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Appendix A: Collecting instructors’ skill data to construct the model ’&

Educational data is necessary for use in system modelling in th part. The
collection of skill data including (online classes, examinations, @andiedtCational videos)
has been done from the learning management system, with the h;h‘f Physics professors
for 4 consecutive semesters from 2019 to 2020 (Tables A$ A.2). These data make
the inputs of the desired fuzzy system. The collection scores of the Physics course
was done through the educational system of th ersity of Tehran, known as the
Golestan system. These scores are related to e\atputs of the fuzzy system. Previously,
in Section 3, we introduced how to mode Qstem with the help of fuzzification. Also,

it is necessary to determine the Ievgﬁ‘of the final scores and analyse the scores of the

Physics course. w

Table A.1: Education Qr'nation of the Physics course, in terms of the instructors.

videos, and en during the semester. The rows represent the selected course

The columns shg‘h‘e number of Adobe online classes, the number of educational

O instructors and the semesters.

O

E ! Term Adobe Films Exams

Connect
Winter 16 33 7
2019
Fall 2020 - - -
Winter 20 31 13
2020
Winter 26 0 7

2019
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Fall 2020 26 26 4

Winter 14 26 3
2020
Winter 24 5 5
2019
Fall 2020 28 0 9
Winter 20 16 9
2020

Table A.2: The table shows the sum of educational information for’&cghysms

instructors. (b“

Term Adobe Connect Films Y Exams
o« NV
Winter 2019 66 38 19
Fall 2020 54 Y 13
.Q*
A
Winter 2020 54 73 25
Total 174 % 137 57

4}
O
Appendix B: Determinin ents’ learning level using statistical data

The statistical p rar@rs that are necessary to evaluate the scores for use in the
construction of the model are mean, standard deviation, median, and the percentage
of students’ s gove 10 (out of a maximum score of 20). A low mean value can
indicate ducational quality and a high mean indicates good educational quality,

o&t the standard deviation and median values are also reasonable. The standard

dev%zshows how far the data is from the mean value. The small value of the standard
deviation indicates that the data has little dispersion. The low dispersion and over-
concentration of students' scores show that exams are not a good criterion for
distinguishing students' learning and have resulted in most students to get low or high
scores. This shows that the existing scores are not reliable and are not very useful in the
process of assessing the educational level. On the other hand, the high value of the
standard deviation shows that the dispersion of scores is high, which shows that the exams

and evaluations have been successful in distinguishing the students’ learning level.
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Therefore, to determine the level of educational quality, it is important to have a
reasonable standard deviation for the set of scores, in addition to a high mean.

In addition to the mean and standard deviation, another characteristic necessary to
evaluate the quality of statistical data is the median value. The median indicates the
skewness of the data to the right or left. A high mean along with a low median value
indicates that we have a lot of outlier data that caused the mean to increase if the majority
of the statistical population have got lower scores. Therefore, the best statistical results
that can be obtained from students' scores are achieved when we have a high m S
well as a high median for the set of scores. o C)

Of course, in order to increase the quality of education, we expect that @cational
combination used during the semester will increase the mean scores. Tﬁbﬁ ore, it can be
concluded that the mean standard deviation is the best state on theyn&hand, it shows the
effectiveness of the educational combination and on .the her' hand, it shows the
acceptability of the data. x

The parameters mentioned above are general statis Kr’parameters. In this research,
the score of 10 (out of a maximum score of 20) i@particular importance, because it is
the borderline between passing the course @ng not passing the course. Therefore, for
logical analysis of statistical data, it is b to consider this parameter as well. A very
high percentage of scores greater tﬁo may indicate the ease of the tests as well as the
evaluation criteria. On the othe d,the low percentage indicates the difficulty of the
evaluation method and the @evel of the tests; in both cases the results are less reliable.

@)

B.1 Fuzzy monbnditions for determining educational levels using statistical
ut

parameters t@ [
To bui zzy model, the input parameters must be phased based on logical analysis.
al analysis, the phases related to each of the parameters can be considered as

Wi

Medium Good Bad

Figure B.1: Different phases of standard deviation input for three levels: good, bad,

and medium.



