Realization of a reduced graphene oxide/ZnO nanorod photodetector, suitable for self-powered applications

Document Type : Article


1 ECE Department, Tarbiat Modares University, Jalal Ale. Ahmad Ave., Tehran, Iran

2 ECE Department, University of Tehran, North Kargar Str., Tehran, Iran


In this report, we propose a reduced graphene oxide (rGO) /ZnO nanorod hybrid structure, which benefits from high photosensitivity and piezoelectric properties of ZnO nanorods, beside excellent carrier mobility, high optical transparency and mechanical flexibility of the reduced graphene oxide sheets. Comparing with the pristine ZnO nanorod based structure; it is shown that the proposed hybrid photodetector exhibits improved output sensitivity to UV-illumination (ΔI/I=424). Also, by taking advantage of the coupled semiconducting/piezoelectric properties of ZnO nanorods, we demonstrate the application of the proposed hybrid rGO/ZnO nanorod structure as a photosensitive piezoelectric nanogenerator. In this regard, we have achieved enhanced open circuit voltage (1.5 V) and open circuit sensitivity (ΔVoc/Voc=-0.66 %), beside a faster photoresponse, for the realized rGO/ZnO hybrid structure in comparison with ZnO nanorod based counterpart. The observed enhancements are attributed to the presence of underlying reduced graphene oxide sheet, as an efficient carrier transport layer in the proposed hybrid structure.


