New operations for interval-valued Pythagorean fuzzy set

Document Type : Article


School of Information Science and Engineering, Shaoguan University, Shaoguan, People's Republic of China.


Interval-valued Pythagorean fuzzy set (IVPFS), originally proposed by Peng and Yang, is a novel tool to deal with vagueness and incertitude. As a generalized set, IVPFS has close
relationship with interval-valued intuitionistic fuzzy set (IVIFS). IVPFS can be reduced to IVIFS satisfying the
condition $\mu^++\nu^+ \leq 1$. However, the related operations of IVPFS do not take different conditions
into consideration. In this paper, we initiate some new interval-valued Pythagorean fuzzy operators ($\diamondsuit, \Box, \spadesuit, \clubsuit, \maltese, \rightarrow, \$ $) and discuss their properties in relation with some existing operators $(\cup, \cap, \oplus, \otimes)$ in detail. It will promote the development of interval-valued Pythagorean fuzzy operators. Later, we propose an algorithm to deal with multi-attribute decision making (MADM) problem based on proposed $\spadesuit$ operator. Finally, the effectiveness and feasibility of approach is
demonstrated by mine emergency decision making example.


Main Subjects

1. Atanassov, K.T. Intuitionistic fuzzy sets", Fuzzy Sets  Syst., 20(1), pp. 87-96 (1986).  2. Zadeh, L.A. Fuzzy sets", Inform. Control., 8(3), pp.  338-356 (1965).  3. Yager, R.R. Pythagorean fuzzy subsets", Proc. Joint  IFSA World Congress NAFIPS Annual Meet., 1, Edmonton,  Canada, pp. 57-61 (2013).  4. Yager, R.R. and Abbasov, A.M. Pythagorean membership  grades, complex numbers, and decision making",  Int. J. Intell. Syst., 28(5), pp. 436-452 (2014).  5. Zhang, X.L. and Xu, Z.S. Extension of TOPSIS to  multiple criteria decision making with Pythagorean  fuzzy sets", Int. J. Intell. Syst., 29(12), pp. 1061-1078  (2014).  6. Yang, Y., Ding, H., Chen, Z.S., and Li Y.L. A Note  on extension of TOPSIS to multiple criteria decision  making with Pythagorean fuzzy sets", Int. J. Intell.  Syst., 31(1), pp. 68-72 (2015).  7. Yager, R.R. Pythagorean membership grades in multicriteria  decision making", IEEE Trans. Fuzzy Syst.,  22(4), pp. 958-965 (2014).  8. Peng, X.D. and Yang, Y. Some results for  Pythagorean fuzzy sets", Int. J. Intell. Syst., 30(11),  pp. 1133-1160 (2015).  9. Garg, H. Some methods for strategic decision-making  problems with immediate probabilities in Pythagorean  fuzzy environment", Int. J. Intell. Syst., 33(4), pp.  687-712 (2018).  10. Zhang, X.L. Multicriteria Pythagorean fuzzy decision  analysis: A hierarchical QUALIFLEX approach with  the closeness index-based ranking methods", Inform.  Sci., 330, pp. 104-124 (2016).  11. Peng, X.D. and Dai, J.G. Approaches to Pythagorean  fuzzy stochastic multi-criteria decision making based  on prospect theory and regret theory with new distance  measure and score function", Int. J. Intell. Syst.,  32(11), pp. 991-1029 (2017).  12. Ren, P.J., Xu, Z.S., and Gou, X.J. Pythagorean fuzzy  TODIM approach to multi-criteria decision making",  Appl. Soft Comput., 42, pp. 246-259 (2016).  13. Peng, X.D. and Yang, Y. Pythagorean fuzzy choquet  integral based MABAC method for multiple attribute  group decision making", Int. J. Intell. Syst., 31(10),  pp. 989-1020 (2016).  14. Garg, H. A new generalized Pythagorean fuzzy information  aggregation using Einstein operations and its  application to decision making", Int. J. Intell. Syst.,  31(9), pp. 886-920 (2016).  15. Garg, H. Generalized Pythagorean fuzzy geometric  aggregation operators using Einstein t-norm and tconorm  for multicriteria decision-making process", Int.  J. Intell. Syst., 32(6), pp. 597-630 (2017).  16. Zeng, S.Z., Chen, J.P., and Li, X.S. A hybrid method  for Pythagorean fuzzy multiple-criteria decision making",  Int. J. Inf. Tech. Decis., 15(2), pp. 403-422  (2016).  