1	Scientia Iranica
2	Supplementary Data
3 4	A New Approach to Estimating Destinations in Open Automated Fare Collection Systems based on errors-against-errors strategy
5	
6	Mostafa Shafaati ¹ , Mahmoud Saffarzadeh* ²
7 8	¹ PHD candidate, Department of Civil and Environment Engineering, Tarbiat Modares University, Tehran, Iran, email: (<u>mostafa.shafaati@modares.ac.ir</u>), Phone: +989127326455
9 10	² Professor, Faculty of Civil and environment Engineering, Tarbiat Modares University, Tehran, Iran, email: (<u>saffar_m@modares.ac.ir</u>), Phone: +989121125096
11	
12 13	This file includes some tables and figures that were less important or complementary to the main content. All tables and figures in this file are referred to in the main file. There are 4
14	series of tables along with 3 series of figures. Tables T1 represent the validation results of
15	each model for every single studied stop. We remind the readers of the fact that in order to
16	summarize the paper, we started modeling from stop 7 and ended it in stop 20. We have
17	included the number of stops in the figures of F1- F3 as well. Tables T2, and T3 demonstrate
18	the validation results of the third approach: the aggregated approach (section 4.2.3 in the
19	main file). As we have explained in the main file, both tables satisfy equation 13. Finally,

table T4 shows the definitions of the concepts used or introduced in our paper.

1 Tables

Tables T1. Validation results of training each model

3

2

4 Stop 7

Classes	Precision	Recall	f1-score	Suppost
0	0.956	0.957	0.956	55182
1	0.318	0.311	0.314	35646
Macro avg.	0.637	0.634	0.635	58746
Weighted avg.	0.917	0.918	0.917	5874 <i>d</i>
	58746			
				8

9 Stop 9

Classes	Precision	Recall	f1-score	Supp brt
0	0.934	0.935	0.934	53217
1	0.367	0.362	0.364	5529 ¹
Macro avg.	0.650	0.649	0.649	58746
Weighted avg.	0.880	0.881	0.881	58746
	5874 6			

14 Stop 11

Classes	Precision	Recall	f1-score	Suppost
0	0.912	0.912	0.912	51019
1	0.419	0.418	0.419	772 1 6
Macro avg.	0.666	0.665	0.665	58746
Weighted avg.	0.847	0.847	0.847	587 4 7
	Accuracy: 0.	.871		58746
				18

Stop 8

Classes	Precision	Recall	f1-score	Support
0	0.942	0.944	0.943	54001
1	0.346	0.337	0.342	4745
Macro avg.	0.644	0.641	0.642	58746
Weighted avg.	0.894	0.895	0.894	58746
	58746			

Stop 10

Classes	Precision	Recall	f1-score	Support
0	0.929	0.930	0.929	52488
1	0.404	0.400	0.402	6258
Macro avg.	0.666	0.665	0.665	58746
Weighted avg.	0.873	0.873	0.873	58746
	58746			

Stop 12

Classes	Precision	Recall	f1-score	Support
0	0.894	0.896	0.895	49107
1	0.464	0.458	0.461	9639
Macro avg.	0.679	0.677	0.678	58746
Weighted avg.	0.823	0.824	0.824	58746
	58746			

1 Stop 13

Classes	Precision	Recall	f1-score	Suppo <u>g</u> t
0	0.867	0.866	0.866	46622
1	0.487	0.491	0.489	1212 \$
Macro avg.	0.677	0.678	0.678	58746
Weighted avg.	0.789	0.788	0.789	58746 ⁴
	58746			
				5

6 Stop 15

Classes	Precision	Recall	f1-score	Support
0	0.830	0.833	0.832	43384
1	0.524	0.519	0.521	15362
Macro avg.	0.677	0.676	0.677	5874 6
Weighted avg.	0.750	0.751	0.751	58746
	5874 16			

11 Stop 17

				12
Classes	Precision	Recall	f1-score	Support
0	0.761	0.761	0.761	355853
1	0.633	0.632	0.632	23161
Macro avg.	0.697	0.697	0.697	5874 <u>1</u> 64
Weighted avg.	0.710	0.710	0.710	58746
	587 46 5			

16

17

Stop 14

Classes	Precision	Recall	f1-score	Support
0	0.851	0.853	0.852	45065
1	0.511	0.507	0.509	13681
Macro avg.	0.681	0.680	0.681	58746
Weighted avg.	0.772	0.772	0.772	58746
	58746			

Stop16

Classes	Precision	Recall	f1-score	Support
0	0.795	0.797	0.796	39745
1	0.573	0.570	0.571	19001
Macro avg.	0.684	0.683	0.683	58746
Weighted avg.	0.723	0.723	0.723	58746
	58746			

