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Abstract. In this paper, the approximate analytical solutions of Camassa-Holm, modi�ed
Camassa-Holm, and Degasperis-Procesi equations with fractional time derivative are
obtained with the help of approximate analytical method of nonlinear problem called the
Homotopy Perturbation Method (HPM). By using initial condition, the explicit solution of
the equation has been derived which demonstrates the e�ectiveness, validity, potentiality,
and reliability of the method in reality. Comparing the methodology with the exact solution
shows that the present approach is very e�ective and powerful. The numerical calculations
are carried out when the initial condition is in the form of exponential and transcendental
functions; the results are depicted through graphs.

© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

In the last three decades, a great attention has been
devoted to the study of the fractional calculus and
their copious applications in the area of life science,
physical science and the engineering science. The
fractional calculus are also used in many �elds, such
as chemical physics, optics, electrical networks, solitary
waves, control theory of dynamical systems, probability
and statistics, electrochemistry of corrosion and signal
processing, and so on, which can be successfully de-
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rived by linear or nonlinear fractional order di�erential
equations. Many de�nitions and various properties of
fractional calculus are available in many books, such
as [1-3].

Mathematicians have formed a theory of linear
operators, which contains within its scope a consid-
erable domain of analysis. This type of work should
include within its limits a large area of mathemat-
ics, which is readily tacit from the fact that the
assumption of linearity in operational processes lead
to most applications of analysis to the problems of the
natural world. It is for this reason that a theory of
linear operators, in contrast to a theory of nonlinear
operators, is comparatively easy to develop. The latter
is overwhelmed by many di�culties. We know that
few algorithms, which can be applied, and the powerful
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existence theorems of the linear case must be replaced
too often by those of special applications.

But despite the di�culties of the general physical
problem, there exists need for a methodical dealing for
nonlinear equations. Nature, with scant regard for the
desires of the mathematician, often seems to delight in
converting her mysteries in terms of nonlinear systems
of equations. The theories of elasticity, ecology, and
uid dynamics are especially rich in such systems. The
mathematician, however, with his/her rich store of
linear algorithms, must usually attack these mysteries
from the viewpoint of linear operators. These problems
thus become those of reducing the equations through
various analytical devices to a linear system. In this
absence, he/she must then try to approximate the
solution by some asymptotic process which brings it
within the scope of functions which have been de�ned
and studied by linear methods.

In this paper, we consider the nonlinear time-
fractional Camassa-Holm equation:
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the nonlinear time-fractional modi�ed Camassa-Holm
equation:
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and, the nonlinear time-fractional Degasperis-Procesi
equation:
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with initial condition:
u(x; 0) = f(x); (4)

in dimensionless space-time variables (x; t). These
are models for the unidirectional propagation of two-
dimensional shallow water waves over a at bottom.
Eq. (1) can also be written in standard form as:
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In Eqs. (1) and (5), u(x; t) represents the horizontal
component of the uid velocity, or the free surface of
water; m = u�Dxxu is the momentum variable cf. [4]
(see also [5]); and the solitary waves of Eq. (1) for � > 0
are smooth solitons [6,7], while in the limiting case,
� = 0, they are peaked solitons (peakons) [1] which
have to be understood as weak solutions [8,9]. The
peakons are stable wave patterns [10,11]. Camassa-

Holm equation also models axially symmetric waves
in hyperelastic rods [12] and was �rst derived as an
abstract bi-Hamiltonian equation [13]. Moreover, the
Camassa-Holm equation is a re-expression of geodesic
ow on the di�eomorphism group of the line [14,15].
Some solutions exist for all times, while others have
a �nite life-span, modelling wave breaking [16]. The
solitary waves of the Camassa-Holm equation are stable
solitons [10,17] with a peak at their crest.

