Reference tracking of nonlinear dynamic systems over AWGN channel using the describing function

Document Type : Article

Authors

Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran.

Abstract

This paper presents a new technique for mean square asymptotic reference tracking of nonlinear
dynamic systems over Additive White Gaussian Noise (AWGN) channel. The nonlinear dynamic system
has periodic outputs to sinusoidal inputs and is cascaded with a bandpass filter acting as encoder.
Using the describing function method, the nonlinear dynamic system is represented by an equivalent
linear dynamic system. Then, for this system, a mean square asymptotic reference tracking technique
including an encoder, decoder and a controller is presented. It is shown that the proposed reference
tracking technique results in mean square asymptotic reference tracking of nonlinear dynamic systems
over AWGN channel. The satisfactory performance of the proposed reference tracking technique is
illustrated using practical example simulations.

Keywords

Main Subjects


1. Farhadi, A., Domun, J., and Canudas de Wit, C. A supervisory control policy over an acoustic communication network", International Journal of Control, 88(5), pp. 946-958 (2015). 1734 A. Parsa and A. Farhadi/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 1724{1735 2. Memarzadeh, M., Optimal Borehole Communication Using Multicarrier Modulation, Diss. Rice University (2007). 3. Elia, N. When Bode meets Shannon: control-oriented feedback communication schemes", IEEE Trans. Automat. Contr., 49(9), pp. 1477-1488 (2004). 4. Martins, N.C., Dahleh, A., and Elia N. Feedback stabilization of uncertain systems in the presence of a direct link", IEEE Trans. Automat. Contr., 51(3), pp. 438-447 (2006). 5. Minero, P., Coviello, L., and Franceschetti, M. Stabilization over Markov feedback channels: the general case", IEEE Trans. Automat. Contr., 58(2), pp. 349- 362 (2013). 6. Nair, G.N., Evans, R.J., Mareels, I.M.Y., and Moran, W. Topological feedback entropy and nonlinear stabilization"', IEEE Trans. Automat. Contr., 49(9), pp. 1585-1597 (2004). 7. Nair, G.N. and Evans, R.J. Stabilizability of stochastic linear systems with _nite feedback data rates", SIAM J. Control Optimization, 43(3), pp. 413-436 (2004). 8. Tatikonda, S. and Mitter, S. Control under communication constraints", IEEE Transactions on Automatic Control, 49(7), pp. 1056-1068 (2004). 9. Charalambous, C.D. and Farhadi, A. LQG optimality and separation principle for general discrete time partially observed stochastic systems over _nite capacity communication channels", Automatica, 44(12), pp. 3181-3188 (2008). 10. Charalambous, C.D., Farhadi, A., and Denic, S.Z. Control of continuous-time linear Gaussian systems over additive Gaussian wireless fading channels: a separation principle", IEEE Trans. Automat. Contr., 53(4), pp. 1013-1019 (2008). 11. Farhadi, A. Stability of linear dynamic systems over the packet erasure channel: a co-design approach", International Journal of Control, 88(12), pp. 2488- 2498 (2015). 12. Farhadi, A. Feedback channel in linear noiseless dynamic systems controlled over the packet erasure network", International Journal of Control, 88(8), pp. 1490-1503 (2015). 13. Minero, P., Franceschetti, M., Dey, S., and Nair, G.N. Data rate theorem for stabilization over time-varying feedback channels", IEEE Trans. Automat. Contr., 54(2), pp. 243-255 (2009). 14. Elia, N. and Eisenbeis, J.N. Limitations of linear control over packet drop networks", IEEE Trans. Automat. Contr., 56(4), pp. 826-841 (2011). 15. Canudas de Wit, C., Gomez-Estern, F., and Rodrigues Rubio, F. Delta-modulation coding redesign for feedback-controlled systems", IEEE Transactions on Industrial Electronics, 56(7), pp. 2684-2696 (2009). 