Main Subjects

1. Du, X., Skachko, I., Barker, A., and Andrei, E.Y. Approaching
ballistic transport in suspended graphene",
Nature Nanotech., 3(8), pp. 491-495 (2008).
2. Geim, A.K. and Novoselov, K.S. The rise of
grapheme", Nature Mater., 6(3), pp. 183-191 (2007).
3. Song, J.C., Rudner, M.S., Marcus, C.M., and Levitov,
L.S. Hot carrier transport and photocurrent response
in grapheme", Nano Lett., 11(11), pp. 4688-4692
4. Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov1,
K.S., Booth, T.J., Stauber, T., Peres, N.M.R., and
Geim, A.K. Fine structure constant de nes visual
transparency of grapheme", Sci., 320(5881), pp. 1308-
1308 (2008).
5. Neves, A.I.S., Bointon, T.H., Melo, L.V., Russo,
S., de Schrijver, I., Craciun, M.F., and Alves, H.
Transparent conductive graphene textile bers", Sci.
Rep., 5(9866), (2015).
6. Zhang, X., Yan, X., Chen, J., and Zhao, J. Largesize
graphene microsheets as a protective layer for
transparent conductive silver nanowire lm heaters",
Carbon, 69, pp. 437-443 (2014).
7. Saravanakumar, B., Thiyagarajan, K., Alluri, N.R.,
Yoon, S.S., Taehyun, K., Lin, Z.H., and Kim, S.J.
Fabrication of an eco-friendly composite nanogenerator
for self-powered photosensor applications", Carbon,
84, pp. 56-65 (2015).
8. Zhan, Z., Zheng, L., Pan, Y., Sun, G., and Li,
L. Self-powered, visible-light photodetector based on
thermally reduced graphene oxide-ZnO (rGO-ZnO)
hybrid nanostructure", J. Mater. Chem., 22(6), pp.
2589-2595 (2012).
9. Liu, H., Sun, Q., Xing, J., Zheng, Z., Zhang, Z., Lu,
Z., and Zhao, K. Fast and enhanced broadband photoresponse
of a ZnO nanowire array/reduced graphene
oxide lm hybrid photodetector from the visible to
the near-infrared range", ACS Appl. Mater. Interfaces,
7(12), pp. 6645-6651 (2015).
10. Singh, R.K., Kumar, R., and Singh, D.P. Graphene
oxide: strategies for synthesis, reduction and frontier
applications", RSC. Adv., 6, p. 64993 (2016).
11. Kumar, R., Singh, R.K., Singh, D.P., Joanni,
E., Yadav, R.M., and Moshkalev, S.A. Laserassisted
synthesis, reduction and micro-patterning of
graphene: Recent progress and applications", Coordination
Chem. Rev., 342, pp. 34-79 (2017).
12. Zhang, Y., Ram, M.K., Stefanakos, E.K., and
Goswami, D.Y. Synthesis, characterization, and applications
of ZnO nanowires", J. of Nanomat., 2012,
pp. 1-22 (2012).
13. Xu, S. and Wang, Z. One-dimensional ZnO nanostructures:
solution growth and functional properties",
Nano Res., 4(11), pp. 1013-1098 (2011).
14. Soci, C., Zhang, A., Bao, X., Kim, H., Lo, Y., and
Wang, D. Nanowire photodetectors", J. of Nanosci.
and Nanotechnol., 10(3), pp. 1430-1449 (2010).
15. Wang, Z.L. and Song, J. Piezoelectric nanogenerators
based on zinc oxide nanowire arrays", Sci., 312(5771),
pp. 242-246 (2006).
16. Cha, S.N., Seo, J.S., Kim, S.M., Kim, H.J., Park, Y.J.,
Kim, S.W., and Kim, J.M. Sound-driven piezoelectric
nanowire-based nanogenerators", Adv. Mater., 22(42),
pp. 4726-4730 (2010).
17. Choi, D., Choi, M.Y., Shin, H.J., Yoon, S.M., Seo,
J.S., Choi, J.Y., Lee, S.Y., Kim, J.M., and Kim, S.W.
Nanoscale networked single-walled carbon-nanotube
electrodes for transparent
exible nanogenerators", J.
Phys. Chem. C., 114(2), pp. 1379-1384 (2010).
18. Hsu, C.L. and Chen, K.C. Improving piezoelectric
nanogenerator comprises ZnO nanowires by bending
exible PET substrate at low vibration frequency",
J. Phys. Chem. C., 116(16), pp. 9351-9355 (2012).
19. Wang, Z.L. Piezopotential gated nanowire devices:
Piezotronics and piezo-phototronics", Nano Today,
5(6), pp. 540-552 (2010).
20. Wang, Z.L. and Wang, X. Nanogenerators and
piezotronics", Nano Energy., 14, pp. 1-2 (2015).
21. Liu, J., Fei, P., Song, J., Wang, X., Lao, C., Tummala,
R., and Wang, Z.L. Carrier Density and Schottky
Barrier on the Performance of DC Nanogenerator",
Nano Lett., 8(1), pp. 328-332 (2008).
22. Xu, S., Qin, Y., Xu, C., Wei, Y., Yang, R., and Wang,
Z.L. Self-powered nanowire devices", Nat. Nanotech.,
5(5), pp. 366-373 (2010).
L. Sha ei et al./Scientia Iranica, Transactions F: Nanotechnology 25 (2018) 1824{1834 1833
23. Zhang, Z., Liao, Q., Yu, Y., Wang, X., and Zhang,
Y. Enhanced photoresponse of ZnO nanorods-based
self-powered photodetector by piezotronic interface
engineering", Nano Energy, 9, pp. 237-244 (2014).
24. Kumar, R., Singh, R.K., Singh, D.P., Savu, R., and
Moshkalev, S.A. Microwave heating time dependent
synthesis of various dimensional graphene oxide supported
hierarchical ZnO nanostructures and its photoluminescence
studies", Materials and Design, 111
25. Kumar, R., Singh, R.K., Vaza, A.R., and Moshkaleva,
S.A. Microwave-assisted synthesis and deposition of
a thin ZnO layer on microwave-exfoliated graphene:
optical and electrochemical evaluations", RSC. Adv.,
5, p. 67988 (2015).
26. Feda, M.H., Khosravi, Y., Darbari, S., and Abdollahi
Nejand, B. Electrically controlled photocatalytic
reduction of graphene oxide sheets by ZnO nanostructures,
suitable for tunable optoelectronic applications",
IEEE Trans. on Elec. Dev., 63(8), p. 3147
27. Darbari, S., Ahmadi, V., Afzali, P., Abdi, Y.,
and Feda, M. Reduced graphene oxide/ZnO hybrid
structure for high performance photodetection", J.
Nanopart. Res., 16, p. 2798 (2014).
28. Darbari, S., Ahmadi, V., Afzali, P., and Abdi,
Y. Photocatalytic-reduction of GO/ZnO to achieve