A&
Yo
v
A%
YA
V4
A
AN
AY
AY
A¢
Ao
AT
AY
AN

A4

Bad Good Medium

-

ha—
n
[
G0~
o
fa

Figure B.2: Different phases of averaging input with three levels of good, bad, and

medium . C)®

Medium Good Bad

=

(n]

Figure B.3: Different phases of mean input Wee good, bad and medium levels

follows. The lower limit and upper limit @e standard deviation for scores from 0 to 20
are 0 and about 11, respectively. T per limit is reached when half of the students get
a score of 20 and the other ha a score of 0, the probability of which is practically
zero. The standard deviati n be divided into three parts: the first phase (between 0
and 3), which indicate @accumulation of scores around a point; the second phase (the
standard deviatio@ien 3 and 5), which indicates a reasonable dispersion of the data;

and the third pl@

three ph@ uld also have overlap, and the intervals can be considered from 0 to 3.5,

een 5 and 11), which shows the high dispersion of scores. These

fromg2. 5.5, and from 4.5 to 11. Figure B.1 shows the different input phases of
stameviation.

Mean can take any numbers between 0 and 20. The mean between 0 and 14 indicates
the weak scores and the mean between 16 and 20 indicates the simplicity of the exams
and the professor's assessment method. Therefore, three different phases for this
parameter can be shown as follows. Figure B.2 shows the different phases of the mean
input. The phases related to the median can also be done in the same way.

Based on the survey that we had from the percentage of scores above 10, the phases
of this parameter can be considered as logarithmic percentages so that the phases can be



better defined. The figure below shows the phases of this parameter with logarithmic
steps. Figure B.3 shows different input phases of standard deviation.

Appendix C: Fuzzification and optimization
C.1 Fuzzy system construction method
In the fuzzification stage, a number of fuzzy sets are defined and then the input values
of the target system are assigned to fuzzy sets with a certain degree of membership, which
can have any value between 0 and 1. A membership degree of 0 (zero) means tha e
does not belong to the target fuzzy set. A membership degree of 1 (one) mea t%e
value belongs to the target fuzzy set). These fuzzy sets are usually explaingthin’words.
In this scaling, the three logical values are attributed to each fina{(@n%he course;
these values indicate with what degree of membership that scof@is tw each of the three

fuzzy sets. According to Figure C.1, according to the degre membership that can be

considered for each final score, fuzzy sets are often defj triangular or trapezoidal
shapes. ,Q
. () _
1 Low Medium High
:
1
o
0 /;

Learning level

Figure C.1: lesson @n the learning level scale, the fuzzy sets can be considered

as three learning Qs ‘low", "medium™ and "high".

In Figur@l, the dotted vertical line represents a specific score (e.g. score 11 out of

20),and Qe arrows show the logical value of this score in each of the three fuzzy sets.
Th(%ryple arrow points to the logical value of zero for the desired score in the fuzzy set
attributed to the "high" learning level and indicates that this score does not have a place
in the high learning level. The green arrow, which points to approximately 0.2, indicates
that this score with a membership degree of 20% belongs to the "medium™ fuzzy set, and
the red arrow, which indicates approximately 0.7, indicates that the score with a
membership degree of 70% belongs to the fuzzy set attributed to the "down" the

learning level.
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Fuzzy rules are IF-THEN rules that relate the calculated input logic values to the

output logic values. In other words, assuming that the fuzzy sets with A; =

{4}, A2, A]l ...,A]’.V"}, where j = {1, 2,...,n} represents the number of defined fuzzy sets
and i = {1, 2,...,N_i} represents the number of logical input values in each fuzzy set,

then the result is an output logical value in {B} fuzzy sets:

RUUME: [F x, is A and x, is A2, THEN y is Bi1iz (C.1)

The total number of definable IF-THEN rules is M = N; X N, X ... X N;. For %e,
[ ]
&2 that

assuming that two fuzzy sets A;and A, are defined, for the logical values
are in these two sets respectively, the following rule can be written that%@'sthe logical
output value [18].

Usually, the number of generated input-output pairs is large, andConsidering that each
pair creates a rule, it is possible that during the creati n es, conflicting rules will
arise, that is, rules that have the same IF but differen N. To resolve this conflict, a
membership degree can be obtained for eagh @ rules created in the group of
conflicting rules by using the following fo here the coefficients p represent the
degree of membership of the input fuz TQAU* and output B and the sign " x"

indicates that the fuzzy set for the i (as well as the output) is considered that has the
largest membership value. w

b!e) - 1_[“ Al (x§)u" (v5) (€.2)
&@ i=1

After de iming the degree of membership for the rules in the group of
contradi @rules, we keep only the rule with the highest degree and remove other
we contradictory rules. In this way, the problem of rule contradiction is eliminated
and the number of rules is greatly reduced [18].