16. Braslavsky, J.H., Middleton, R.H., and Freudenberg, J.S. Feedback stabilisation over signal-to-noise ratio constrained channels", IEEE Transactions on Automatic Control, 52(8), pp. 1391-1403 (2007). 17. Farhadi, A. and Ahmed, N.U. Suboptimal decentralized control over noisy communication channels", Systems and Control Letters, 60, pp. 282-293 (2011). 18. Farhadi, A. and Charalambous, C.D. Stability and reliable data reconstruction of uncertain dynamic systems over _nite capacity channels", Automatica, 46(5), pp. 889-896 (2010). 19. Naja_, S. M. and Farhadi, A. Stability and tracking of linear Gaussian systems over AWGN channel with intermittent deterministic feedback channel", in The Proceedings of the 23rd Iranian Conference on Electrical Engineering, Tehran, Iran (2015). 20. Li, Y., Chen, J., Tuncel, E., and Su, W. MIMO control over additive white noise channels: stabilization and tracking by LTI controllers", IEEE Transactions on Automatic Control, 61(5), pp. 1281-1296 (2016). 21. Wu, J. and Chen, T. Design of networked control systems with packet dropouts", IEEE Transactions on Automatic Control, 52(7), pp. 1314-1319 (2007). 22. Cover, T.A. and Thomas, J.A., Elements of Information Theory, John Wiley and Sons (1991). 23. Judd, K.L., Numerical Methods in Economics, Cambridge, MA: MIT Press (1998). 24. Mees, A.I., Dynamics of Feedback Systems, New York: Wiley (1981). 25. Gilmore, R.J. and Steer, M.B. Nonlinear circuit analysis using the method of harmonic balance A review of the art. Part I. Introductory concepts", Int. J. Microw. Mill.-Wave Comput.-Aided Eng., 1, pp. 22- 27 (1991). 26. Slotine, J.J. and Li, W., Applied Nonlinear Control, Prentice-Hall (1991). 27. Jing, Xi. and Lang, Zi., Frequency Domain Analysis and Design of Nonlinear Systems Based on Volterra Series Expansion - A Parametric Characteristic Approach, Springer International Publishing Switzerland (2015). 28. Rugh, W.J., Nonlinear System Theory: the Volterra/Wiener Approach, Baltimore, MD: The Johns Hopkins Univ. Press (1981). 29. Worden, K. and Tomlinson, G.R., Nonlinearity in Structural Dynamics: Detection, Identi_cation and Modeling, Bristol, U.K.: Institute of Physics (2001). A. Parsa and A. Farhadi/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 1724{1735 1735 30. George, D.A., Continuous Nonlinear Systems, MIT Research Lab. Electronics, Cambridge, MA, Tech. Rep. 355 (1959). 31. Xiao, Z. and Jing, X. Frequency-domain analysis and design of linear feedback of nonlinear systems and applications in vehicle suspensions", IEEE/ASME Transactions on Mechatronics, 21(1), pp. 506-517 (2016). 32. Jing, X. Nonlinear characteristic output spectrum for nonlinear analysis and design", IEEE/ASME Transactions on Mechatronics, 19(1), pp. 171-183 (2014). 33. Shenoi, B.A., Introduction to Digital Signal Processing and Filter Design, John Wiley and Sons (2006). 34. Kwakernaak, H. and Sivan, P., Linear Optimal Control Systems, Wiley-Interscience (1972). 35. Rudin, W., Principle of Mathematical Analysis, New York: McGraw - Hill, Inc. (1976). 36. Strang, G., Introduction to LiLinear Algebra, Wellesley - Cambridge Press (2016). 37. Pan, H., Sun, W., Gao, H., and Jing, X. Disturbance observer-based adaptive tracking control with actuator saturation and its application", IEEE Transactions on Automation Science and Engineering, 13(2), pp. 868- 875 (2016). 38. Pan, H., Sun, W., Gao, H., and Yu, J. Finite-time stabilization for vehicle active suspension systems with hard constraints", IEEE Transactions on Intelligent Transportation Systems 16(5), pp. 2663-2672 (2015). 39. Sun, W., Pan, H., and Gao, H. Filter-based adaptive vibration control for active vehicle suspensions with electrohydraulic actuators", IEEE Transactions on Vehicular Technology, 65(6), pp. 4619-4626 (2016).