The HPM is the new approach for �nding the
approximate analytical solution of linear and nonlinear
problems. The method was �rst proposed by He [18-
22] and was successfully applied to solve nonlinear
equations and claimed that the approximations ob-
tained were valid not only for small parameters but for
very large parameters. Fractional di�usion equation
with absorbent term and external force by Das and
Gupta [23], space-time fractional advection dispersion
equation by Yildirim and Ko�cak [24], boundary value
problems by He [25], integro-di�erential equation by El-
Shahed [26], modi�ed Camassa-Holm and Degasperis-
Procesi equations by Zhang et al. [27], fractional linear
and nonlinear Schr�odinger equation [28,29], analyt-
ical study of Navier-Stokes equation [30], nonlinear
dispersive equation with time fractional derivative
by Ko�cak et al. [31], nonlinear fractional predator-
prey model [32], multi-order time fractional di�erential
equation [33], and use of fractional di�erential equation
in uid mechanics [34] by HPM etc. have been studied
in recent times. Recently, Gupta et al. [35,36] solved
the heat transfer problem and fractional Benny-Lin
equation using traditional technique homotopy pertur-
bation method. The basic di�erence of this method
with the other perturbation techniques is that it does
not require small parameters in the equation, which
overcomes the limitations of traditional perturbation
techniques.

2. Preliminaries and notations

In this section, we give some de�nitions and properties
of the fractional calculus [1], which are used further in
this paper.

De�nition 1. A real function f(t), t > 0, is said to be
in the space C�, � 2 R, if there exists a real number
p > �, such that f(t) = tpf1(t), where f1(t) 2 C(0;1),
and it is said to be in the space Cn� if and only if h(n) 2
C�; n 2 N .

De�nition 2. The Riemann-Liouville fractional in-
tegral operator (J�t ) of order � � 0 of a function
f 2 C� � �1 is de�ned as:

J�t f(t)=
1

�(�)

Z t

0
(t��)��1f(�)d(�); � > 0; t > 0;
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J0
t f(t) = f(t); (6)

where �(�) is the well-known gamma function. Some
of the properties of the operator J�t , which we will need
here, are as follows:

For f 2 C�; � � �1; �; � � 0 and  � �1:

1. J�t J
�
t f(t) = J�+�

t f(t),

2. J�t J�t f(t) = J�t J�t f(t),

3. J�t t = �(+1)
�(�++1) t

�+ .

De�nition 3. The fractional derivative (D�
t ) of f(t),

in the Caputo sense is de�ned as:
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1
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0
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for n� 1 < � < n; n 2 N; t > 0; f 2 Cn�1.
The following are two basic properties of the

Caputo fractional derivative [1,2]:

1. Let f 2 Cn�1; n 2 N , then D�
t f; 0 � � � n is well

de�ned and D�
t f 2 C�1.

2. Let n � 1 � � � n, n 2 N and f 2 Cn� , � � �1,
then:
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tk

k!
: (8)

3. Basic idea of HPM

To illustrate the basic ideas of this method [20-25], we
consider the following non-linear functional equation:

A(u)� f(r) = 0; r 2 
; (9)

with the following boundary conditions:

B
�
u;
@u
@n

�
= 0; r 2 �; (10)

where A is a general functional operator, B is a
boundary operator, f(r) is a known analytical function,
and � is the boundary of the domain 
. The operator
A can be decomposed into two operators L and N ,
where L is linear, and N is nonlinear operator. Eq. (9)
can be, therefore, written as follows:

L(u) +N(u)� f(r) = 0: (11)

Using the homotopy technique, we construct a homo-
topy v(r; p) : 
� [0; 1]! R, which satis�es:

H(v; p) � (1� p) [L(v)� L(u0)]+p [A(v)�f(r)]=0;

p 2 [0; 1]; r 2 
; (12)

or:

H(U; p) �L(v)� L(u0) + pL(u0)

+ p[N(v)� f(r)] = 0; (13)

where p 2 [0; 1] is an embedding parameter, u0 is
an initial approximation for the solution of Eq. (9),
which satis�es the boundary conditions. Obviously,
from Eqs. (12) and (13), we will have:

H(v; 0) � L(v)� L(u0) = 0; (14)

H(v; 1) � A(v)� f(r) = 0; (15)

the changing values of p from zero to unity is just that
of v(r; p) from u0(r) to u(r). In topology, this is called
deformation, and L(v) � L(u0) and A(v) � f(r) are
called homotopics.

