Plasma based surface modification of poly (dimethylsiloxane) electrospun membrane proper fororgan-on-a-chip applications

Document Type : Article


1 Department of Mechanical Engineering, Sharif University of Technology, 11365/8639, Tehran, Iran., Dalio Institute of Cardiovascular Imaging, Department of Radiology, Weill Cornell Medicine.

2 Department of Mechanical Engineering, Sharif University of Technology, 11365/8639, Tehran, Iran.


Constructing of the scaffolds for cell culture applications has long been of interest for engineering researchers and biologist. In this study, a novel process is utilized for construction of suitable membrane with a high mechanical strength and appropriate surface behavior. Poly (dimethylsiloxane) (PDMS) is electrospun into fine fibers using poly (methyl methacrylate) (PMMA) as the carrier polymer in different weight ratios. Since the surface behavior of all PDMS substrates is moderately hydrophobic (120 < contact angle (CA) < 150), the electrospun membranes with higher PDMS ratios show slightly higher hydrophilicity. Direct plasma treatment is utilized to change the interfacial wettability of the membrane. Applying plasma changes the surface energy and renders the PDMS/PMMA substrates superhydrophilic (CA


  1. Bhatia, S.N. and Ingber, D.E. Microuidic organs-onchips", Nature, 201, p. 4 (2014). 2. Huh, D., Kim, H.J., Fraser, J.P., et al. Microfabrication of human organs-on-chips", Nature Protocols, 8(11), pp. 2135-2157 (2013). 3. Zheng, F., Fu, F., Cheng, Y., Wang, C., Zhao, Y., and Gu, Z. Organ-on-a-Chip Systems: Microengineering to Biomimic Living Systems", Small (2016). 4. Volova, T., Goncharov, D., Sukovatyi, A., Shabanov, A., Nikolaeva, E. and Shishatskaya, E., Electrospinning of polyhydroxyalkanoate _brous sca_olds: effects on electrospinning parameters on structure and properties", Journal of Biomaterials Science, Polymer Edition, 25, pp. 370-393 (2014). 5. Shankhwar, N., Kumar, M., Mandal, B.B., Robi, P., and Srinivasan, A. Electrospun polyvinyl alcoholpolyvinyl pyrrolidone nano_brous membranes for interactive wound dressing application", Journal of Biomaterials Science, Polymer Edition, 27, pp. 247-262 (2016). 6. Yao, C., Li, X., and Song, T. Fabrication of zein/hyaluronic acid _brous membranes by electrospinning", Journal of Biomaterials Science, Polymer Edition, 18, pp. 731-742 (2007). 7. Khajavi, R. and Abbasipour, M. Electrospinning as a versatile method for fabricating coreshell, hollow and porous nano_bers", Scientia Iranica, 19, pp. 2029-2034 (2012). 8. Carletti, E., Motta, A., and Migliaresi, C. Sca_olds for tissue engineering and 3D cell culture", 3D Cell Culture: Methods and Protocols, 695, pp. 17-39 (2011). 9. Heydarkhan-Hagvall, S., Schenke-Layland, K., Dhanasopon, A.P., et al. Three-dimensional electrospun ECM-based hybrid sca_olds for cardiovascular tissue engineering", Biomaterials, 29, pp. 2907-2914 (2008). 10. Li, M., Mondrinos, M.J., Gandhi, M.R., Ko, F.K., Weiss, A.S., and Lelkes, P.I. Electrospun protein _bers as matrices for tissue engineering", Biomaterials, 26, pp. 5999-6008 (2005). 11. Pham, Q.P., Sharma, U., and Mikos, A.G. Electrospinning of polymeric nano_bers for tissue engineering applications: a review", Tissue Engineering, 12, pp. 1197-1211 (2006). 