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ABSTRACT

In this paper, a new lifetime family of distribution called new family of Kies Burr 111 (NFKBIII) distribution is
developed from T-X family technique. The NFKBIII distribution is very flexible and its hazard rate function
accommodates various shapes such as increasing, decreasing, increasing-decreasing-increasing and bathtub. The
density function of the NFKBIII is arc, J, reverse-J, U, bimodal, left-skewed, right-skewed and symmetrical shaped.
Some structural and mathematical properties including quantiles, sub-models, ordinary moments, moments of order
statistics, incomplete moments, mean deviations, inequality curves, residual life functions and reliability measures
are derived. Two characterizations for the NFKBIII distribution are studied. The maximum likelihood estimates
(MLE) for unknown parameters of NFKBIII distribution are obtained. A simulation study is performed to evaluate
the behavior of the maximum likelihood estimators. The NFKBIII distribution is applied to two real data sets to
illustrate its potentiality and utility. The adequacy of the NFKBIII distribution is tested via different goodness of fit
statistics.
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1. INTRODUCTION

Many univariate continuous distributions have been established in recent decades but many data sets from
reliability, life testing, risk analysis, finance, ecology, climatology, geology, hydrology and other fields do not fit to
these distributions. Therefore, applications of the modified distributions to problems in these fields are a vibrant
necessity of day.

The modified, generalized and extended distributions are attained by adding one or more parameters or the
introduction of some transformation to the parent distribution. Therefore, the new proposed distributions provide
best fit than the sub and competing models.

Burr [1] proposed a family of 12 distributions by fitting cumulative frequency functions to frequency data called
Burr family. Burr distributions I11, VI, X and XII have wide applications. Burr-111 (BIIl) distribution is commonly
applied to model risk data in business and finance, crop rice in market, failure time data in life testing and reliability
and ozone data in environmental sciences.

Many modified, generalized and extended types of BIII distribution are presented in statistical literature such as two
parameter family of distributions (Mielke; [2]), inverse Burr (Kleiber and Kotz; [3]), Bl type (Gove et al.;[4]),
extended Burr 111 (Shao et al.; [5]), Dagum (Benjamin et al.; [6]) modified BIlI( Ali et al.;[7]), McDonald BIlI
(Gomes et al.; [8]), interpolating family (Sinner et al.;[9]), mixture of two BIIl (Moisheer; [10]), generalized
gamma Bl (Olobatuyi et al.; [11]), four parameter gamma BIlI (Cordeiro et al.; [12]), odd BIII family (Jamil et
al.[13]), Kumaraswamy odd Burr G family (Nasir et al. [14]) and generalized BIlI (Kehinde et al.; [15]).

Marshall and Olkin [16] presented a new technique to add a parameter to a family of distribution. Cordeiro and
Castro [17] established Kumaraswamy generalized family with its distributional properties. Alizadeh et al. [18]
studied Burr generalized family with various properties. Cordeiro et al. [19] developed generalization of odd log-
logistic family with properties. Haghbin et al. [20] presented a new generalization odd log-logistic family of
distributions. Korkmaz and Geng¢ [21 and 22] studied generalized two-sided class of distributions along with
applications. Cordeiro et al. [23] studied a new family based on the Burr XII density with detailed
properties. Alizadeh et al. [24] studied odd log-logistic logarithmic class of continuous distributions. Yousof et al.
[25] developed Burr Hatke- G family of distributions. Korkmaz et al. [26] presented the Weibull Marshall-Olkin
family along with properties.
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The main motivation of this article is to develop and study a flexible lifetime family of BIlI type distribution with
two extra shape parameters and two location parameters called the NFKBIII distribution. The shapes of NFKBIII
density are arc, J, reverse-J, U, bimodal, left-skewed, right-skewed and symmetrical shapes. The hazard rate
function for the NFKBIII distribution has various shapes such as increasing, decreasing, increasing-decreasing-
increasing and bathtub. The NFKBIII distribution is the best model for modeling data such as times to failures of
items in life testing, maximum annual flood discharges in hydrology and other various fields. The NFKBIII
distribution offers better fits than sub and competing models.