Stop 18

Classes	Precision	Recall	f1-score	Support		
0	0.725	0.729	0.727	28207		
1	0.749	0.745	0.747	30539		
Macro avg.	0.737	0.737	0.737	58746		
Weighted avg.	0.738	0.737	0.737	58746		
	58746					

1 Stop 19

Classes	Precision	Recall	f1-score	Support
0	0.722	0.723	0.722	25507
1	0.787	0.787	0.787	33239
Macro avg.	0.755	0.755	0.755	58746լ
Weighted avg.	0.759	0.759	0.759	58746
	5874 65			

Stop 20

Classes	Precision	f1-score	Support		
0	0.715	0.717	0.716	20262	
1	0.851	0.849	0.850	38484	
Macro avg.	0.783	0.783	0.783	58746	
Weighted avg.	0.804	0.804	0.804	58746	
	58746				

_

Table T2. The confusion matrix to evaluate the model's performance regarding the whole studied stops (The first
validation set)

actual predicted	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
7	7	57	32	136	37	40	50	23	29	36	70	60	25	19	44	25	92	15	72	11	23	25	11	9	28	104
8	3	13	4	39	23	19	35	28	7	22	25	24	11	15	22	16	47	12	26	3	10	10	1	3	8	27
9	1	1	2	6	7	21	31	19	11	11	10	19	12	10	10	21	24	8	15	1	8	4	2	2	5	13
10	0	0	2	3	9	17	26	18	10	11	21	15	9	6	9	17	28	9	13	1	6	2	0	1	4	11
11	1	6	0	10	23	27	41	22	16	45	39	38	20	17	32	43	56	15	33	5	10	4	3	4	6	23
12	2	8	8	38	12	18	40	23	23	21	47	33	19	24	51	61	81	25	52	11	16	10	3	3	14	39
13	0	3	3	16	9	17	32	13	18	57	53	82	27	18	77	70	90	21	60	5	12	15	3	3	15	26
14	2	3	3	30	9	12	13	8	9	31	32	50	21	15	55	47	84	14	45	6	16	10	7	5	7	19
15	0	0	2	25	12	16	21	9	18	39	41	33	26	24	75	65	106	26	43	5	11	10	5	1	6	17
16	0	2	4	31	9	8	30	19	18	41	63	75	48	42	102	94	135	45	81	8	33	13	9	6	11	49
17	0	0	2	32	7	33	47	26	24	85	72	78	60	56	146	159	221	82	113	17	36	16	13	12	18	40
18	3	1	3	29	6	9	32	37	36	46	92	151	118	104	283	291	435	139	229	28	98	54	20	19	44	121
19	6	32	18	60	21	16	30	12	15	30	57	48	47	45	90	116	240	101	148	17	50	25	15	16	29	67
20	0	4	4	15	4	5	4	2	7	4	24	86	92	110	145	193	338	131	201	25	69	36	11	27	68	137

1	Table T3. The confusion matrix to evaluate the model's performance regarding the whole studied stops (The second
2	validation set)
	actual

predicted	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
7	8	37	14	114	30	24	31	17	24	19	58	44	18	9	38	29	63	14	41	5	13	17	3	7	26	64
8	6	26	7	96	30	39	39	23	24	33	43	43	19	22	51	26	74	13	52	7	17	12	2	2	11	54
9	1	5	3	30	17	32	25	24	24	17	29	19	18	9	25	23	30	8	26	2	5	5	3	2	6	17
10	0	0	0	0	11	18	29	17	12	21	11	18	7	6	2	9	17	3	5	2	3	1	1	0	3	9
11	0	5	2	15	18	36	43	31	15	50	37	34	18	17	33	36	62	16	49	2	10	4	2	3	12	19
12	0	6	6	36	9	14	37	29	15	26	31	46	15	23	43	45	64	14	34	4	14	5	2	0	13	32
13	0	5	4	19	11	14	35	18	22	49	67	77	33	31	84	71	111	33	67	8	20	13	5	2	22	40
14	0	0	0	9	4	4	9	6	6	17	16	33	17	7	32	23	46	14	14	6	6	6	1	2	3	17
15	0	2	2	37	16	24	27	26	11	41	35	35	31	43	62	83	127	59	67	11	13	9	4	6	9	30
16	0	2	4	48	11	12	32	24	26	56	57	101	54	45	140	146	206	59	108	11	44	19	11	7	12	61
17	0	1	2	36	8	29	44	27	24	62	63	79	43	55	106	128	171	58	82	17	30	24	9	1	11	52
18	3	20	6	34	10	22	35	39	38	70	132	172	116	146	289	329	525	157	246	28	108	29	23	36	46	137
19	3	35	11	26	15	10	10	6	9	25	30	61	49	48	73	108	179	69	91	17	51	22	15	8	26	57
20	2	9	5	23	7	4	8	5	4	8	30	58	68	84	136	158	352	114	198	18	73	47	17	24	50	122

