Fusarium oxysporum, a bio-Factory for Nano Selenium Compounds: Synthesis and Characterization

Document Type : Article

Authors

1 Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran

2 Novel Drug Delivery Systems Department, Iran Polymer and Petrochemical Institute, P.O. Box 14965/115, Tehran, Iran

3 Department of Mycology, Pasteur Institute of Iran, Tehran 13164, Iran

Abstract

Selenium nanoparticles have received major consideration for their antimicrobial and anticancer properties. In the present study, a mycelia fungus named Fusarium oxysporum was employed as a cell factory for bio-production of selenium and selenium sulfide nanoparticles. Scanning Electron Microscope (SEM) micrographs displayed that the NPs were encompassed in medium and cells debris along with the presence of sulfur and selenium in the particles according to the energy-dispersive X-ray spectroscopy findings. The size of spherical NPs was measured between 34.32 and 231.98 nm in SEM micrographs and 81.9 nm in DLS analysis. Fourier-transform infrared spectroscopy spectra supported selenium compounds production and also exposed that proteins are associated with the particles. The presence of primary and secondary amine band was demonstrated by the peaks at 1090-1020 and 1650-1580 cm-1 and also at 1580-1490 cm-1 in FTIR spectra. UV/VIS spectrophotometry analysis showed that maximum absorbance for the test was at 217 nm. The strongest Bragg’s reflection in the X-ray diffractograms peaks revealed the closest match with SeS, SeS2 and Se according to standard JCPDS cards. To conclude Fusarium oxysporum is able to produce selenium compounds nanoparticles in a safe and cost effective aerobic green approach.