The article is organized follows. In Section 2, the NFKBIII distribution is derived from T-X family technique,
transformation and compounding mixture of distributions. Structural properties, quantile function, sub-models and
various plots for density and hazard rate functions are discussed. In Section 3, ordinary moments, moments of order
statistics, incomplete moments, mean deviations, inequality curves, residual life functions and reliability measures
are derived. The characterizations for the NFKBIII distribution are studied in Section 4. In Section 5, the maximum
likelihood estimates (MLEs) for unknown parameters of the NFKBIII distribution are obtained. In Section 6, a
simulation study is performed to assess the behavior of the maximum likelihood estimators. In Section 7, the
potentiality and utility of the NFKBIII distribution is illustrated via its applications to two real data sets: times to
failures of devices and maximum annual flood discharges. The adequacy of the NFKBIII distribution is tested via
different goodness of fit statistics. The ultimate comments are given in Section 8.

2. DEVELOPMENT OF NFKBIII DISTRIBUTION

The cumulative distribution function (cdf) of the generalized uniform distribution is given by
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Gurvich et al. [27] replaced ‘x’ with odds ratio in the Weibull distribution for the development of a class of extended
Weibull distributions. Alzaatreh et al. [28] developed the cdf of the T-X family of distributions as
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where W (G(x)) is a function of G(x) and I (t) is the pdf of a non-negative random variable.

Bourguignon et al. [29] inserted the odds ratio of a baseline distribution in place of ‘x’ in the cdf of the Weibull
distribution for the development of a new family of distributions.

The NFKBIII is developed by inserting the odds ratio for the generalized uniform in place of ‘x’ in the cdf of MBIII
distribution. The cdf for the NFKBIII distribution is obtained as
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where &,b, @, ff,kand y are positive parameters of which @, b are location parameters and &z, 3, xand y are

shape parameters. Clearly, F (X) is a strictly increasing and differential cdf on (a, b).

The pdf of the NFKBIII distribution is
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2.1 Transformation and Compounding

The NFKBIII model is also developed via (i) transformation between the ratio of exponential and gamma random
variables and (ii) compounding generalized inverse Kies (GNIK) and gamma distributions.

2.1 (i) Let Zl be a random variable having exponential distribution with parameter value 1 and 22 be a random
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variable with gamma i.e., Z, ~gamma| —,1|, then using relationship Z, =y X o Z,, we have
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(ii) Let X be a random variable with GNIK distribution i.e. X ~GNIK(X;a,b,[3, K7, 9) and @ be a random

variable with gamma distribution, i.e. & ~ gamma(e; a, 7/) , then after simplifying the integral,
f(xab,aBy.x)=[ GNIK(x/ab,B,x,7.0)y(0/a,y)d6,
0
we have X ~ NFKBIII (a,b,a,ﬂ,y,zc).

2.2 Structural Properties

The survival, hazard, cumulative hazard, reverse hazard functions and the Mills ratio of a random variable X with
the NFKBIII distribution are given, respectively, by
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The quantile function of NFKBIII distribution is X, =
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2.3 Sub-Models

The NFKBIII distribution has applications in life testing, reliability concept, survival analysis and hydrology. The
NFKBIII distribution has the subsequent nested models (Table 1).

2.4 Plots for the NFKBIII Density and Hazard Rate Functions

Fig.1 shows that the shapes of the NFKBIII density are arc, J, reverse-J, U, bimodal, left-skewed, right-skewed and
symmetrical (Fig.1). The shapes of failure rate function for the NFKBIII distribution are increasing, decreasing,
increasing-decreasing-increasing and bathtub (Fig.2).

3. MATHEMATICAL PROPERTIES

Some descriptive measures for the NFKBIII distribution such as ordinary and incomplete moments, inequality
curves, means deviations, residual life functions and reliability measures are established in this section.

3.1 Moments of the NFKBIII Distribution

The r™ moment about origin of X with the NFKBIII distribution is
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where (f)k = F(€+ k) is Pochhammar symbol.
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where [Z]i =Z (Z +1)(Z + 2) ...... (Z +1 —1) and Sr is Stirling number of the first kind.

The Mellin transform is used to obtain moments of a probability distribution. By definition, the Mellin transform is
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The ™ moment about means, Pearson’s measures for skewness and kurtosis, moment generating function and
cumulants of X for the NFKBIII distribution are attained from the relations
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Table 2 displays the numerical descriptive measures such as median, mean, standard deviation, skewness and
kurtosis of the NFKBIII distribution for carefully chosen parameter values to describe their effect on these

descriptive measures.

3.2 Moments of Order Statistics

Moments of order statistics have uses in life testing and reliability. Moments of order statistics are also aimed to
anticipate the failure of future items obtained after few initial failures.