17. Liang, W., Zhang, X.L., and Liu, M.F. The maximizing  deviation method based on interval-valued  Pythagorean fuzzy weighted aggregating operator for  multiple criteria group decision analysis", Discrete  Dyn. Nat. Soc., 2015(1), pp. 1-15 (2015).  18. Garg, H. Con_dence levels based Pythagorean fuzzy  aggregation operators and its application to decisionmaking  process", Comput. Math. Organ. Theory,  23(4), pp. 546-571 (2017).  19. Ma, Z.M. and Xu, Z.S. Symmetric Pythagorean fuzzy  weighted geometric/averaging operators and their application  in multicriteria decision-making problems",  Int. J. Intell. Syst., 31(12), pp. 1198-1219 (2016).  20. Zeng, S.Z. Pythagorean fuzzy multiattribute group  decision making with probabilistic information and  OWA approach", Int. J. Intell. Syst., 32(11), pp. 1136-  1150 (2017).  21. Peng, X.D. and Yang, Y. Fundamental properties of  interval-valued Pythagorean fuzzy aggregation operators",  Int. J. Intell. Syst., 31(5), pp. 444-487 (2016).  22. Wei, G.W. and Lu, M. Pythagorean fuzzy maclaurin  symmetric mean operators in multiple attribute  decision making", Int. J. Intell. Syst., (2017) URL  /full  23. Garg, H. A novel correlation coe_cients between  Pythagorean fuzzy sets and its applications to decisionmaking  processes", Int. J. Intell. Syst., 31(12), pp.  1234-1252 (2016).  24. Peng, X.D., Yuan, H.Y., and Yang, Y. Pythagorean  fuzzy information measures and their applications",  Int. J. Intell. Syst., 32(10), pp. 991-1029 (2017).  25. Zhang, X.L. A novel approach based on similarity  measure for Pythagorean fuzzy multiple criteria group  decision making", Int. J. Intell. Syst., 31(6), pp. 593-  611 (2016).  26. Peng, X.D., Yang, Y., Song, J.P., and Jiang, Y.  Pythagorean fuzzy soft set and its application", Comput.  Eng., 41(7), pp. 224-229 (2015).  27. Peng, X.D. and Yang, Y. Multiple attribute group  decision making methods based on Pythagorean fuzzy  linguistic set", Comput. Eng. Appl., 52(23), pp. 50-54  (2016).  28. Liu, Z., Liu, P., Liu, W., and Pang, J. Pythagorean  uncertain linguistic partitioned Bonferroni mean operators  and their application in multi-attribute decision  making", J. Intell. Fuzzy Syst., 32(3), pp. 2779-2790  (2017).  29. Zhang, C., Li, D.Y., and Ren, R. Pythagorean fuzzy  multigranulation rough set over two universes and its  applications in merger and acquisition", Int. J. Intell.  Syst., 31(9), pp. 921-943 (2016).  30. Liang, D.C. and Xu, Z.S. The new extension of  TOPSIS method for multiple criteria decision making  with hesitant Pythagorean fuzzy sets", Appl. Soft  Comput., 60, pp. 167-179 (2017).  31. Du, Y., Hou, F., Zafar, W., Yu, Q., and Zhai, Y.  A novel method for multiattribute decision making  with interval-valued Pythagorean fuzzy linguistic information",  Int. J. Intell. Syst., 32(10), pp. 1085-1112  (2017).  32. Garg, H. A novel accuracy function under intervalvalued  Pythagorean fuzzy environment for solving multicriteria  decision making problem", J. Intell. Fuzzy  Syst., 31(1), pp. 529-540 (2016).  33. Gou, X.J., Xu, Z.S., and Ren, P.J. The properties  of continuous Pythagorean fuzzy information", Int. J.  Intell. Syst., 31(5), pp. 401-424 (2016).  34. Peng, X.D. and Yuan, H.Y. Fundamental properties  of Pythagorean fuzzy aggregation operators", Fund.  Inform., 147(4), pp. 415-446 (2016).  35. Peng, X.D. and Selvachandran, G. Pythagorean  fuzzy set state of the art and future directions", Artif.  Intell. Rev. (2017).  URL  017-9596-9  36. Garg, H. A novel improved accuracy function for  interval valued Pythagorean fuzzy sets and its applications  in decision making process", Int. J. Intell. Syst.,  32(12), pp. 1247-1260 (2017).  37. Rahman, K., Abdullah, S., Shakeel, M., Khan, M.,  and Ullah, M. Interval-valued Pythagorean fuzzy  geometric aggregation operators and their application  to group decision making problem", Cogent. Math., 4,  pp. 1-20 (2017).  38. Garg, H. A new improved score function of an  interval-valued Pythagorean fuzzy set based TOPSIS  method", Int. J. Uncertainty Quantif., 7(5), pp. 463-  474 (2017).  