3	
0	

Table T4. Definitions of the concepts, terms, and variables presented in the paper

concept	Definition							
Р	Positive class (Those who alight at the current or previous stops)							
Ν	N Negative class (Those who don't alight at the current or previous stops)							
TN True Negative (The actual and predicted classes are both negative)								
FP	False Positive (The actual class is negative but the predicted is positive)							
FN	False Negative (The actual class is positive but the predicted is negative)							
TP True Positive (The actual and predicted classes are both positive)								
А	FN – FP							
Decell	ТР							
Recall	$\overline{TP + FN}$							
Specifity	TN							
specifity	$\overline{FP + TN}$							

concept	Definition
G_mean	$\sqrt{Recall \times Specifity}$
Duration	ТР
Precision	$\overline{TP + FP}$
TPR	True Positive Rate = Recall
FPR	False Positive Rate (FPR) = $1 - \frac{1}{Recall}$
E.	$_{2}$ precison \times recall
1'1_score	$\frac{2}{precision + recall}$
Thresholding	Shifting decision threshold to solve imbalanced classification problems
ROC curve	A diagnostic plot that evaluate the probability predictions made by a model on a test dataset.
Precision-	These plots are calculated and plotted for probability predictions by creating crisp
Recall curve	class labels and calculating precision and recall for each threshold.
Diff	the estimated stop number – the actual stop number
N	The number of observations belonging to each Diff
ACEC	Accepted Classification Error Categories in the first validation approach. Each category is shown by a small English letter starting from category "a" where the Diff is 0, category "b" where the Diff is -1, 0, +1, and etc.
NMC	Number of Members in the Category in the first validation approach
РМС	Percentage of Members in the Category in the first validation approach
i	The absolute value of Diff
I _{1i}	$\begin{cases} N_i & \text{if } i = 0\\ N_i - N_{-i} & \text{if } i \neq 0 \end{cases}$ (The first index in the second validation approach)
I _{2i}	N_{-i}/N_i (The second index in the second validation approach)
Ojk	The number of observations when the predicted stop number is "j" and the actual stop number is "k" in the big confusion matrices of Tables T3 and T4
	In the third validation approach if the predicted stop number is equal or greater than
Compromised	the actual stop number, then that prediction is acceptable. We may consider to
predictions	accept the predictions in which the predicted is smaller than the actual by 1 or 2
promotions	stops. These predictions are referred to as compromised predictions in this paper.
LR	The Last Relationship which the name given to the following inequality which should be satisfied in the third validation approach:

concept	Definition
	20 <i>j</i> -3 20 27
	$\sum \sum O_{jk} \le \sum \sum O_{jk}$
	j=7 k=2 $j=7 k=j-2$

2 Confusion matrices for each model:

3	Stop 7: [⁵²⁸⁰⁵ 2456	2377 1108 []] , Stop 8: [⁵⁰⁹⁸⁴ 3017], Stop 9: [⁴⁹⁷⁶⁶ 3451], Stop10: [⁴⁸⁷⁸⁹ 3699] 3528 2001 []] , Stop10: [⁴⁸⁷⁸⁹ 3699]
4	Stop11: [⁴⁶⁵⁴⁵ 4498	4474 3229 []] , Stop12: [44011 5096], Stop13: [40359 6263], Stop14: [38431 6634], Stop15: 6174 5950 []] , Stop14: [6741 6940 []] , Stop15:
5	[³⁶¹⁴⁴ 7240 7392 7970]	
6	Stop16 : [³¹⁶⁶³ 8175	8082 10826 []] , Stop17: [²⁷⁰⁸⁸ 8497 8520 14641 []] , Stop18: [²⁰⁵⁶⁶ 7641 7782 22757 []] , Stop19: [¹⁸⁴³⁴ 7073 7092 26147 []] , Stop20:
7	[¹⁴⁵²⁸ 5734 5792 32692]

1	1 Figures	
2	2	
3	3	
4	4	
5	5	
6	6	
7	7	
8	8	
9	9	

Figures F1 (continued)

Figures F1. Bar plots for the number of members in each class in the train data set

Figures F2 (continued)

Figures F2. ROC curve line plots for each model, with the optimal threshold

Figures F3 (continued)

Figures F3. Precision-Recall curves for each model, with the optimal threshold