The pdf for m™ order statistic X, is
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The pdf of X__ for the NFKBIII distribution is
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Moments about the origin of X , for the NFKBIII distribution are
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3.3 Incomplete Moments

Bonferroni and Lorenz curves can be easily computed using first incomplete moment. The life testing features such
as residual life and mean inactivity life functions can be obtained from incomplete moments. The lower incomplete
moments for the random variable X with the NFKBIII distribution are
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where B( )ls incomplete beta function.

The upper incomplete moments for the random variable X with the NFKBIII distribution are
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The mean deviation about the mean is MDy = E|X — 44| = 244F (44 )-2:4M;(4) and mean deviation about the
median is MD,, = E|X —M|=2MF (M )-2MM, (M), where ;4 = E(X)and M =Q(0.5). Bonferroni and Lorenz
curves for a specified probability p are computed by B(p) = — (q) and L(p) = ( ) , whereq = Q( p)

pu’ o

3.4 Residual Life functions
The n" moment M, (Z)of residual life for X with the NFKBIII distribution is
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The residual life (MRL) function ml(z)of a component at time z, or average remaining lifetime is also called the

life expectancy given by
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The n™ moment of reverse residual life M, (Z) for X with the NFKBIII distribution is

Mn(z):E[(z—X)”/X SZ} j ) f (x)dx




aii r;<(Oc {
FZU( o) Z ! (23)

1) (:) :
s=0 K _ K
B[l_z a, K]_B y(b_Zj qvay
By B 2" -a By B
The waiting time z for the failure of a component has passed with condition that this failure had happened in the

interval [0, z] is called mean waiting time (MWT) or mean inactivity time. The waiting time z for the failure of a
component of X with the NFKBIII distribution is defined by
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3.5 Stress-strength Reliability for the NFKBIII Distribution
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Let X, be strength and X, be stress and X, follows NFKBIII distribution (al,ﬁ VK, a,b) and X, follows

NFKBIII distribution (@, B, 7, k,@,b), then R =Pr (X, < X,) J.f x)dx is reliability parameter
(Kotz et al.; [32]). The reliability of the component is computed as
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Therefore R is independent of a, b, £, x and .

3.6 Estimation of Multicomponent Stress-Strength System Reliability with NFKBIII Distribution
Consider a system that has m identical components out of which s components are functioning. The strengths of m
components are Xj,i =1,2...m with common cdf F while, the stress Y imposed on the components has cdf G.

The strengths X, i1 =1,2...m and stress Y are i.i.d. distributed. The probability that system operates properly is

reliability of the system i.e.
Rs,m = P[strengths (X;,i =1,2..m) > stress (Y)],

Rs m = P[at the minimum®™s"of (X;,i=1,2..m)exceed Y ]. (26)
m
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Let X ~ NFKBIl (o, B,7,x,a,b) and Y ~ NFKBIII (az,,B,]/,K, a,b) such that &, @, are unknown

shape parameters and a, b, are common location parameters. X and Y are independently distributed. The
reliability that system operates properly in multicomponent stress- strength for the NFKBIII distribution is
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is reliability in multicomponent stress- strength model (Bhattacharyya and Johnson; [33]).
4. CHARACTERIZATIONS

In this section, two essential characterizations for the NFKBIII distribution are planned via: (i) conditional
expectation and (ii) ratio of truncated moments.

4.1 Characterization Based on Conditional Expectation

Here the NFKBIII distribution is characterized via conditional expectation.

Proposition 4.1.1: Let X : €2 — (@, b) be a continuous random variable with cdf F(x), (0 < F(x)<1 for

x=a ), then foroL >y, X has cdf (4) if and only if
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After integrating and simplifying, we arrive at
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4.2 Characterization of the NFKBIII Distribution through Ratio of Truncated Moments

The NFKBIII distribution is characterized using Theorem G (Glanzel; [34]) from a simple relationship between two
truncated moments of functions of X.
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and

! h K-1 K _ ok -1
The differential equation S'(X): P (X) Z(X) —Zﬂ(b”—a”) KX {X a }

2B
X —a
has solution S(X) = In[bK X’(} , X>a. So, in the light of theorem G, X has pdf (5)

Corollary 4.2.1: Let X : QQ — (a, b) be a continuous random variable and let
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where D is constant.

5. MAXIMUM LIKELIHOOD ESTIMATION

In this section, parameters estimates are derived using maximum likelihood method. The log likelihood function for
the NFKBIII distribution with the vector of parameters @ = (a, ba,p,y, K‘) is
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where a and b are assumed to be known, since its minimum and maximum likelihood are equal to minimum and

maximum order statistics. The MLEs of the parameters for the NFKBIII distribution can be computed from the
simultaneously solution of the following nonlinear equations:
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The above equations 33-36 can be solved either directly or using the R (optim and maxLik functions), SAS (PROC
NLMIXED) and Ox program (sub-routine Max BFGS) or using non-linear optimization approaches such as the
quasi-Newton procedure.