39. Chen, T.Y. An interval-Valued Pythagorean fuzzy  outranking method with a closeness-based assignment  model for multiple criteria decision making", Int. J.  Intell. Syst., 33(1), pp. 126-168 (2018).  40. Atanassov, K.T. and Gargov, G. Interval-valued intuitionistic  fuzzy sets", Fuzzy Sets Syst., 31(3), pp.  343-349 (1989).  41. Xu, Z.S. Methods for aggregating interval-valued  intuitionistic fuzzy information and their application  to decision making", Control Decis., 22(2), pp. 215-  219 (2007).  42. Hao, Z.N., Xu, Z.S., Zhao, H., and Fujita, H. A  dynamic weight determination approach based on  the intuitionistic fuzzy Bayesian network and its  application to emergency decision making", IEEE  Trans. Fuzzy Syst., 26(4), pp. 1893-1907 (2018) .URL  8047330/  43. Alcantud, J.C.R. and Mathew, T.J. Separable fuzzy  soft sets and decision making with positive and negative  attributes", Appl. Soft Comput., 59, pp. 586-595  (2017).  44. Zhan, J.M, Liu, Q., and Tutut, H. A novel soft rough  set soft rough hemirings and its multicriteria group  decision making", Appl. Soft Comput., 54, pp. 393-402  (2017).  45. Wang, J., Wang, J.Q., and Zhang, H.Y. A likelihoodbased  TODIM approach based on multi-hesitant fuzzy  linguistic information for evaluation in logistics outsourcing",  Comput. Ind. Eng., 99, pp. 287-299 (2016).  46. Shariati, S., Abedi, M., Saedi, A., Yazdani-Chamzini,  A., Tamo_saitien_e, J., _Saparauskas, J., and Stupak, S.  Critical factors of the application of nanotechnology  in construction industry by using ANP technique  under fuzzy intuitionistic environment", J. Civ. Eng.  Manag., 23(7), pp. 914-925 (2017).  47. Peng, X.D. Hesitant trapezoidal fuzzy aggregation  operators based on Archimedean t-norm and t-conorm  and their application in MADM with completely unknown  weight information", Int. J. Uncertainty Quantif.,  7(6), pp. 475-510 (2017).  48. Alcantud, J.C.R. A novel algorithm for fuzzy soft  set based decision making from multiobserver input  parameter data set", Inform. Fusion, 29, pp. 142-148  (2016).  49. Garg, H. Generalized intuitionistic fuzzy interactive  geometric interaction operators using Einstein t-norm  and t-conorm and their application to decision making",  Comput. Ind. Eng., 101, pp. 53-69 (2016).  50. Garg, H. A new generalized improved score function  of interval-valued intuitionistic fuzzy sets and applications  in expert systems", Appl. Soft Comput., 38, pp.  989-999 (2016).  51. Garg, H. Distance and similarity measures for intuitionistic  multiplicative preference relation and its  applications", Int. J. Uncertainty Quantif., 7(2), pp.  117-133 (2017).  52. Peng, X.D. and Yang, Y. Algorithms for intervalvalued  fuzzy soft sets in stochastic multi-criteria decision  making based on regret theory and prospect  theory with combined weight", Appl. Soft Comput.,  54, pp. 415-430 (2017).  53. Peng, X.D. and Liu, C. Algorithms for neutrosophic  soft decision making based on EDAS, new similarity  measure and level soft set", J. Intell. Fuzzy Syst.,  32(1), pp. 955-968 (2017).  54. Zhan, J.M., Ali, M., and Mehmood, N. On a novel  uncertain soft set model Z-soft fuzzy rough set model  and corresponding decision making methods", Appl.  Soft Comput., 56, pp. 446-457 (2017).  55. Ma, X.L., Liu, Q., and Zhan, J.M. A survey of  decision making methods based on certain hybrid soft  set models", Artif. Intell. Rev., 47(4), pp. 507-530  (2017).  56. Garg, H. and Kumar, K. A novel correlation coef-  _cient of intuitionistic fuzzy sets based on the connection  number of set pair analysis and its application",  Sci. Iran., 25(4), pp. 2373-2388 (2018). URL 4454.html  57. Garg, H., Agarwal, N., and Tripathi, A. Some  improved interactive aggregation operators under  interval-valued intuitionistic fuzzy environment and its  application to decision making process", Sci. Iran.,  24(5), pp. 2581-2604 (2017).