A microemulsion route to fabrication of mono and bimetallic Cu/Zn/γ-Al2O3 nanocatalysts for hydrogenation reaction

Document Type: Article

Authors

1 Shariati Street, Arak University Chemistry Department

2 Chemistry Department, Arak University, Arak, IRAN

Abstract

This research for the first time addressed to prepare nanocatalysts of Cu and Cu/Zn supported on alumina using microemulsion route. To do this, stable colloidal systems of Cu and Zn nanoparticles were firstly prepared in a W/O microemulsion system. The formulated microemulsions were formed from copper nitrate and zinc nitrate as source of metals, cyclohexane as oil phase and AOT as anionic surfactant. To confirm the formation of Cu and Zn colloidal systems after reduction of ions, dynamic light scattering (DLS) method has been used. From the DLS results, it was found that the nanoparticles average size for colloidal suspension system was about 2 nm. Finally, γ-Al2O3 was added to the colloidal systems to make the Cu/Al2O3 or Cu-Zn/Al2O3 nanocatalysts. The resulted nanocatalysts were characterized by FE-SEM and XRD techniques. The prepared nanocatalysts were tested for hydrogenation reaction of an unsaturated aldehyde in a batch reactor and mild condition.

Keywords

Main Subjects