6. Simulation Study
In this section, the behavior of the MLEs of the NFKBIII parameters is assessed with respect to sample size n. The
steps for simulation to assess the behavior are as follows. Generate 10000 samples of sizes n from the NFKBIII

distribution using the inverse cdf method. Calculate the MLEs for 10000 samples, say (d,B,&, B, J,k) fori=1,
2,..., 10000 from non-linear optimization technique with constraint matching to range of parameters. (0.10, 4, 1.2,
04, 1.1, 1.2), (0.5, 5, 1.5, 0.5, 1.3, 1.5) and (1, 6, 2, 0.8, 1.5, 1.75) are taken as the true parameter values
(a, b, «, ﬂ, Y, li). Calculate the means, biases and mean squared errors (MSE) of MLEs.

For this purpose, we have chosen various arbitrarily parameters and n=50,100,150 sample sizes. All codes are
written in R and the results are summarized in Table 3. The results clearly show that when the sample size n
increases, the estimated MSE decrease and estimated biases drop to zero. MSE of estimated parameters increases, as
shape parameter rises. This reveals that MLEs for NFKBIII distribution are reliable.

7. APPLICATIONS

The potentiality and utility of use of NFKBIII distribution is established by applying it to two data sets: failure times
of devices (Aarset, [35]) data and maximum annual flood discharges. The NFKBIII distribution is compared with
KMBIII, NKBIII, KBIII, NIKL, KIL, modified Burr XII (MBXII), Burr XII (BXII), modified Burr 111 (MBIII), Burr
11 (BII), Weibull and inverse Weibull distributions. R-package is applied to compute goodness of fit criteria such
as “Cramer-von Mises (W*), Anderson Darling (A*), Kolmogorov- Smirnov statistics with p-values [KS(p-values],
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Akaike information criterion (AIC), consistent Akaike information criterion (CAIC), Bayesian information criterion

(BIC), Hannan-Quinn information criterion (HQIC)” and estimate of likelihood ratio statistics (—( ) values for
times to failures of 50 components and maximum annual flood discharges. Chen and Balakrishnan [36] described in
detail about the statistics W* and A*.

A model is best model for which the values for goodness of fit criteria are smaller. The MLEs for unknown
parameters and goodness of fit criteria values for the NFKBIII, KMBIII, NKBIII, KBIII, NIKL, KIL, modified Burr
X1 (MBXII), Burr X1l (BXII), modified Burr 111 (MBIII), Burr 111 (BIII), Weibull and inverse Weibull models are
computed.

7.1 Times to Failure: The times to failures of 50 components (Aarset,[35]) are: 0.10,0.20,1,1,1,1,1, 2, 3,6, 7, 11,
12, 18, 18, 18, 18, 18, 21, 32, 36, 40, 45, 46, 47, 50, 55, 60, 63, 63, 67, 67,67, 67, 67, 72, 75, 79, 82, 82, 83, 84, 84,
84, 85, 85, 85, 85, 85, 86, 86. The Aarset data set is recognized as bathtub shaped.

The MLEs along with standard errors (in parentheses) and goodness of fit criteria such as W*, A*, KS (p-values) are

summarized in table 4. The values of goodness-of-fit criteria such as AIC, CAIC, BIC, HQIC and —/( are written in
Table 5.

The NFKBIII distribution is best fitted than KMBIII, NKBIII, KBIII, NIKL, KIL, MBXII, BXII, MBIlI, BlIlI,
Weibull and inverse Weibull distributions because the values of all criteria are smaller for the NFKBIII distribution.
We can identify that the NFKBIII distribution is closer fit to empirical data (Fig. 3).

7.2 Maximum Annual Flood Discharges: The data for 47 years of the North Saskachevan River (Edmonton) about
maximum annual flood discharges (1000 ft¥/sec) are: 19.885, 20.940, 21.820, 23.700, 24.888, 25.460, 25.760,
26.720, 27.500, 28.100, 28.600, 30.200, 30.380, 31.500, 32.600, 32.680, 34.400, 35.347, 35.700, 38.100, 39.020,
39.200, 40.000, 40.400, 40.400, 42.250, 44.020, 44.730, 44.900, 46.300, 50.330, 51.442, 57.220, 58.700, 58.800,
61.200, 61.740, 65.440, 65.597, 66.000, 74.100, 75.800, 84.100, 106.600, 109.700, 121.970, 121.970, 185.560.

