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Abstract. The structural and conformational behavior of gemcitabine (20; 20-di
uoro
cytidine) was investigated by advanced NMR experiments and a computational quantum
mechanical method (DFT) using Potential Energy Scanning (PES) in gas and solution
phases in the Polarizable Continuum Model (PCM). Three stable conformers (G1, G2,
and G3) were predicted from minimum points in a potential energy diagram. In order to
measure coupling constant values, a set of 2D spectra (H-H COSY, H-C HMQC, and H-C
HMBC) was analyzed. Optimized structures and spin-spin coupling constant calculations in
gas and solution phases were performed by B3LYP/6-311++G(d,p) method. Both energy
and NMR parameters showed that G1-form is more stable than other conformers are. To
analyze coupling constant, Karplus equations for 1JC-H, 2JC-H, and 3JC-H were derived. In
addition, the investigation of solvent e�ect was carried out, and obtained results showed
that both inter- and intra-molecular interactions a�ected the stability of G1 conformer.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Nucleosides and their derivations are glycosylamines
used in biotechnology and numerous biological pro-
cesses [1-6]. They are also the most bene�cial
compounds for healing a majority of cancers [7-
9]. As a deoxycytidine analogue, gemcitabine (20; 20-
di
uorocytidine, dFdC), Scheme 1, is used as an
e�ective treatment for many cancers including blood,
pancreas, lung, biliary, etc. [10-16]. In recent years,
a wide variety of investigations have been performed
on linear synthesis of gemcitabine [17], its kinetic
and di�usion studies [18], and its association with
other pharmaceutical compounds to improve bene�cial
pharmaceutical e�ects [19,20].
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Despite the fact that gemcitabine plays a key role
in pharmaceutical and biotechnology �elds, there is no
detail found with regard to its 3D structure and stable
conformers. As Scheme 1 shows, rotation around the
N -glycosidic bond causes di�erent conformations to the
orientation of base ring rather than sugar ring. These
conformers are determined by applying advanced NMR
experiments along with DFT calculations [21-26]. In
these methods, DFT calculations provide information
about the available conformers by using the Poten-
tial Energy Scanning (PES). Then, NMR parameters,
including chemical shifts and spin-spin coupling con-
stants, are measured theoretically [27-29]. In the ex-
perimental section, structures are assigned, and values
of coupling constants are obtained. To achieve this, a
set of 1D- and 2D-NMR spectra is used including corre-
lation spectroscopy (H-H COSY), Heteronuclear Multi-
ple Quantum Coherence (HMQC), and Heteronuclear
Multiple Bond Coherence (HMBC) [30-31]. Finally,
these experimental and theoretical data are used to in-
terpret 3D structure and conformational study [32-39].
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Scheme 1. Chemical structure of gemcitabine.

Coupling constant DFT studies have the best
results for closely related systems, and this is the basic
problem of these NMR parameters in the conforma-
tional studies [40]. In general, several parameters a�ect
the spin-spin coupling constant. In this regard, many
investigations were performed on coupling constants
including bond length [41], solvent interaction [42],
electronegativity of the substituent [43], etc. However,
the dihedral angle dependency of coupling constant
(Karplus equation) is the most important equation that
considers NMR parameters in conformational studies.
Accordingly, three-bond (vicinal) H-H coupling con-
stant is the most important one in conformational
investigations [44]. In addition, one- and two-bond
(geminal) spin-spin coupling constants are often con-
sidered [45].

The purpose of the current paper is to determine
the spatial structure and conformations of gemcitabine
by two methods: 1) one- and two-dimensional NMR
experiments and 2) density Functional Theory (DFT).
In addition, in this work, the nJ (n: 1, 2, 3) Karplus
equation is obtained for gemcitabine.

2. Experimental section

- Material: Gemcitabine (Gemzar) was purchased
from Aburaihan Pharmaceutical Co. (Tehran, Iran)
and was used without further puri�cation.