12. Sharma, Y., Tiwari, A., Hattori, S., et al. Fabrication of conducting electrospun nano_bers sca_old for threedimensional cells culture", International Journal of Biological Macromolecules, 51, pp. 627-631 (2012). A. Kiyoumarsioskouei et al./Scientia Iranica, Transactions B: Mechanical Engineering 26 (2019) 808{814 813 13. Wallin, P., Zand_en, C., Carlberg, B., Erkenstam, N. H., Liu, J., and Gold, J. A method to integrate patterned electrospun _bers with microuidic systems to generate complex microenvironments for cell culture applications", Biomicrouidics, 6, p. 024131 (2012). 14. Zonooz, N.F. and Salouti, M. Extracellular biosynthesis of silver nanoparticles using cell _ltrate of streptomyces sp. ERI-3", Scientia Iranica, 18, pp. 1631-1635 (2011). 15. Lee, K.H., Kwon, G.H., Shin, S.J., et al. Hydrophilic electrospun polyurethane nano_ber matrices for hMSC culture in a microuidic cell chip", Journal of Biomedical Materials Research, Part A, 90, pp. 619-628 (2009). 16. Rupp, F., Scheideler, L., Olshanska, N., De Wild, M., Wieland, M., and Geis-Gerstorfer, J. Enhancing surface free energy and hydrophilicity through chemical modi_cation of microstructured titanium implant surfaces", Journal of Biomedical Materials Research, Part A, 76, pp. 323-334 (2006). 17. Th_ery, M., Racine, V., P_epin, A., et al. The extracellular matrix guides the orientation of the cell division axis", Nature Cell Biology, 7, pp. 947-953 (2005). 18. Polini, A., Pagliara, S., Stabile, R., et al. Collagenfunctionalised electrospun polymer _bers for bioengineering applications", Soft Matter, 6, pp. 1668-1674 (2010). 19. Pauly, H.M., Kelly, D.J., Popat, K.C., et al. Mechanical properties and cellular response of novel electrospun nano_bers for ligament tissue engineering: E_ects of orientation and geometry", Journal of the Mechanical Behavior of Biomedical Materials, 61, pp. 258-270 (2016). 20. Walser, J. and Ferguson, S.J., Oriented nano_brous membranes for tissue engineering applications: Electrospinning with secondary _eld control", Journal of the Mechanical Behavior of Biomedical Materials, 58, pp. 188-198 (2016). 21. Brink, L., Elbers, S., Robbertsen, T., and Both, P. The anti-fouling action of polymers preadsorbed on ultra_ltration and micro_ltration membranes", Journal of Membrane Science, 76, pp. 281-291 (1993). 22. Ulbricht, M., Matuschewski, H., Oechel, A., and Hicke, H.-G. Photo-induced graft polymerization surface modi_cations for the preparation of hydrophilic and low-proten-adsorbing ultra_ltration membranes", Journal of Membrane Science, 115, pp. 31-47 (1996). 23. Ulbricht, M., Oechel, A., Lehmann, C., Tomaschewski, G., and Hicke, H.G. Gas-phase photoinduced graft polymerization of acrylic acid onto polyacrylonitrile ultra _ltration membranes", Journal of Applied Polymer Science, 55, pp. 1707-1723 (1995). 24. Zhang, M., Nguyen, Q.T., and Ping, Z. Hydrophilic modi_cation of poly (vinylidene uoride) microporous membrane", Journal of Membrane Science, 327, pp. 78-86 (2009). 25. Yi, F., Lu, J.-W., Guo, Z.-X., and Yu, J. Mechanical properties and biocompatibility of soluble eggshell membrane protein/poly (vinyl alcohol) blend _lms", Journal of Biomaterials Science, Polymer Edition, 17, pp. 1015-1024 (2006). 26. Su, Y., Chen, C., Li, Y., and Li, J. Preparation of PVDF membranes via TIPS method: the e_ect of mixed diluents on membrane structure and mechanical property", Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 44, pp. 305-313 (2007). 27. Mazza, E., Gangho_er, J.