The MLEs along with standard errors (in parentheses) and goodness of fit criteria such as W*, A*, KS (p-values) are

summarized in table 6. The values of goodness-of-fit criteria such as AIC, CAIC, BIC, HQIC and —/( are written in
Table 7.

The NFKBIII distribution is best fitted than KMBIII, NKBIII, KBIII, NIKL, KIL, MBXII, BXII, MBIII, BIlI,
Weibull and inverse Weibull distributions as the values of all criteria are smaller for the NFKBIII distribution. We
can identify that the NFKBIII distribution is closer fit to empirical data (Fig. 4).

8. CONCLUDING REMARKS

We have derived the NFKBIII distribution from the T-X family technique, transformation and compounding mixture
of distributions. The NFKBIII density has arc, J, reverse-J, U, bimodal, left-skewed, right-skewed and symmetrical
shapes. The hazard rate function for the NFKBIII distribution has various shapes such as increasing, decreasing,
increasing-decreasing-increasing and bathtub. Different statistical properties such as quantile function, sub-models,
ordinary moments, moments of order statistics, incomplete moments, mean deviations, inequality curves, moments
for residual life functions and reliability measures have derived. Two characterizations of the NFKBIII distribution
have studied. The maximum likelihood estimates (MLE) for unknown parameters of NFKBIII distribution have
computed. A simulation study has accomplished to evaluate the behavior of the maximum likelihood estimators. The
potentiality and utility of the NFKBIII distribution has demonstrated via its applications to times to failures of 50
devices and maximum annual flood discharges. The adequacy of the NFKBIII distribution is tested via different
goodness of fit criteria. The goodness of fit statistics has shown that the NFKBIII distribution is best fit model. We
have displayed that the NFKBIII distribution is empirically best for lifetime applications.
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Fig.1: Plots of pdf of NFKBIII Distribution
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Fig. 2: Plots of hrf of NFKBIII Distribution

NFKBIII-Distribution for a=0.1, b=3
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Fig. 3: Fitted pdf, cdf, survival and pp plots of the NFKBIII distribution for device failure times

Estinated pdfof PN disributonfor Times FaireofDeicesData D

Esimted cifof NFKGH isrbuto for Tine o Flure of Devices Data.

Vg i o St b T e

PP Plotfor NFKBI distibution for Times to Faiure of Devices Data

Obsened Pobabites

Fig. 4: Fitted pdf, cdf, survival and pp plots of the NFKBIII distribution for maximum annual flood

discharges
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Estimated pf of NFKBI istibution for Maximum Annual Food Discharges

Esimated offof NFKBIN disrbuton for Maximum Annual Food Discharges

KaglnAler Sl Pt KB isutonf

Table 1: Sub-Models of the NFKBIII Distribution

Probabilites

PP Plot for NFKBIIl distribution for Maximum Annual Flood Discharges:

Obsersed Probabies

1 X b 194 ﬂ V4 K New Family of Kies Burr 11 (NFKBIII)
2 X a b o ﬂ 1 Kies Modified Burr 111 (KMBIII)
3 X a b (04 ﬂ 1 K New Kies Burr 11 (NKBIII)
4 X a b a ﬂ 1 1 Kies Burr 11l (KBIII)
5 X 0 1 a ﬂ 1 1 Reduced Kies Burr 111 (RKBIII)
6 X 0 1 o ﬂ Y K Reduced New Kies Burr 11 (RNKBIII)
7 X b (04 1 V4 K New Kies Modified Inverse Lomax
(NKMIL)
8 X a b o 1 V4 1 Kies Modified Inverse Lomax (KMIL)
9 X a b (04 1 1 1 Kies Inverse Lomax(KIL)
10 X 0 1 o 1 1 1 Reduced Kies inverse Lomax (RKIL)
11 X a b o ﬂ V4 K Reduced Kies Burr Il (RKBIII)
12 X 0 1 o ﬂ V4 K Reduced New Kies Burr 11 (RNKBIII)
13 X a b o ﬂ y— 0 K New Inverse Kies (NIK)
14 X 0 1 (04 ﬂ y—> 0 K New Reduced Inverse Kies (NRK)
15 X a b o ﬂ y—0 K New Modified inverse Kies (NMIK)
16 X 0 1 a ﬂ y— 0 1 Reduced New Inverse Kies(RNIK)
17 X 0 1 a ﬂ y— 0 1 Reduced Inverse Kies (RIK)
18 X b (04 ﬂ y— 0 1 New Modified Inverse Kies (NMIK)
19 X a b o ﬁ y—> 0 K Generalized Inverse Kies
20 K K b (04 Kies
( b* —x ﬂ y—= 0 1 (Kies;[30], and Kumar & Dharmaja ;[31])
xX© —a”
21 X a b (04 ﬂ — 0 1 Inverse Kies
22 X 0 b ﬁ V4 K Modified Burr 11l Power (MBIII-Power)
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23 a 0 (04 ﬂ V4 K Modified Burr Il Pareto (MBIII-Pareto)
24 X 0 b o ﬂ 1 K Burr 111 Power (BIl1-Power)
25 X a (04 1 K Burr 111 Pareto (BIll-Pareto
p
26 X 0 b o ﬂ y— 0 K Inverse Weibull- Power
27 X a 0 (24 ﬂ y = 0 K Inverse Weibull Pareto