According to HPM, we can �rst use the embed-
ding parameter pas a small parameter, and assume that
the solution of Eqs. (12) and (13) can be written as a
power series in p:

v = v0 + pv1 + p2v2 + ::: (16)

Setting p = 1 results in the approximation to the
solution of Eq. (9):

u = lim
p!1

v = v0 + v1 + v2 + ::: (17)

The combination of the perturbation method and the
homotopy method is called the Homotopy Perturbation
Method (HPM), which has eliminated limitations of the
traditional perturbation techniques.

4. Application of HPM

4.1. Application of HPM to time-fractional
Camassa-Holm equation

The standard form of the time-fractional Camassa-
Holm equation (1) in an operator form is given by:

D�
t u+ 2�Dxu�Dxxtu+ 3uDxu = 2DxuDxxu

+ uDxxxu; 0 < � � 1; (18)

with initial condition:

u(x; 0) = f(x): (19)

According to the HPM, we construct the following
homotopy:

D�
t u =p

��2�Dxu+Dxxtu� 3uDxu+ 2DxuDxxu

+ uDxxxu
�
; (20)
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where the homotopy parameter p is considered as a
small parameter (p 2 [0; 1]). Now, applying the
classical perturbation technique, we can assume that
the solution of Eq. (18) can be expressed as a power
series in p as given below:

u = u0 + pu1 + p2u2 + p3u3 + p4u4 + ::: (21)

When p ! 1, Eq. (20) corresponds to Eq. (18) and
Eq. (21) becomes the approximate solution of Eq. (18),
that is, of Eq. (1). Substituting Eq. (21) in Eq. (20)
and comparing the alike powers of p, we obtain the
following set of linear di�erential equations:

p0 : D�
t u0 = 0; (22)

p1 : D�
t u1 =

�
�2�Dxu0 +Dxxtu0 � 3u0Dxu0

+ 2Dxu0Dxxu0 + u0Dxxxu0

�
; (23)

p2 : D�
t u2 =

�
�2�Dxu1 +Dxxtu1 � 3u0Dxu1

� 3u1Dxu0 + 2Dxu0Dxxu1

+ 2Dxu1Dxxu0 + u0Dxxxu1

+ u1Dxxxu0

�
; (24)

and so on.
The method is based on applying the operator J�t

(the inverse operator of Caputo derivative D�
t ) on both

sides of Eqs. (22)-(24); so we obtain:

u0(x; t) = f(x); (25)

u1(x; t) =
�
�2�f 0(x)� 3f(x)f 0(x) + 2f 0(x)f (2)(x)

+ f(x)f (3)(x)
�

t�

�(�+ 1)
; (26)

u2(x; t) =� 1
2

�
9f 0(x)f (2)(x) + 2�f (3)(x)

+ 3f(x)f (3)(x)� 7f (2)(x)f (3)(x)

� 4f 0(x)f (4)(x)� f(x)f (5)(x)
�
t2��1

�(2�)

+
�
12�(f 0(x))2 + 18f(x)(f 0(x))2

+ 4�2f (2)(x) + 12�f(x)f (2)(x)

+ 9(f(x))2f (2)(x)� 30(f 0(x))2f (2)(x)

� 8�(f (2)(x))2 � 21f(x)(f (2)(x))2

+ 4(f (2)(x))3 � 12�f 0(x)f (3)(x)

� 33f(x)f 0(x)f (3)(x) + 22f 0(x)f (2)(x)

f (3)(x) + 8f(x)(f (3)(x))2 � 4�f(x)f (4)(x)

� 6(f(x))2f (4)(x) + 8(f 0(x))2f (4)(x)

+ 13f(x)f (2)(x)f (4)(x) + 7f(x)f 0(x)f (5)(x)

+ (f(x))2f (6)(x)
�

t2�

�(2�+ 1)
: (27)

Proceeding in this manner, the rest of the components,
un(x; t), can be obtained, and the series solutions are
thus entirely determined.

