
Scientia Iranica D (2017) 24(6), 3087{3100

Sharif University of Technology
Scientia Iranica

Transactions D: Computer Science & Engineering and Electrical Engineering
www.scientiairanica.com

Comparison and analysis of three anomaly correction
methods in embedded systems

R. Mojarad� and H.R. Zarandi

Department of Computer Engineering and Information Technology, Amirkabir University of Technology, 424 Hafez Ave, Tehran,
P.O. Box 15875-4413, Iran.

Received 28 December 2014; received in revised form 8 December 2016; accepted 11 March 2017

KEYWORDS
Anomaly;
Anomaly detection;
Anomaly correction;
Correction coverage;
Embedded systems.

Abstract. This paper proposes and compares three anomaly correction methods in
embedded systems: 1) Markov-based; 2) Stide-based (sequence time-delay embedding); 3)
Cluster-based correction methods. All these methods work online on data streams coming
from sensors of embedded systems. In these methods, detection is �rst obtained using
training on normal data, and next in runtime, the correction mechanisms can be applied.
Markov-based method is based on probabilities between states, Stide-based method is
based on storing common events, and Cluster-based one is based on clustering similar
members. In the detection phase, these methods check normal behavior of input data
based on what is learned at the training phase. Evaluation is performed using 7000 data
sets. The window size and number of injected anomalies vary between 3 and 5, 1 and
7, respectively. Correction coverage for Markov-based, Stide-based, and Cluster-based
methods is on average 77.66%, 60.9%, and 70.36%, respectively. Therefore, Markov-based
method is the best in terms of correction coverage. Moreover, area overheads of these
methods are 249.64, 63.35, and 2.08 �m2, respectively. As a trade-o�, Cluster-based method
shows the best correction coverage compared to area, power, and delay overheads.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Embedded systems are widely used in modern crit-
ical digital systems design. Their advantages over
superscalar processor architectures are [1,2]: low power
consumption, high performance, and low design com-
plexity. The spread pace of smart systems calls
out for a focus on embedded systems, de�ned as a
controlling and management unit embodied in a larger
system [1,2]. Modern vehicles, home appliance, and
medical instrument are mere examples of the vast
application of embedded systems [3]. Considering this

*. Corresponding author. Tel.: +98 21 64545119
E-mail addresses: roghaye mojarrad@aut.ac.ir (R.
Mojarad); h zarandi@aut.ac.ir (H.R. Zarandi)

doi: 10.24200/sci.2017.4579

spread, it is vital for them to be fault-tolerant in order
to prevent the resulting damages.

These systems typically consist of three compo-
nents: sensor, processing unit, and actuator. Sensors
play a signi�cant role in the operation of embedded
systems [4]. Therefore, the fault in their data, so-
called anomaly, is important to consider. There are two
types of methods for tolerating faults in this regard [5]:
anomaly detection and anomaly correction. Detection
of anomaly analogous to fault detection can be done
explicitly or implicitly; in the former, the detection is
based on looking for signs of speci�c type of faults [6,7].
However, in the latter, the behavior of data as indirect
indicators is used for detection. As an example, an
Ethernet broadcast storm is marked indirectly by high
packet tra�c on a network abnormally [8]. Here, packet
tra�c is measured by sensors.

The signi�cance of detection and correction meth-



3088 R. Mojarad and H.R. Zarandi/Scientia Iranica, Transactions D: Computer Science & ... 24 (2017) 3087{3100

ods directly depends on the value of data [9-11]. The
data generated in sensors, also known as sensor data,
can be numerical or categorical [8]. The former behave
like numbers, which are scalable, continuous, and have
a zero, on which the mathematical operations can be
performed. However, the latter are discrete without
any order or mathematical operations [8]. Categorical
data are presented as a string of symbols; hence,
their anomaly could result from unknown symbol(s) or
unknown sequence(s) of symbols [8]. It should be men-
tioned that the popularity of sensors with categorical
output is increasing due to enhancement of computa-
tional power [8]. Due to its nature, statistical analysis
cannot be used, which makes the anomaly detection
and correction much more challenging. The anomaly
correction plays a vital role in the reliability, safety,
and generally dependability of embedded systems.