Table 2: Median, mean, standard deviation, skewness and Kurtosis of the NFKBIII Distribution

Parameters Median | Mean Standard | Skewness | Kurtosis
a, By, k,a=01b=5 Deviation

0.5,0.5,0.5,0.5 0.4897 | 1.4750 1.7079 0.9765 2.3803
0.5,1.5,1.5,0.5 0.6763 | 1.1133 1.1156 1.2380 | 3.7107
1,0.5,0.5,05 2.1126 | 2.3588 1.8197 0.1678 1.4319
1,1,1,2 3.5333 | 3.3328 1.1766 -0.5611 2.3903
051,11, 1.3210 | 1.7305 1.4595 0.6413 2.1471
1,111 2.5460 | 2.5475 1.4138 0.0019 1.8006
21,11 3.3649 | 3.3649 1.1546 -0.5638 2.3977
151,11 3.1834 | 3.0379 1.2827 -0.3377 2.0496
1,1,1,05 1.6268 | 1.9349 1.4408 0.4984 2.0057
15,15,15,1 2.8765 | 2.8088 1.1137 -0.2179 2.2432
15,15,15,15 3.4298 | 3.2977 0.9797 -0.5674 2.7456
15151525 3.9849 | 3.8405 0.7525 -0.9578 3.7872
15,15,15,3 4.1375 | 4.0009 0.6698 -1.0776 4.2189
15,15,1.5,05 1.9744 | 2.0897 1.1797 0.3375 2.2034
2.5,15,1.5,05 25717 | 2.5902 1.0939 0.0430 2.1806
2,222 3.8261 | 3.7287 0.6639 -0.8429 3.8245
2.5,1525,25 42032 | 4.0413 0.6924 -1.2421 4.6981
25,1525,25 4.0501 | 3.9854 0.4675 -0.9543 4.6041
5,2.525,25 4.2659 | 4.2409 0.3136 -0.5782 3.6917
3.25,2.4,0.65,1.5 3.7515 | 3.7577 0.4326 0.0016 2.7084
45,2.4,0.65,1.5 3.8735 | 3.8788 0.3956 0.0010 2.6739
5,2.525,25 4.2659 | 4.2409 0.3136 -0.5782 3.6917
5,2.5,2.5,0.5 3.2661 | 3.2192 0.9057 -0.2531 2.4020
6,2,1.5,0.5 3.0029 | 3.0224 0.7507 0.0597 2.5103
6,2,1.5,0.5 4.3075 | 4.2356 0.4691 -0.8193 3.6134
51.5,15,1.5 4.2268 | 4.1482 0.5200 -0.8090 | 3.5801
5,0.5,1.5,15 49222 | 4.6458 0.6553 -3.0134 | 13.2449
51,15,15 45453 | 4.3729 0.5804 -1.5137 5.6080
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Table 3: Means, Bias and MSEs of the NFKBIII distribution (0.10, 4, 1.2, 0.4, 1.1, 1.2), (0.5, 5, 1.5, 0.5, 1.3,
1.5)and (1, 6, 2, 0.8, 1.5, 1.75)