Finally, we approximate the analytical solution
u(x; t) by the truncated series:

u(x; t) = lim
N!1�N (x; t); (28)

where �N (x; t) =
N�1P
n=0

un(x; t).

The above series solutions generally converge very
rapidly. A classical approach of convergence of this
type of series is already presented by Abbaoui and
Cherruault [37].

4.2. Application of HPM to time-fractional
modi�ed Camassa-Holm equation

The standard form of the time-fractional modi�ed
Camassa-Holm equation (2) in an operator form is
given by:

D�
t �Dxxtu+ 3u2Dxu = 2DxuDxxu+ uDxxxu;

0 < � � 1; (29)

with initial condition:

u(x; 0) = f(x): (30)

According to the HPM, we construct the following
homotopy:

D�
t u=p

�
Dxxtu�3u2Dxu+2DxuDxxu+uDxxxu

�
;
(31)

where the homotopy parameter p is considered as a
small parameter (p 2 [0; 1]). Now, applying the
classical perturbation technique, we can assume that
the solution of Eq. (29) can be expressed as a power
series in p as given below:

u = u0 + pu1 + p2u2 + p3u3 + p4u4 + ::::: (32)
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When p ! 1, Eq. (31) corresponds to Eq. (29) and
Eq. (32) becomes the approximate solution of Eq. (29),
that is, of Eq. (2). Substituting Eq. (32) in Eq. (31)
and comparing the alike powers of p, we obtain the
following set of linear di�erential equations:

p0 : D�
t u0 = 0; (33)

p1 : D�
t u1 =

�
Dxxtu0 � 3u2

0Dxu0 + 2Dxu0Dxxu0

+ u0Dxxxu0

�
; (34)

p2 : D�
t u2 =

�
Dxxtu1 � 3

�
u2

0Dxu1 + 2u0u1Dxu0

�
+ 2
�
Dxu0Dxxu1 +Dxu1Dxxu0

�
+
�
u0Dxxxu1 + u1Dxxxu0

��
; (35)

and so on.
The method is based on applying the operator J�t

(the inverse operator of Caputo derivative D�
t ) on both

sides of Eqs. (33)-(35); so we obtain:

u0(x; t) = f(x); (36)

u1(x; t) =
�
f(x)f (3)(x)� 3(f(x))2f 0(x)

+ 2f 0(x)f (2)(x)
�

t�

�(�+ 1)
; (37)

u2(x; t) =
�
f(x)f (2)(x) + 4f 0(x)f (4)(x)

+ 7f (2)(x)f (3)(x)� 3(f(x))2f (3)(x)

� 6(f 0(x))3 � 18f(x)f 0(x)f (2)(x)
�
t2��1

�(2�)

+
�
36(f(x))3(f 0(x))2 � 12(f 0(x))4

+ 9(f(x))4f (2)(x)� 96f(x)(f 0(x))2f (2)(x)

� 30(f(x))2(f (2)(x))2 + 4(f (2)(x))3

� 48(f(x))2f 0(x)f (3)(x) + 22f 0(x)f (2)(x)

f (3)(x)+ 8f(x)(f (3)(x))2 �6(f(x))3f (4)(x)

+ 8(f 0(x))2f (4)(x) + 13f(x)f (2)(x)f (4)(x)

+ 7f(x)f 0(x)f (5)(x) + (f(x))2f (6)(x)
�

t2�

�(2�+ 1)
: (38)

Proceeding in this manner, the rest of the components,
un(x; t), can be obtained, and the series solutions are
thus entirely determined.

Finally, we approximate the analytical solution
u(x; t) by the truncated series:

u(x; t) = lim
N!1�N (x; t); (39)

where �N (x; t) =
N�1P
n=0

un(x; t).

The above series solutions generally converge very
rapidly.