- NMR experiments: 1H and 13CNMR spectra
were recorded with a Bruker DRX 500 operating at
500.13 and 125.77 MHz for 1H and 13C, respectively.

The spectra were taken in D2O solutions with
a probe temperature at 298.0 K and referenced to
solvent peak. The sample (8 mg) was dissolved in
D2O (0.5 mL), and 1D- and 2D-NMR experiments
were performed by NQR technology and BBI probe,
respectively.

NMR experiments were running at 90� (10.5 ms),
128 transients, and 32 k data points for 1H spectra
and at 90� (15 ms), 512 transients, and 128 k data
points for 13C spectra. 1H-1H homonuclear correlation
spectroscopy (COSY) spectra were collected using
cosygs pulse sequence with the following parameters:
90� pulse values with 1024 increments of 1 k data
points for 12 ppm spectral width (f1 and f2) and 64
scans. The other 2D NMR spectra were acquired with
130 ppm (f1) and 12 ppm (f2) spectral width, relaxation
delay, 2 s, 512 increments of 1 k and 64 scans for
1H-1313C Heteronuclear Multiple Quantum Coherence
(HMQC). The chemical shifts were referenced to the
methyl groups of a TMS internal standard (0.00 ppm
for 1H and 13C).

All NMR spectra were analyzed using a profes-
sional software product, i.e. MesReNova 10.0.1.

3. Quantum chemical calculations

All the minimizations and calculations were carried out
using the GAUSSIAN09 [46] program with the Den-
sity Functional Theory (DFT) by exchange-correlation
hybrid functional B3LYP (three-parameter exchange
functional of Becke B3 combined with the Lee-Yang-
Parr correlation functional LYP) approach to polar-
ization, di�use functions, and 6-311++G(d,p) basis
set [47-48]. The results were analyzed with Gaussview
5.0 visualization program.

This quantum chemical method and basis set
often have a correct prediction geometry and structure
parameters of medium-sized molecules [49]. Molecular
geometries were optimized without any restriction.
Chemical shifts were calculated with GIAO method,
using corresponding TMS shielding calculated at the
same theoretical levels as in the reference. The
relative 1HNMR and 13CNMR shifts of gemcitabine
were determined as follows:

�calc(Xi) = �(TMS)� �(Xi);

where �(TMS) and �(Xi) are the calculated isotropic
magnetic shielding tensor of hydrogen and carbon of
the reference (TMS) and gemcitabine, respectively. All
of the calculations were performed in both gas and
water solution phases.

4. Results and discussion

- Geometry: In the �rst section of computational
analysis, geometrical structure was obtained (Fig-
ure 1) at 6-311++G(d,p) basis set of DFT method.
Vibrational frequencies were calculated in an opti-
mized structure, and imaginary frequency was not
observed.

In addition, an optimization process was per-
formed in a solution phase using the Polarizable
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Continuum Model (PCM) [50] for aqueous solution,
dimethyl sulfoxide (DMSO), chloroform and carbon
tetrachloride (CCl4) solution.

As Table 1 shows, there are signi�cant dif-
ferences between dihedral angles of gemcitabine in
aqueous solution, compared to gas phase and other
solvents. In addition, gemcitabine is more stable

Figure 1. Optimized structures of gemcitabine calculated
by B3LYP/6-311++G(d,p) method in gas phase.

in the aqueous solution phase than others, showing
18.83 kcal mol�1 solvation energy. In fact, as will
be shown, our impression is that the intermolecular
hydrogen bonding with solvent molecules (Figure 2)
would lead to special orientation of dihedral angles
and greater stability.

Figure 3 shows the superposition of the lowest
energy structure of gemcitabine in gas and aqueous
solution phases. In aqueous media, the OH func-
tional group at C9 is oriented toward the 
uorine
atom. This can be due to inter- or intra-molecular
interactions that caused dihedral angles to become
smaller than that in the gas phase. On the other
hand, in the gas phase, space repulsion and space
prevention can be the reason for the functional
groups to stay away from each other.