In the last step, by implementing "de-fuzzification™, we get a continuous function of
fuzzy logical values. Since all logical output values are obtained discretely, a function
should be chosen that has the best fit and coordination with the desired logical values.
For this purpose, using the generated rule M, and product inference engine, singleton

fuzzifier, centre average defuzzifier.
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f) = —x;

) ,-1=1zj.vj=1(uA]1-1 CVTNAC)

1y_j1j2 (“Ajl (xl)MAjZ (Xz))
1 2

(€.3)

In this formula, N is the degree of membership of each of the input data N; inthe fuzzy
j

sets A;, and y‘jlj2 is the center of the fuzzy set B, B/1/2, which is equal to the value of

. . IN -
the function g(x) at the point x = (e;*, e,%). The values of ejN’ are at the centers of fuzzy

sets A;.V". (b,

Functions describing physical or social systems are differentiable and’ og'duous,
therefore, the function g(x) is continuous and differentiable. Based on a@v&

be proved that the obtained function f(x) can be approximated wit recision with
respect to the unknown but continuous and differentiable funEN, (x), and in other
words, the obtained function f (x) is universal. The fuzzy set@ be defined for the target

m, it can

system, and as a result, the more rules are defined, the rrk@}écurate fuzzy function f(x)

can be obtained for the target system. In the next se e use the fuzzy system method
[ J

to model online education. x

A3-2 A Table look-up scheme for desig% zzy systems from input-output pairs

In the current research, the model construction of the target system has been

implemented with the help of f%s—‘ em design method using table look-up and input-
includesthe following 5 steps [18]:

output pairs. This method
Step 1. Definition of fuz I&to cover input and output fuzzy spaces.
Step 2. Generating a@&r each input-output pair.

Step 3. Assign to each rule created in step 2.

Belyﬁome basic and noteworthy points about the above 5 steps are presented:

like other methods, in which we should be able to determine the exact output

function g(x) for each input x € U, in this method (fuzzy system design method using

table look-up and input-output pairs), the input points cannot be freely chosen for an

input-output pair an exit. Also, in this method, it is not necessary to know the information

about the adverbs of the first and second derivatives of the obtained estimated function.
The number of rules in the final fuzzy rule base is limited by two values, which are N

(the number of input-output pairs), and []7-; N; is the number of all possible combined
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states of the phase sets defined for the input parameters. Of course, the number of rules
in the database of the fuzzy system is much less than these two adverbial values N and

n
j=1Nj.

A3-3 Optimization with the help of genetic algorithm

In this research, function g(x) is the ultimate modelling function of our problem, and
we approximate the function g(x) to the function f(x) [18]. This function is not defined
at first. The function f(x) is obtained after modelling and analysing the behaviour@.he
system. According to the input-outputs and fuzzy rule base of the model, the on of
the desired model, i.e. the function f(x), is obtained. The function g(x) i lynomial
and we can optimize it with one of the optimization algorithms @és the genetic
algorithm. Consequently, the appropriate model for optimi online education
resources is obtained. .

The function’s optimization has been administe%xy employing the genetic
algorithm and with different populations and differ mber of repetitions. The final
result of different executions is shown in Figuré (@nd C.3. By changing the population
and the number of repetitions, no particul rG;énge in the output occurs, and again the
same results are obtained in the output. é

Figure C.2 is a graph showi e function value according to the number of

repetitions. The graph sho&th fter several executions; the function values remain

Current Function Value: -1041.17
7900‘;

-950

¢
Vi

Function value

¢
¢
Lo R R A R T R L S R R L R R g
-1050 . : : : , : : :
5 10 15 20 25 30 35 40
[ stop | [ Pause | Iteration

Figure C.2: The graph shows the values of the function f(x) versus the number of

iterations.
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constant in the output and no change is seen in the output values. Figure C.3 shows the
fitness value of the function compared to the generated population. The best fitness value
of the function is equal to —1041.17 and the mean fitness value is equal to —1041.1

Best: -1041.17 Mean: -1041.1' .« =" &) ©) {§

. Best fitness
- Mean fitness

-400
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-
o

-800

Fitness value

-900 |- y

-1000

1100 . . . . . |
0 50 100 150 200 250 300
Stop Pause Generation

O/xi(v
Figure C.3: The graph shows the fitness valua@ﬁhe function compared to the

generated population. ¢ @

Also, Table C.1 shows the implementatien of different types of population and

number of optimization iterations.