4.3. Application of HPM to time-fractional
modi�ed Degasperis-Procesi equation

The standard form of the time-fractional modi�ed
Degasperis-Procesi equation (3) in an operator form
is given by:

D�
t u�Dxxtu+ 4u2Dxu = 3DxuDxxu+ uDxxxu;

0 < � � 1; (40)

with initial condition:

u(x; 0) = f(x): (41)

According to the HPM, we construct the following
homotopy:

D�
t u=p

�
Dxxtu�4u2Dxu+3DxuDxxu+uDxxxu

�
;
(42)

where the homotopy parameter p is considered as a
small parameter (p 2 [0; 1]). Now, applying the
classical perturbation technique, we can assume that
the solution of Eq. (40) can be expressed as a power
series in p as given below:

u = u0 + pu1 + p2u2 + p3u3 + p4u4 + ::: (43)

When p ! 1, Eq. (42) corresponds to Eq. (40), and
Eq. (43) becomes the approximate solution of Eq. (40),
that is, of Eq. (3). Substituting Eq. (43) in Eq. (42)
and comparing the alike powers of p, we obtain the
following set of linear di�erential equations:

p0 : D�
t u0 = 0; (44)

p1 : D�
t u1 =

�
Dxxtu0 � 4u2

0Dxu0 + 3Dxu0Dxxu0

+ u0Dxxxu0
�
; (45)
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p2 : D�
t u2 =[Dxxtu1 � 4(u2

0Dxu1 + 2u0u1Dxu0)

+ 3(Dxu0Dxxu1 +Dxu1Dxxu0)

+ (u0Dxxxu1 + u1Dxxxu0)]; (46)

and so on.
The method is based on applying the operator J�t

(the inverse operator of Caputo derivative D�
t ) on both

sides of Eqs. (44)-(46), then we obtain:

u0(x; t) = f(x); (47)

u1(x; t) =
�
f(x)f (3)(x)� 4(f(x))2f 0(x)

+ 3f 0(x)f (2)(x)
� t�

�(�+ 1)
; (48)

u2(x; t) =
�
f(x)f (5)(x) + 5f 0(x)f (4)(x)

+ 10f (2)(x)f (3)(x)� 4(f(x))2f (3)(x)

� 24f(x)f 0(x)f (2)(x)� 8(f 0(x))3
�
t2��1

�(2�)

+
�
(f(x))2f (6)(x) + 9f(x)f 0(x)f (5)(x)

+ 18f(x)f (2)(x)f (4)(x) + 15(f 0(x))2

f (4)(x)� 8(f(x))3(f (4)(x)) + 11f(x)

(f (3)(x))2 + 45f 0(x)f (2)(x)f (3)

� 72(f(x))2f 0(x)f (3)(x) + 9(f (2)(x))3

� 48(f(x))2(f (2)(x))2 � 168f(x)(f 0(x))2

f (2)(x) + 16(f(x))4f (2)(x)� 24(f 0(x))4

+ 64(f(x))3(f 0(x))2
�

t2�

�(2�+ 1)
: (49)

Proceeding in this manner, the rest of the components,
un(x; t), can be obtained, and the series solutions are
thus entirely determined.

Finally, we approximate the analytical solution
u(x; t) by the truncated series:

u(x; t) = lim
N!1�N (x; t); (50)

where �N (x; t) =
N�1P
n=0

un(x; t).

The above series solutions generally converge very
rapidly.

5. Numerical results and discussion

In this section, numerical results of the displacement
u(x; t) for di�erent time-fractional Brownian motions,
� = 1

4 ;
1
2 ;

3
4 , and for the standard motion, � = 1, are

calculated for various values of t and x at � = 0:005 and
c = 0:01. In Section 4.1, the initial condition is taken
as u(x; 0) = f(x) = (� + c)e�jxj � � as a particular
case for showing the nature of the displacement. The
numerical results of u(x; t) for various values of t; x and
� are depicted through Figure 1(a)-(d). In Section 4.2,
the initial condition is considered as u(x; 0) = f(x) =
(� + c)e�jxj � � as a particular case for viewing the
nature of the displacement. The numerical outcomes
of u(x; t) for various values of t; x and � are depicted
through Figure 2(a)-(d). And in Section 4.3, the initial
condition is predicted as u(x; 0) = f(x) = (�+c)e�jxj�
� as a particular case for presenting the nature of
the displacement. The numerical e�ects of u(x; t) for
various values of t; x and � are illustrated through
Figure 3(a)-(d). According to numerical solutions, we
make a comparison between the approximate solution
and its exact solution [38] in Figures 4 and 5, 6 and 7,
and 8 and 9.