More importantly in addition to the above
theoretical prediction, H-H COSY NMR experiment
(Figure 4) shows the weak correlation at solvent
peak (4.75 ppm) and OH (at C9) peak (6.4 ppm).
Therefore, it can be concluded that, in aqueous solu-
tion, gemcitabine is more stable than that in the gas
phase and other solvents due to the performance of
intermolecular hydrogen bonding, leading to special
orientation of dihedral angles.

Table 1. The optimized ground state structural parameters of gemcitabine on DFT-B3LYP/6-311++G(d,p) level of
theory in gas and solution phases.

Parameters Gas Water DMSO CCl4 Chloroform

�E (kcal mol�1)a 18.83 { 0.63 11.30 6.28

Bond lengths (�A):

C7 �N1 1.44 1.45 1.45 1.45 1.45

C10 � C11 1.52 1.52 1.52 1.52 1.52

C7 �O7 1.42 1.42 1.42 1.42 1.42

C8 � C9 1.55 1.55 1.55 1.55 1.55

C8 � F 1.38 1.37 1.38 1.38 1.38

C4 �N4 1.36 1.35 1.35 1.35 1.35

Bond lengths (�):
O7 � C7 � C8 102.93 103.36 103.36 103.00 103.30

O7 � C7 �N1 109.43 109.51 109.51 109.48 109.48

C8 � C9 � C10 102.86 102.86 102.86 102.86 102.86

C10 � C11 �O11 109.15 109.46 109.46 109.31 109.41

N11 � C21 �O22 118.62 118.81 118.81 118.71 118.78

N1 � C2 �N3 116.79 117.87 117.85 117.22 117.51

Dihedral angles:

O7 � C7 �N1 � C2 {132.18 {135.73 {135.59 {133.07 {133.76

O11 � C11 � C10 �O7 {68.43 {65.88 {65.95 {67.73 {66.96

O9 � C9 � C8 � F {22.83 {12.74 {12.83 {19.61 {13.64

a Energy di�erences related to the aqueous solution.
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Figure 2. Special orientation of gemcitabine dihedral
angles because of inter-molecular hydrogen bond
interaction.

Figure 3. The superposition of the lowest energy
structure of gemcitabine in gas and aqueous solution.

- NMR measurements: To interpret 3D structure
and conformational study, we need to record a set of
1D- and 2D-NMR spectra such as homo- and hetero-
nuclear correlation spectra (COSY, HMQC, and
HMBC). H-H correlation spectroscopy (COSY) pro-
vides inter- and (rarely) intra-molecular correlations
used frequently for molecular structure assignment

and coupling constants measurement. Figure 4
shows the gemcitabine H-H COSY NMR experiment
in D2O solvent. Figure 4 shows a weak correlation
between solvent and sample signals. This correlation
indicates intermolecular interaction which interprets
the stability of G1conformer in aqueous media.

1JC�H and 2JC�H hetero-nuclear coupling con-
stants were obtained from HMQC and HMBC NMR
spectra and are shown in Figures 5 and 6, respec-
tively.

- Computational analysis: A signi�cant rotational
energy barrier is the main key in conformational
study. Energy scanning calculations around �-
dihedral angle (N1-C6-C7-O7) show signi�cant en-
ergy barriers and, subsequently, stable conformers.
A schematic diagram of energy as a function of � is
shown in Figure 7. On the base of potential energy
scanning diagram, the minimum points in PES are
de�ned as available conformers, and it is concluded
that these conformers exist, which are more stable
than others are.

As Figure 7 shows, gemcitabine has three
minimum energy points named G1, G2, and G3.
The most stable conformer (G1) corresponds to the
deepest point of PES, and � angle is {60 degree.
In fact, this conformer is more stable than other
conformers due to carbonyl group orientation as-
sociated with both oxygen and 
uorine in a sugar
ring. In this condition, gemcitabine can minimize
space repulsion energy and provide conditions for
intramolecular interactions. Figure 8 shows the 3-
dimensional structure of gemcitabine conformers in
aqueous solution. Therefore, it can be concluded
that space prevention, repulsion energy, and most
importantly, inter- and intra-molecular interactions
are persistent factors for gemcitabine conformers.
Table 2 shows the energy di�erences and � angle
values for G1 to G3.