Sample  Statistics | =0.10b=4 «=12 =04 vy=11 k=12
Means 0.1002 3.9997 1.2416 0.4132 1.2034 1.2803
n=50 Bias 2e-04 -3e-04 0.0416 0.0132 0.1034 0.0803
MSE 0 0 0.011 0.0015 0.027 0.0215
Means 0.10 4 1.2191 0.4099 1.1843 1.2772
n=100 Bias 0 0 0.0191 0.0099 0.0843 0.0772
MSE 0 0 0.0046 7e-04 0.018 0.0193
Means 0.1 4 1.2092 0.4083 1.1722 12714
n=150 Bias 0 0 0.0092 0.0083 0.0722 0.0714
MSE 0 0 0.0024 4e-04 0.0133 0.0165
Sample  |Statistics |a = 0.5 p =5 a=15 =05 y=13 k=15
Means 0.5015 4.9989 1.5386 0.5069 1.4244 1.6339
n=50 Bias 0.0015 -0.0011 0.0386 0.0069 0.1244 0.1339
MSE 3e-04 0 0.0232 0.001 0.0456 0.0418
n=100 |Means 0.5003 4.9997 1.519 0.5011 1.4072 1.6386
Bias 3e-04 -3e-04 0.019 0.0011 0.1072 0.1386
MSE 0 0 0.0095 2e-04 0.0298 0.0402
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n=150 |Means 0.5001 4.9999 1.5108 0.5 1.3944 1.6333
Bias le-04 -1e-04 0.0108 0 0.0944 0.1333
MSE 0 0 0.0049 0 0.0237  0.0357
Sample  |Statistics | =1.0 b=6 a=20 =08 y=15 =175
Means 1.0619 5.84 2.0538 0.8496 1.7006 1.8917
n=50 Bias 0.0619  -0.16 0.0538  0.0496 0.2006 0.1417
MSE 0.0119 0.0908 0.0365 0.0125 0.0835  0.0652
n=100 |Means 1.0177 5.95901 2.0144 0.8182 1.6366 1.8777
Bias 0.0177 -0.0409  0.0144 0.0182 0.1366 0.1277
MSE 0.0026 0.0218 0.0205 0.0041 0.0586 0.0542
n=150 [Means 1.0073 ~ 5.9861  2.0003  0.81 1.6132 1.8685
Bias 0.0073 -0.0139 3e-04 0.01 0.1132 0.1185
MSE 8e-04 0.0066 0.0116 0.0018 0.0417 0.0426

Table 4: MLEs and their standard errors (in parentheses) for times to failure of devices

Model | , B v 7~ a b W A* vaalue)
S e A o o T e B o
PN - 0 oo o oo | o0
WO | Gooemaree) | @ossoonog | (Osaa00rs) | 010 |88 | 005219844 | 04703096 | o'oi
KBl (100156233?(?3?1) ?0.?57057579:4) """ 1 010 |86 006114472 | 0.5322372 ?6997;;1)
W = T T |w oo oo |
KIL ?gfggggg) 1 ! ! 010 |86 007026344 | 0.5906328 ?6?§f359)
M| pariaae) | oonean) | easasmemny | | | 1298802 | 686492 | (oo
BXII 0.2454656 12600795 |1 [ | | 10933 5.850392 | 0.3336
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(0.06939703) | (0.32079056) (2.9416-05)
MBIl | 455699.1 3224871 1950580 | —— | = | —- 03964946 | 2.474767 | 0.1614
(23876.41) | (0.08486702) | (13762.39) (0.1478)
BIll 4.1810540 05766612 |1 | = [ [ 0.2656
(0.63742201) | (0.05248543) 0.9456985 | 5177504 | (5 491704)
Weibull | 0.0272128 09476152 | —m [ [ [ 0.1933
(0.39009785) | (0.04439031) 04949391 | 3001556 | 4 760
Inverse | 2.6499805 04634121 | | = | = | 0.2856
Weibull | (0.39009785) | (0.04439031) 1.039875 5565583 | 5 0005731
Table 5: Goodness-of-fit statistics for times to failure of devices
Model AIC CAIC BIC HQIC —(
NFKBIII 403.3062 404.2365 410.791 406.1348 197.6531
KMBIII 408.9108 409.4563 414.5244 411.0322 201.4554
NKBIII 407.7712 408.3166 413.3848 409.8926 200.8856
KBIII 407.3655 407.6322 411.1079 408.7798 201.6828
NIKL 427.3011 427.5677 431.0435 428.7153 211.6505
KIL 425.3018 425.3887 427.173 426.0089 211.6509
MBXII 577.3329 577.8546 583.069 579.5172 285.6664
BXII 548.6714 548.9267 552.4954 550.1276 272.3357
MBI 478.7943 479.316 484.5304 480.9786 236.3972
BIlI 525.2932 525.5485 529.1172 526.7494 260.6466
Weibull 485.9593 486.2146 489.7833 487.4155 240.9796
Inverse Weibull 533.973 534.2283 537.797 535.4292 264.9865

