Investigation on the effect of using rubber as core material in sandwich composite plate subjected to low-velocity normal and oblique impact loadings

Document Type : Research Note


Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore, 575025, India.


In this article, the structural performance of composite plate under low velocity impact is studied. Two forms of layup sequence namely jute-epoxy laminate (JE) and jute-epoxy-rubber sandwich (JE-R-JE) are considered for evaluation. Special emphasis is provided for evaluating the influence of normal and oblique loading. The various dynamic parameters such as energy, peak load, and deformation are analysed in detail to study the effect of impact angle on both laminate and sandwich. Stress analysis of both the laminate and sandwich structure is carried out to discuss the effect of introducing rubber as a core material. The results reveal that using rubber as a core material has a significant effect on energy absorption. In addition, it is noticed that increasing the angle of impact yields better performance of the composite plate. The results presented here may serve as benchmark for the effective utilization of composite plates in low velocity impact applications.


Main Subjects

  1. Shah, D.U. Natural _bre composites: Comprehensive Ashby-type materials selection charts", Mater. Des., 62, pp. 21-31 (2014). 2. Michael, P.M.D., Peter, F.D., Anna, B.B., Guillaume, F., Mark, K.H., and Paul, M.W. Green composites: a review of material attributes and complementary applications", Compos. Part Appl. Sci. Manuf., 56, pp. 280-289 (2014). 3. Faruk, O., Bledzki, A.K., Fink, H.P., and Sain, M. Biocomposites reinforced with natural _bers: 2000- 2010", Prog. Polym. Sci., 37(11), pp. 1552-1596 (2012). 4. Yan, L., Chouw, N., and Jayaraman, K. Flax _bre and its composites-a review", Compos. Part B Eng., 56, pp. 296-317 (2014). 5. Fahmi, I., Abdul Majid, M.S., Afendi, M., Helmi, E.A., and M Haameem, J.A. Low-velocity impact responses of napier _bre/polyester composites", Int. J. of Automot. Mech. Eng., 13(1), pp. 3226-3237 (2016). 6. Andrzej, K.B., Jochen, G., and Wenyang, Z. Impact properties of natural _ber-reinforced epoxy foams", J. Cell. Plast., 35(6), pp. 550-562 (1999). 7. Suharty, N.S., Ismail, H., Diharjo, K., Handayani, D.S., and Firdaus, M. E_ect of kenaf _ber as a reinforcement on the tensile, exural strength and impact toughness properties of recycled polypropylene/ halloysite composites", Procedia Chem., 19, pp. 253-258 (2016). 8. Stelldinger, E., Kuhhorn, A., and Kober, M. Experimental evaluation of the low-velocity impact damage resistance of CFRP tubes with integrated rubber layer", Compos. Struct., 139, pp. 30-35 (2016). 9. Kabir, M.Z. and Shafei, E. Analytical and numerical study of FRP retro_tted RC beams under low velocity impact", Sci. Iran. Trans. A, 16(5), pp. 415-428 (2009). 10. Aktay, L., Johnson, A.F., and Holzapfel, M. Prediction of impact damage on sandwich composite panels", Comput. Mater. Sci., 32(3-4), pp. 252-260 (2005). 11. Brenda, L.B., Carlos, S., Sonia, S., Enrique, B., and Carlos, N. Modelling of composite sandwich structures with honeycomb core subjected to highvelocity impact", Compos. Struct., 92(9), pp. 2090- 2096 (2010). 12. Sjoblom, P.O., Hartness, J.T., and Cordell, T.M. On low velocity impact testing of composite materials", J. Compos. Mater., 22(1), pp. 30-52 (1998). 13. Shivakumar, K.N., Elber, W., and Illg, W. Prediction of low velocity impact damage in thin circular laminates", AIAA J., 23(3), pp. 442-449 (1985). 14. Sadeghzadeh, S. Impact dynamics of graphene nanosheets in collision with metallic nanoparticles", Sci. Iran. Trans. F, 23(6), pp. 3153-3162 (2016). 15. Yazdani Ariatapeh, M., Mashayekhi, M., and Ziaei- Rad, S. Prediction of all-steel CNG cylinder fracture under impact using a damage mechanics approach", Sci. Iran. Trans. B, 21(3), pp. 609-619 (2014) 16. Karas, K. Plates under lateral impact", Arch. Appl. Mech., 10, pp. 237-250 (1939). 17. Hyunbum, P. Investigation on low velocity impact behavior between graphite/epoxy composite and steel plate", Compos. Struct., 171, pp. 126-130 (2017). 18. Meybodi, M.H., Mohammadkhani, H., and Bagheri, M.R. Oblique low-velocity impact on _ber-metal laminates", Appl. Compos. Mater., 24(3), pp. 611-623 (2016). 19. Balasubramani, V., Rajendra Boopathy, S., and Vasudevan, R. Numerical analysis of low velocity impact on laminated composite plates", Procedia Eng., 64, pp. 1089-1098 (2013). 20. Stuart, M. Lee., Handbook of Composite Reinforcement, Wiley Publications, Palo Alto, California, USA (1992). 21. Mir, A., Aribi, C., and Bezzazi, B. Study of the green composite jute/epoxy", IJMME, 8(2), pp. 182- 186 (2014). 22. Hossain, M.R., Islam, M.A., Vuurea, A.V., and Verpoest, I. E_ect of _ber orientation on the tensile properties of jute epoxy laminated composite", JSR, 5(1), pp. 43-54 (2013). 23. Siow, Y.P. and Shim, V.P.W. An experimental study of low velocity impact damage in woven _bre composites", J. Compos. Mater., 32(12) pp. 1178-1202 (1998). 24. Remennikov, A.M., Kong, S.Y., and Uy, B. Response of foam- and concrete-_lled square steel tubes under low-velocity impact loading", J. Perform. Constr. Fac., 25(5), pp. 373-381 (2011).