Keywords

Main Subjects


References
1. Wadhwani, S.A., Shedbalkar, U.U., Singh. R., and
Chopad, B.A. Biogenic selenium nanoparticles: current
status and future prospects", Appl. Microbiol.
Biotechnol., 100(1), pp. 2556-2566 (2016).
2. Sharma, G., Sharma, A.R., Bhavesh, R., Park, J.,
Ganbold. B., Nam, J.-S. and Lee S.-S. Biomoleculemediated
synthesis of selenium nanoparticles using
dried Vitis vinifera (raisin) extract", Molecules, 19(3),
pp. 2761-2770 (2014).
3. Nordlander, B.W, Chemical Products, US1860336 A:
Google Patents (1932).
4. Mitchell, S.C., Nickson, R.M., and Waring, R.H. The
biological activity of selenium sul de", Sulfur Reports,
13(2), pp. 279-289 (1993).
5. Rausch, T. and Wachter, A. Sulfur metabolism: a
versatile platform for launching defense operations",
Trends Plant Sci., 10(10), pp. 503-509 (2005).
6. Battin, E.E. and Brumaghim, J.L. Antioxidant activity
of sulfur and selenium: a review of reactive oxygen
species scavenging, glutathione peroxidase, and metalbinding
antioxidant mechanisms", Cell Biochem. Biophys.,
55(1), pp. 1-23 (2009).
7. El-Mously, M.K., Kotkata, M.F., and Salam, S.A.
Growth of crystalline phase in amorphous solid and
liquid SSe20", J. Phys. C Solid State Phys., 11(6), pp.
1077-1083 (1978).
1862 F. Asghari-Paskiabi et al./Scientia Iranica, Transactions F: Nanotechnology 25 (2018) 1857{1863
8. Kotkata, M.F., Ayad, F.M., and El-Mously, M.K.
Photo-e ect on crystallization kinetics of amorphous
selenium doped with sulphur", J. Non-Cryst. Solids,
33(1), pp. 13-22 (1979).
9. Rai, M. and Posten, C., Green Biosynthesis of
Nanoparticles: Mechanisms and Applications, CABI,
UK (2013).
10. Dhanjal, S. and Cameotra, S.S. Aerobic biogenesis of
selenium nanospheres by Bacillus cereus isolated from
coalmine soil", Microb Cell Fact., 9(1), pp. 1-11 (2010).
11. Ingole, A.R., Thakare, S.R., Khati, N.T., Wankhade,
A.V., and Burghate, D.K. Green synthesis of selenium
nanoparticles under ambient condition", Chalcogenide
Lett., 7(7), pp. 485-489 (2010).
12. Fesharaki, P.J., Nazari, P., Shakibaie, M., Rezaie,
S., Banoee, M., Abdollahi, M., and Shahverdi, A.R.
Biosynthesis of selenium nanoparticles using Klebsiella
pneumoniae and their recovery by a simple
sterilization process", Braz. J. Microbiol., 41(2), pp.
461-466 (2010).
13. Li, S., Shen, Y., Xie, A., Yu, X., Zhang, X., Yang,
L., and Li, C. Rapid, room-temperature synthesis
of amorphous selenium/protein composites using Capsicum
annuum L extract", Nanotechnology, 18(40),
pp. 1-9 (2007).
14. Zare, B., Babaie, S., Setayesh, N., and Shahverdi,
A.R. Isolation and characterization of a fungus for extracellular
synthesis of small selenium nanoparticles",
Nanomed. J., 1(1), pp. 13-19 (2013).
15. Sarkar, J., Dey, P., Saha, S., and Acharya, K. Mycosynthesis
of selenium nanoparticles", Micro Nano
Lett., 6(8), pp. 599-602 (2011).
16. Abe, T., Hoshino, T., Nakamura, A. and Takaya,
N. Anaerobic elemental sulfur reduction by fungus
Fusarium oxysporum", Biosci. Biotechnol. Biochem.,
71(10) pp. 2402-2407 (2007).
17. Ahmad, A., Mukherjee, P., Mandal, D., Senapati,
S., Khan, M.I., Kumar, R., and Sastry, M. Enzyme
mediated extracellular synthesis of CdS nanoparticles
by the fungus, Fusarium oxysporum", J. Am. Chem.
Soc., 124(41), pp. 12108-12109 (2002).
18. Mirzadeh, S., Darezereshki, E., Bakhtiari, F., Fazaelipoor,
M.H. and Hosseini, M.R. Characterization
of zinc sul de (ZnS) nanoparticles biosynthesized by
Fusarium oxysporum", Master Sci. Semicond. Process,
16(2), pp. 374-378 (2012).
19. Pavia, D.L., Lampman, G.M., Kriz, G.S., and Vyvyan,
J.A. Introduction to spectroscopy", Cengage Learning,
Boston, US. (2008).
20. Reyes, L.R., Gomez, I., and Garza, M.T. Biosynthesis
of cadmium sul de nanoparticles by the fungi fusarium
sp.", Int. J. Green Nanotech. Biomed, 1(1), pp. B90-
B95 (2009).
21. Wallenberg, M., Misra, S., and Bjornstedt, M. Selenium
cytotoxicity in cancer", Basic Clin. Pharmacol.
Toxicol., 114(5), pp. 377-386 (2014).
22. George, S., Infrared and Raman Characteristic Group
Frequencies, John Wiley & Sons Ltd., West Sussex,
UK. (2001).
23. Rajput, S., Werezuk, R., Lange, R.M., and McDermott,
M.T. Fungal isolate optimized for biogenesis of
silver nanoparticles with enhanced colloidal stability",
Langmuir., 32(34), pp. 88-97 (2016).
24. Almeida, EdS, de Oliveira, Db, and Hotza, D. Characterization
of silver nanoparticles produced by biosynthesis
mediated by Fusarium oxysporum under di erent
processing conditions", Bioprocess Biosyst Eng.,
40(9), pp. 1-13 (2017).
25. Yamaguchi, T., Tsuruda, Y., Furukawa, T., et al.
Synthesis of CdSe quantum dots using Fusarium
oxysporum", Materials, 9(10), pp. 1-12 (2016).
26. Verschueren, K.H.G. and Wilkinson, A.J. Sul de:
Biosynthesis from sulfate", ELS., 1(1), pp. 1-8 (2005).
27. Paietta, J.V. Regulation of sulfur metabolism in
mycelial fungi", Biochem. Mol. Biol., Springer, pp.
369-83 (2004).