By applying GIAO method, 1H and 13CNMR
chemical shifts were measured for G1 to G3 in gas
and solution phases at PCM solvent model and
were compared to TMS shift. Tables 3 and 4
show the experimental and theoretical comparison
of hydrogen and carbon chemical shifts for G1 to G3
conformers, respectively.

Table 2. Energy di�erences of conformations of
gemcitabine; � is in degree.

Conformer Beta �a (kcal mol�1)

G1 {68.43 {

G2 62.3 0.7

G3 175.5 1.5

a� = Econf. � EG1.
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Figure 4. H-H COSY NMR spectra of Gemcitabine in aqueous solution.

Figure 5. 2D-HMQC NMR spectra of gemcitabine in aqueous solution.

From energy di�erences and chemical shifts, it
can be concluded that G1 conformer has a higher
natural population, compared to other conformers;
therefore, the calculated chemical shifts for G1 are
closer to experimental results. Nevertheless, spin-
spin coupling constants are the NMR parameters
related to structure parameters including dihedral
angle. For this purpose, all nJ-coupling constants
(n=1, 2, 3) of gemcitabine were experimentally

obtained from 1-D and 2-D spectra in aqueous
solution. In addition, spin-spin coupling constants
were computed for G1 to G3 conformers using
DFT/B3LYP/6-311++g�� method in a PCM sol-
vent model. The results showed good agreement to
the most stable conformer, G1 (Table 5).

In order to distinguish di�erent conformers, the
Karplus equations have been developed from nJ-
coupling constants (n=1, 2, 3). For this purpose,
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Figure 6. 2D-HMBC NMR spectra of gemcitabine in
aqueous solution.

Figure 7. Diagram of Potential Energy Scanning (PES)
of gemcitabine molecule, scanned around � dihedral angle
at DFT-B3LYP/6-311++G(d,p) level of theory.

Figure 8. Molecular structure of gemcitabine's
conformers in aqueous solution. G1 is the most stable of
all other conformers due to its intramolecular interaction.

dihedral angle (�) rotated from {180 to +150 with
30 increments, and 12 di�erent modes were created.
The spin-spin coupling constants were obtained and
used to derive Karplus equation.

- One-bond spin-spin coupling constant: In or-
der to derive the nJ Karplus equations (n=1, 2, 3),

Table 3. Comparison of experimental (in D2O solvent)
and theoretical (6-311++G��)1H chemical shifts (ppm).

Cal.
H-atom Exp. G1 G2 G3

5 7.96 7.81 7.36 7.34
6 6.24 5.90 5.87 5.87
7 6.17 6.69 5.44 5.52
9 4.32 4.78 4.15 4.91
10 4.05 4.19 4.02 4.44
11a 3.81 4.18 4.11 4.09
11b 3.95 4.25 4.29 4.54

Table 4. Comparison of experimental (in D2O solvent)
and theoretical (6-311++G��) 13C chemical shifts (ppm).

Cal.
C-atom Exp. G1 G2 G3

2 159.74 160.87 158.93 158.77
4 148.62 151.11 150.69 150.53
5 144.37 143.03 140.14 139.96
6 96.00 92.65 90.85 90.91
7 84.98 84.69 92.43 93.33
8 122.49 129.43 129.24 128.81
9 69.54 74.96 82.61 75.41
10 81.49 86.35 86.64 84.05
11 59.73 65.07 68.46 63.63

Table 5. Experimental and calculated scalar coupling
constants (Hz) using DFT/B3LYP/6-311++g�� method in
a PCM solvent model for G1 conformer.

