguyen-Xuan, H., and Liu, G.R. An edge-based
nite element method (ES-FEM) with adaptive scaledbubble
functions for plane strain limit analysis", Comput
Methods Appl. Mech. Eng., 285, pp. 877-905
(2015).
48. Nguyen-Xuan, H. and Rabczuk, T. Adaptive selective
ES-FEM limit analysis of cracked plane-strain structures",
Frontiers of Structural and Civil Engineering,
9, pp. 478-490 (2015).
T. Vo-Minh et al./Scientia Iranica, Transactions A: Civil Engineering 25 (2018) 1105{1121 1121
49. Nguyen-Xuan, H., Wu, C.T., and Liu, G.R. An adaptive
selective ES-FEM for plastic collapse analysis",
European Journal of Mechanics A/Solid, 58, pp. 278-
290 (2016).
50. Wu, S.C., Liu, G.R., Zhang, H.O., Xu, X., and
Li, Z.R. A node-based smoothed point interpolation
method (NS-PIM) for three-dimensional heat transfer
problems", International Journal of Thermal Sciences,
48, pp. 1367-1376 (2009).
51. Cui, X.Y., Li, Z.C., Feng, H., and Feng, S.Z. Steady
and transient heat transfer analysis using a stable
node-based smoothed nite element method", International
Journal of Thermal Sciences, 110, pp. 12-25
(2016).
52. Liu, G.R., Chen, L., Nguyen-Thoi, T., Zeng, K.Y., and
Zhang, G.Y. A novel singular node-based smoothed
nite element method (NS-FEM) for upper bound
solutions of fracture problems", International Journal
for Numerical Methods in Engineering, 83, pp. 1466-
1497 (2010).
53. Wang, G., Cui, X.Y., Liang, Z.M., and Li, G.Y.
A coupled smoothed nite element method (S-FEM)
for structural-acoustic analysis of shells", Engineering
Analysis with Boundary Elements, 61, pp. 207-217
(2015).
54. Wang, G., Cui, X.Y., Feng, H., and Li, G.Y. A
stable node-based smoothed nite element method
for acoustic problems", Computer Methods Applied
Mechanics and Engineering, 297, pp. 348-370 (2015).
55. Cui, X.Y., Wang, G., and Li, G.Y. A nodal integration
axisymmetric thin shell model using linear
interpolation", Applied Mathematical Modelling, 40,
pp. 2720-2742 (2016).
56. Feng, H., Cui, X.Y., and Li, G.Y. A stable nodal
integration method with strain gradient for static
and dynamic analysis of solid mechanics", Engineering
Analysis with Boundary Elements, 62, pp. 78-92
(2016).
57. Wang, G., Cui, X.Y., and Li, G.Y. A rotation-free
shell formulation using nodal integration for static and
dynamic analyses of structures", International Journal
for Numerical Methods in Engineering, 105, pp. 532-
560 (2016).
58. Wang, G., Cui, X.Y., and Li, G.Y. Temporal stabilization
nodal integration method for static and dynamic
analyses of Reissner-Mindlin plates", Computers
& Structures, 152, pp. 124-141 (2015).
59. Vo-Minh, T., Nguyen-Minh, T., Chau-Ngoc, A., and
Nguyen-Chanh, H. Stability of twin circular tunnels
in cohesive-frictional soil using the node-based
smoothed nite element method (NS-FEM)", Journal
of Vibroengineering, 19, pp. 520-538 (2017).
60. Mosek, The MOSEK optimization toolbox for MATLAB
manual: http://www.mosek.com
61. Makrodimopoulos, A. and Martin, C.M. Upper
bound limit analysis using simplex strain elements
and second-order cone programming", International
Journal for Numerical and Analytical Methods in Geomechanics,
31, pp. 835-865 (2006).
62. GiD 11.0.4, International Center for Numerical Methods
in Engineering (CIMNE), Reference manual.
http://www.cimne.com
63. Chen, W.F., Limit Analysis and Soil Plasticity, Elsevier,
Amsterdam (1975).