Table 6: MLEs and their standard errors (in parentheses) for maximum annual flood discharges

Model 4 * * K-S
a 'B K a b W A (p-value)
NFKBIII 170483835 0.35210310 19885 | 185560 0.0571
0.30254078 0.02101155
L panesom ©O4027486) | (Lottoman) | B 0.01576999 | 0.125900 | (0.9982)
KMBIIT | oo~ | 8.889992999 | 0.133291960 19885 | 185560 0.2657
Goororsony | (NAN) (0.041725229) | 1 0611651 | 3.719855 | (0.003024)
NKBIT | 0 oossaoa0s | 6749297076 | 1 1610899847 | 19.885 | 185560 0.3031
00sszor6 | (40.584567970) (0.042015909) 0.3781306 | 2386018 | (0.0004277)
KBIII 0.1659637 3.0726999 1 1 19.885 | 185560 0.2379
(0.05820467) | (0.99621453) 0.1799505 | 1.224586 | () 51094)
NKIL 0.7983516990 | 1 1 0.0000000001 | 19.685 | 185.560 0.239
(0.1614468) (0.2410621) 0.01863201 | 0.1529237 | 51046)
KIL 0.4679514 1 1 1 19885 | 185560 | 003613052 | oo | 0.2982
(0.06899535) : (0.0005609)
MBXII 0.0113894 1249100988 | 54009658 | —— | - | - 0.5461
(0.01673093) | (760.63939777) | (37.86181308) 0.05350551 | 0.3691381 | 7 356, 13)
BXIi 0.07560631 348218254 T = = == 0.5449
(0.3409857) (15.7016695) 0.05340923 | 0368504 | g 3760 13)
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MBI 6107.715659 2.447060 1738394 [ - [ e [ e 0.01920378 | 0.1367274 | 0.0701
(12522.06) (0.5375678) (1616.620) (0.9725)
e | by | oorezssst | osserss | S0
Weibull 0.002567956 1489705016 | - [ e | e e 0.2385166 | 1.511058 | 0.1981
(0.000497175) | (0.054448946) (0.04618)
Weibull | (s310.591372) | (0301231 00192021 | 04367111 | (57
Table 7: Goodness-of-fit statistics for maximum annual flood discharges

Model AIC CAIC BIC HQIC —(

NFKBIII 407.7306 408.7062 | 415.0452 410.4707 199.8653

KMBIII 519.4343 520.0057 | 524.9202 521.4894 256.7171

NKBIII 434.2349 434.8064 | 439.7209 436.29 214.1175

KBIII 423.3242 423.6033 | 426.9815 424.6943 209.6621

NKIL 423.6303 423.9093 | 427.2875 425.0003 209.8151

KIL 437.3848 437.3848 | 437.4757 439.2134 217.6924

MBXII 595.1127 | 595.6582 | 600.7263 | 597.2341 294.5564

BXII 592.772 593.0386 | 596.5144 | 594.1862 294.386

MBIII 436.2281 | 436.7736 | 441.8417 | 438.3495 215.1141

BlII 434.2277 | 434.4944 | 437.9701 | 435.642 215.1139

Weibull 458.1291 | 458.3958 | 461.8715 | 459.5434 227.0646

Inverse Weibull | 434.2272 | 434.4938 | 437.9696 | 435.6414 215.1136

Biographies

Fiaz Ahmad Bhatti is currently working as Assistant Professor at Govt. Postgraduate College, Satellite
Town, Gujranwala; Pakistan. He completed his MSc from Quad-i- Azam University, Islamabad, Pakistan.
He completed his MPhil from Allama Igbal Open University, Islamabad; Pakistan. He received the PhD
degree in Statistics from National College of Business Administration and Economics, Lahore; Pakistan.
He has published 12 research articles. His research interests include distribution theory, reliability analysis
and Multivariate Analysis.

Dr. Munir Ahmad is currently working as Rector of National College of Business Administration and
Economics, Lahore; Pakistan. He is chief editor of Pakistan journal of Statistics. He received the PhD
degree in Statistics from lowa State University, USA. He has published over 150 research articles. His
research interests include distribution theory, reliability analysis, rank set sampling, quality control and
statistical inference.

*.Corresponding author, Tel.: +92 3338106672

Email address: fiazahmad72@gmail.com (Fiaz Ahmad Bhatti).

23


mailto:fiazahmad72@gmail.com

24