-F., and Ehret, A.E. Mechanics of biological membranes", Journal of the Mechanical Behavior of Biomedical Materials, 58, p. 1,5 (2016). 28. Chen, J.-P., Chang, G.-Y., and Chen, J.-K. Electrospun collagen/chitosan nano_brous membrane as wound dressing", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 313, pp. 183-188 (2008). 29. Niu, H., Wang, H., Zhou, H., and Lin, T. Ultra- _ne PDMS _bers: preparation from in situ curingelectrospinning and mechanical characterization", Rsc Advances, 4, pp. 11782-11787 (2014). 30. Huh, D., Matthews, B.D., Mammoto, A., Montoya- Zavala, M., Hsin, H.Y., and Ingber, D.E. Reconstituting organ-level lung functions on a chip", Science, 328, pp. 1662-1668 (2010). 31. Jang, K.-J. and Suh, K.-Y. A multi-layer microuidic device for e_cient culture and analysis of renal tubular cells", Lab on a chip, 10, pp. 36-42 (2010). 32. Li, Y., Thouas, G.A., and Chen, Q. Novel elastomeric _brous networks produced from poly (xylitol sebacate) 2: 5 by core/shell electrospinning: fabrication and mechanical properties", Journal of the Mechanical Behavior of Biomedical Materials, 40, pp. 210-221 (2014). 33. Tech, E. Tensile testing of electrospun nano_ber membrane", ES2002 version 1 Ed. (2013). 34. Qiu, W., Sun, X., Wu, C., Hjort, K., and Wu, Z. A contact angle study of the interaction between embedded amphiphilic molecules and the PDMS matrix in an aqueous environment", Micromachines, 5, pp. 515-527 (2014). 35. Morra, M., Occhiello, E., Marola, R., Garbassi, F., Humphrey, P., and Johnson, D. On the aging of oxygen plasma-treated polydimethylsiloxane surfaces", Journal of Colloid and Interface Science, 137, pp. 11- 24 (1990). 36. Owen, M.J. and Smith, P.J., Plasma treatment of polydimethylsiloxane", Journal of Adhesion Science and Technology, 8, pp. 1063-1075 (1994). 37. Tezuka, Y., Fukushima, A., Matsui, S., and Imai, K. Surface studies on poly (vinyl alcohol)-poly (dimethylsiloxane) graft copolymers", Journal of Colloid and Interface Science, 114, pp. 16-25 (1986). 814 A. Kiyoumarsioskouei et al./Scientia Iranica, Transactions B: Mechanical Engineering 26 (2019) 808{814 38. Khorasani, M., Mirzadeh, H., and Kermani, Z. Wettability of porous polydimethylsiloxane surface: morphology study", Applied Surface Science, 242, pp. 339- 345 (2005). 39. Patankar, N.A. Hydrophobicity of surfaces with cavities: making hydrophobic substrates from hydrophilic materials?", Journal of Adhesion Science and Technology, 23, pp. 413-433 (2009). 40. Borcia, C., Borcia, G., and Dumitrascu, N. Surface treatment of polymers by plasma and UV radiation", Romanian Journal in Physics, 56, pp. 224-232 (2011). 41. Gilbert, J., Weinhold, P.S., Banes, A., Link, G., and Jones, G. Strain pro_les for circular cell culture plates containing exible surfaces employed to mechanically deform cells in vitro", Journal of Biomechanics, 27, pp. 1169-1177 (1994). 42. Hampton, C., Webster, G.D., Rzigalinski, B., and Gabler, H.C. Mechanical properties of polytetra ouroethylene elastomer membrane for dynamic cell culture testing", Biomedical Sciences Instrumentation, 44, pp. 105-110 (2007). 43. Madihally, S.V. and Matthew, H.W. Porous chitosan sca_olds for tissue engineering", Biomaterials, 20, pp. 1133-1142 (1999). 44. Niknejad, H., Peirovi, H., Jorjani, M., Ahmadiani, A., Ghanavi, J., and Seifalian, A.M. Properties of the amniotic membrane for potential use in tissue engineering", Eur Cells Mater, 15, pp. 88-99 (2008).