GNRs for optoelectronic applications", J. of Phys. DAppl.
Phys., 46, p. 385101 (2013).
29. Ostovari, F., Abdi, Y., Darbari, S., and Ghasemi, F.
E ects of electromechanical resonance on photocatalytic
reduction of the free-hanging graphene oxide
sheets", J. Nanopart. Res., 15, p. 1551 (2013).
30. Hummers, W.S. and O eman, R.E. Preparation of
graphite oxide", J. Am. Chem. Soc., 80(6), pp. 1339-
1339 (1958).
31. Muskens, O.L., Borgstrom, M.T., Bakkers, E.P.A.M.,
and Rivas, J.G., Giant optical birefringence in ensembles
of semiconductor nanowires", Appl. Phys. Lett.,
89, p. 233117 (2006).
32. Hu, L. and Chen, G. Analysis of optical absorption in
silicon nanowire arrays for photovoltaic applications",
Nano Lett., 7, p. 3249 (2007).
33. Zhang, A., You, S., Soci, C., Liu, Y.,Wang, D., and Lo,
Y.H. Photoresponsive properties of ultrathin silicon
nanowires", Appl. Phys. Lett., 93, p. 121110 (2008).
34. Muskens, O.L., Rivas, J.G.M., Algra, R.E., Bakkers,
E.P.A.M., and Lagendijk, A. Design of light scattering
in nanowire materials for photovoltaic applications",
Nano Lett., 8, 2638 (2008).
35. Greene, L.E., Law, M., Tan, D.H., Montano, M.,
Goldberger, J., Somorjai, G. and Yang, P. General
route to vertical ZnO nanowire arrays using textured
ZnO seeds", Nano Lett., 5(7), pp. 1231-1236 (2005).
36. Alver, U., Zhou, W., Belay, A.B., Krueger, R., Davis,
K.O., and Hickman, N.S. Optical and structural
properties of ZnO nanorods grown on graphene oxide
and reduced graphene oxide lm by hydrothermal
method", Appl. Surf. Sci., 258(7), pp. 3109-3114
37. Modaresinezhad, E. and Darbari, S. Realization of
a room-temperature/self-powered humidity, sensor,
based on ZnO nanosheets", Sens. and Act. B., 237
358-366 (2016).
38. Dehghan Nayeri, F., Darbari, S., Soleimani, E.A., and
Mohajerzadeh, S. Surface structure and eld emission
properties of cost e ectively synthesized zinc oxide
nanowire/multiwalled carbon nanotube heterojunction
arrays", J. Phys. D: Appl. Phys., 45(28), 285101
39. Esfandiar, A., Akhavan, O. and Irajizad, A. Melatonin
as a powerful bio-antioxidant for reduction of
graphene oxide", J. Mater. Chem., 21(29), pp. 10907-
10914 (2011).
40. Tak, Y., Kim, H., Lee, D., and Yong, K. Type-II CdS
nanoparticle-ZnO nanowire heterostructure arrays fabricated
by a solution process: enhanced photocatalytic
activity", Chem. Commun., 2008(38), pp. 4585-4587
41. Wang, Y., Wang, F. and He, J. Controlled fabrication
and photocatalytic properties of a threedimensional
ZnO nanowire/reduced graphene oxide/
CdS heterostructure on carbon cloth", Nanoscale.,
5(22), pp. 11291-11297 (2013).
42. Zhang, C., Zhang, J., Su, Y., Xu, M., Yang, Z.,
and Zhang, Y. ZnO nanowire/reduced graphene oxide
nanocomposites for signi cantly enhanced photocatalytic
degradation of Rhodamine 6G", Physica E., 56,
pp. 251-255 (2014).
43. Zhan, D., Ni, Z., Chen, W., Sun, L., Luo, Z., Lai,
L., Yu, T., Wee, A.T.S., and Shen, Z., Electronic
structure of graphite oxide and thermally reduced
graphite oxide", Carbon, 49, pp. 1362-1366 (2011).
44. Yang, D., Velamakanni, A., Bozoklu, G., Park, S.,
Stoller, M., Piner, R.D., Stankovich, S., Jung, I.,
Field, D.A., Ventrice, C.A., and Ruo , R.S. Chemical
analysis of graphene oxide lms after heat and chemical
treatments by X-ray photoelectron and micro-Raman
spectroscopy", Carbon, 47, pp. 145-152 (2009).
45. Wang, M., Zhou, Y., Zhang, Y., Kim, E.J., Hahn, S.H.,
and Seong, S.G. Near-infrared photoluminescence
from ZnO", Appl. Phys. Lett., 100(10), 101906 (2012).
46. He, Y., Zhang, W., Zhang, S., Kang, X., Peng, W.
and Xu, Y. Study of the photoconductive ZnO UV
detector based on the electrically
oated nanowire
array", Sensors and Actuators A: Physical, 181, pp.
6-12 (2012).
47. Bao, J., Shalish, I., Su, Z., Gurwitz, R., Capasso, F.,
Wang, X., and Ren, Z. Photoinduced oxygen release
and persistent photoconductivity in ZnO nanowires",
Nanoscale Res. Lett., 6(404) (2011).
1834 L. Sha ei et al./Scientia Iranica, Transactions F: Nanotechnology 25 (2018) 1824{1834
48. Fu, C., Lee, K.J., Lee, K., and Yang, S.S. Lowintensity
ultraviolet detection using a surface acousticwave
sensor with a Ag-doped ZnO nanoparticle lm",
Smart Mater. Struct., 24(1), 015010 (2015).
49. Zhou, H., Gui, P., Yu, Q., Mei, J., Wang, H., and Fang,
G. Self-powered, visible-blind ultraviolet photodetector
based on n-ZnO nanorods/i-MgO/p-GaN structure
light-emitting diodes", J. Mater. Chem. C., 3(5), pp.
990-994 (2015).
50. Chen, H.Y., Liu, K.W., Chen, X., Zhang, Z.Z., Fan,
M.M., Jiang, M.M., Xie, X.H., Zhao, H.F., and
Shen, D.Z. Realization of a self-powered ZnO MSM
UV photodetector with high responsivity using an
asymmetric pair of Au electrodes", J. Mater. Chem.
C., 2(45), pp. 9689-9694 (2014).
51. Roza, L., Fairuzy, K.A.J., Dewanta, P., Umar, A.A.,
Rahman, M.Y.A., Salleh, M.M. E ect of molar ratio
of zinc nitrate: hexamethylenetetramine on the properties
of ZnO thin lm nanotubes and nanorods and
the performance of dye-sensitized solar cell (DSSC)",
J. Mater. Sci: Mater. Elec., 26, pp. 7955-7966 (2015).
52. Kim, K.H., Kumar, B., Lee, K.Y., Park, H.K., Lee,
J.H., Lee, H.H., Jun, H., Lee, D., and Kim, S.W.
Piezoelectric two-dimensional nanosheets/anionic
layer heterojunction for ecient direct current power
generation", Sci. Rep., 3(2017) (2013).