Table C.1: Shows the valu&m@m tion relative to the number of iterations.
Nu

W iterations Number of populations
X

100 200

@' b 300 300

QO 500 500

; 1000 700

1200 1000

Appendix D:

D.1 Meta-analysis of educational data



Mean YVAR00001

Y+A  Figure D.1 is the line graph and histogram of students' academic achievement in the

course of Physics during 4 consecutive semesters, which was drawn with the help of SPSS
Y)Y+ software and using the data in the table.

Y4
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Figure D.1: Column and line graphs show the average a&@)ﬁic achievement in the Physics course.

<

[
YY) Figure D.2 shows the assessment of the pro@ JSG-Learn model. The pretest and
Y)Y  posttest charts are drawn with two metho@efore and after the model execution.
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Figure D.2: Shows the assessment of the JSG-Learfomline model. The “pretest”
charts are before applying the proposed modgl a ‘post-test” charts are associated

with the result of applying the proposed m@

D.2 Inferential statistics ﬁ

To perform statistical stwe to the mean of two or more populations, the
statistical distribution of t?&t is determined by assuming that their variances are the
same. In this researc&@med univariate analysis. Therefore, before performing mean

tests, the equality@variances in communities should be checked with the help of

Levene's test)@

C) Table D.1 Shows the Levene's test between variables.

E Levene's Test of Equality of Error Variances?*

Dependent Variable: posttest
F df d? Sig

139 1 150 710
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T ets the nill hypothesis that the aror ariance dthe dpendent
variable s @ual aross poups

a D eignl terceptr ndhod  petest- nahod pretest

The value of Sig, which is the p-value, is greater than the error level of the @ = 0.05 test,

so the assumption of equal variance of the two populations is not rejected, and the results

of Levene's test are meaningful here (Table D.1).
& equal

It can be seen that the mutual effect of the variables on each other in Tabl

to method * pretest = .757 which is significant because it is greater tQﬁQﬁ. It means

that the interaction between the method and the post-test is siggm@ ”In particular, it
ho

can be said that it was due to the effect of the teaching met at the scores have

changed.
Table D.2 Shows the two-way variance ar@éﬂof the variables.
Tests of Between-Subj:cts Effects
Dependent Variable: posttest
Source Type df Mean F Sig. Partial Noncent. Observed
1T Square Eta Parameter Power®
Sum Squared
of
Square

N

Corrected 164.01 N 3 54.670 10.89 .000 181 32.686 .999
Model Oh 5
Intercept 1067.3 1 1067.3 212.7 .000 .590 212.709 1.000
24 24 09
method  7.008 1 7.008 1.397 239 .009 1.397 217
pretest 21.825 1 21.825 4.350 .039 .029 4.350 .545
method * 483 1 483 .096 757 .001 .096 .061
pretest
Error 742.62 14 5.018
8 8
Total 30335. 15
750 2

Corrected 906.63 15
Total 8 1
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Table D.3: Shows the variance analysis of the variables. In this table, one can see

whether the independent variables and their interaction are statistically significant or not.

This table shows the significant progress of the new method of the JSG-Learn educational

model compared to the previous method.

Table D.3 Variance analysis of the variables

Tests of Between-Subjects Effects
Dependent Variable: posttest

Source Type df Mean F Sig. Partial =~ Noncent
I Square Eta .
Sum of Squar Paramet
Square ed er

Corrected 163.52 2 81.764 16.3 .000 180 32.789

Model 72 94 )
Na.
Intercept 1077.2 1 10772 216. .000 592 216.003
75 75 003
pretest 21.363 1 21363 428  .040 028 4.283
3
A
method 143.79 1 143.79 288 .000 162 28.831
1 1 31
Error 743.11 = 149 4987
1 4
Total 30335. 152
750

Corrected @ﬁy 151
Total .J

A 4

Observed
Power®

1.000

1.000

538

1.000

Alsoaevel of significance in Table D.3 are all smaller than 0.05 and acceptable. It means

that there is a meaningful relationship between independent and dependent variables. The

table emphasizes the positive effect of the proposed educational method on education.