In order to illustrate that the approximate solu-
tion is e�cient and accurate, we will give explicit values
of the parameters x; �; c, and t. Then, we calculate the
three particular exact solutions and make a comparison
between them. Also the graphics of their surfaces are
plotted in Figures 4, 6 and 8 with the given values of
the parameters as well as the pro�les of them, given in
Figures 5, 7, and 9.

According to numerical solutions from Fig-
ures 4, 6, and 8, we can see, at the same time t, that
the values of the approximates solutions and the exact
solutions are quite close. One can also see that when
the value of x increases, the approximate solutions are
more and more close to the exact solutions. From
Figures 4 and 5, 6 and 7 and 8 and 9, we can also
see that their surface graphics and pro�les are almost
the same. That is to say that the solution obtained
by HPM is e�cient and accurate. It is also suggested
that HPM is a powerful method for solving di�erential
equation with fully nonlinear dispersion terms.

6. Conclusion

In this article, an approximate analytical method has
been used to solve the fractional CH, mCH, and
Degasperis-Procesi equations. This method is very ef-
fective, convenient, and e�cient and avoids the appear-
ance of ill-conditioned matrices, complicated integrals,
and in�nite series. This technique does not require
a small parameter in an equation. In this method,
according to the homotopy technique, a homotopy with
an imbedding parameter p 2 [0; 1] is constructed, and
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Figure 1. Plot of u(x; t) with respect to x and t at (a) � = 1
4 , (b) � = 1

2 , (c) � = 3
4 , and (d) � = 1, with � = 0:005 and

c = 0:01 for Eq. (28).

Figure 2. Plot of u(x; t) with respect to x and t at (a) � = 1
4 , (b) � = 1

2 , (c) � = 3
4 , and (d) � = 1 for Eq. (39).
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Figure 3. Plot of u(x; t) with respect to x and t at (a) � = 1
4 , (b) � = 1

2 , (c) � = 3
4 , and (d) � = 1 for Eq. (50).

Figure 4. The surface of the solutions of CH equation: (a) The exact solution; and (b) the approximate solution obtained
by HPM with � = 0:005 and c = 0:01 for Eq. (28).

Figure 5. Two di�erent pro�les of uexact (solid line) and uHPM (dotted line) of CH equation when �2 � x � 2 for
Eq. (28).
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Figure 6. The surface of the solutions of mCH equation: (a) The exact solution; and (b) the approximate solution
obtained by HPM for Eq. (39).

Figure 7. Two di�erent pro�les of uexact (solid line) and uHPM (dotted line) of mCH equation when �8 � x � 8 for
Eq. (39).

Figure 8. The surface of the solutions of mDP equation: (a) The exact solution; and (b) the approximate solution
obtained by HPM for Eq. (50).

Figure 9. Two di�erent pro�les of uexact (solid line) and uHPM (dotted line) of mDP equation when �8 � x � 8 for
Eq. (50).
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the imbedding parameter is considered as a \small
parameter", which can take the whole advantages of
the traditional perturbation methods and homotopy
techniques. It can also be applied in real problems,
where di�erential equations governing the process are
nonlinear and boundary conditions are complicated.

From the surface graphics of the two kinds of
solutions, one can see that they are almost the same.
On the other hand, comparing it with the exact solu-
tion, we �nd that HPM overcomes the simple solution
procedure arising in calculation of exact solutions. At
the same time, comparing these two methods, we �nd
that the solution procedure is much simpler and the
results are more accurate and close.
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