Exp. Gas cal. Water
1JC9�H9 155.04 160.47 161.16
1JC10�H10 185.04 156.70 156.24
1JC7�H7 185.04 168.69 168.42
1JC5�H5 196.55 152.07 157.52
1JC6�H6 190.05 173.07 175.73
1JC11�H11a 215.06 143.23 146.29
2JH11a�H11b {12.00 {10.65 {12.24
2JF�H9 11.50 10.73 12.05
3JH10�H11 4.05 2.23 2.11
3JH10�H9 8.50 2.75 4.8
3JH5�H6 8.00 7.58 7.71

the J-values of gemcitabine at di�erent � angles in
gas and solution phases were calculated.

Orientation of C7-H7 bond toward carbonyl
group leads to the exertion of maximum in
uence
on 1JC7�H7 value. In addition, 1JC7�H7 is the only
coupling constant directly related to � angle. One
of the major practical advantages of the angular
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Figure 9. Plots of the dependencies of calculated 2JC8-H7

in gemcitabine at the � angle.

dependences of 1JC�H values is the possibility of
determination of the torsional angles. Therefore,
1JC7�H7 is chosen because, with the rotation of �
angles, H7 has the maximum e�ect. Eq. (1) shows
1JC7�H7 Karplus equation in the gas phase:

1JC7�H7 = 265:2 sin (6 � 105 + 2:5)

+ 6:3 sin (0:03 � � 2:7): (1)

- Geminal (two-bond) spin-spin coupling con-
stant: The two-bond coupling constant has im-
portant e�ect in a biomolecular structural study.
2JC8�H7 Karplus equation as geminal coupling con-
stant was obtained (Eq. (2)). Figure 9 shows the
geminal coupling constants according to Eq. (2):

2JC8�H7 =5:69 sin (0:003 + 2:04)

+ 2:04 sin (0:03� 4:34)

+ 0:43 sin (0:05 + 0:37); (2)

R2 = 0:9904.
- Three-bond spin-spin coupling constant: The

most important Karplus equation is homo- and
hetero-nuclear 3JH-X. Since there is not any 3JH-H
for gemcitabine around C7-N6 bond, the three-bond
13C-1H coupling constant was measured to obtain 3J
Karplus equation. Eq. (3) shows 3JC7�H8 Karplus
equation in water solution. Figure 10 shows the three
coupling constants according to Eq. (3).

3JH7�C8 =2:2 sin (0:007� + 1:2)

+ 0:68 sin (0:07� � 0:4)

+ 1:5 sin (0:03 � � 0:35); (3)

R2 = 0:9983.

Figure 10. Plots of the dependencies of calculated
3JH7-C8 in gemcitabine at the � angle.

5. Conclusion

This study considered conformational structure of gem-
citabine by using 2D-NMR experiments and density
functional theory. Molecular geometry, NMR param-
eters, and solvent e�ect were determined by using
DFT/B3LYP/6-311++G(d,p) level of theory in gas
and solution phases in a Polarizable Continuum Model
(PCM). Based on these data, it can be concluded that
gemcitabine is more stable in aqueous solution than
other solvents are because of solvent-solute intermolec-
ular interactions. In addition, solvent e�ect showed
that stability of gemcitabine would be reduced from
polar to non-polar solvents. In the gas phase, space
repulsion results in instability compared to the solution
phase as large as 18.83 kcal/mol.

Experimental analysis and geometry calculations
showed that inter- and intra-molecular interactions
played key roles in particular orientation of dihedral
and bond angles in aqueous solution than in gas
phase. To verify this claim, a correlation of solvent
and gemcitabine signals in H-H COSY NMR
experiment was shown. Conformational study using
Potential Energy Scanning (PES) showed three stable
conformers at a minimum point on PES. Spin-spin
coupling constants were measured experimentally and
theoretically to all conformers, and DFT calculations
had good agreement with the 2D-NMR spectra. Based
on the energy and NMR analysis, G1 conformer is
more stable than others are.
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