While there have been some studies on anomaly
detection, not so many studies have been done on the
anomaly correction.

This paper is the extended version of the work
presented in [12] as follows:

� Another correction method, Cluster-based one [13],
is also added to this work to be compared with two
other methods, i.e. Markov-based [14] and Stide-
based ones [12], to get better considerations of
correction methods;

� Detection and correction algorithms of Cluster-
based method are presented in detail;

� Correction algorithm of Markov-based method is
presented in detail;

� Comparisons between results achieved by three
di�erent methods are done and their advan-
tages/disadvantages are discussed;

� The best trade-o� between correction coverage ver-
sus area, power and delay overhead is introduced
and the best method is speci�ed.

In this paper, three anomaly correction methods are
introduced:

1. Markov-based;

2. Stide-based;

3. Clustering-based methods.

They all consist of three phases: training, anomaly
detection, and correcting the detected anomaly. In the
training phase, the anomaly correction system is set
up to distinguish between the normal and anomalous
data. Therefore, in Markov-based, Stide-based, and
clustering-based methods, a transition matrix, list of
normal sequences along with their frequencies, and
clusters of similar sequences are generated, respec-
tively. In order to correct an anomaly, it is necessary to

detect it beforehand, and this will be done in anomaly
detection phase. It is done based on the output of
the training phase in all the methods. Eventually, the
system tries to correct the detected anomaly based on
the models generated in the training phase. In this
phase, the system tries to correct the data by unique
substitution, multiple substitution or deletion.

These methods only see and operate within a
speci�ed portion of data, called window size. The num-
ber of constraints and meta-data directly corresponds
to the length of this window. Another term used in this
paper is threshold, which is the maximum acceptable
distance from normal data without being considered as
an anomaly.

In order to evaluate the proposed methods, it is
required to calculate the correction coverage, power
and area consumption in addition to delay. This
was done by 7000 datasets ready for test with vari-
ous numbers of anomalies. The number of injected
anomalies ranged from 1 to 7. The results were in
favor of the performance of the methods. Correction
coverages for Markov-based, Stide-based, and Cluster-
based methods are on average 77.66%, 60.9%, and
70.36%, respectively. Therefore, Markov-based method
is the best in terms of correction coverage. Moreover,
area overheads of these methods are 249.64, 63.35, and
2.08 �m2, respectively. With the help of introduc-
ing a metric that considers correction coverage and
overheads, Cluster-based method is proposed as the
best one in which fault-tolerant property is traded o�
against overheads.

The rest of the paper comes in the following order:
In Section 2, the background knowledge is discussed,
while the previous studies and their details of the
proposed methods are presented in Sections 3 and
4, respectively. Moreover, Section 5 is depicted to
evaluate methods and their results. The paper ends
with conclusion in Section 6.

2. Background knowledge

It is necessary to provide the de�nition of the keywords
in this context, some of which are in the following [8]:

- Surprise factor: De�ned as the inverse probability
of an event; in other words, its possibility of not
happening;

- Categorical data: The types of data which are not
modelled as numbers whilst there are no mathemat-
ical relations between them;

- Training dataset: De�ned as the dataset used for
preparing the system for working with real-world
data;

- Testing dataset: The dataset which is the samples of
real-world data and used to estimate the behavior of
the system in real world;



R. Mojarad and H.R. Zarandi/Scientia Iranica, Transactions D: Computer Science & ... 24 (2017) 3087{3100 3089

- Normal dataset: This dataset is obtained from
training dataset and includes normal data without
any anomaly.

2.1. Anomalous event
Anomalies are grouped into: unknown symbol, un-
known sequence(s), and rare sequence(s) which are
de�ned as follows [8]:

1. Unknown symbol: If a symbol occurs in the data
unprecedentedly in the testing phase, then it is
agged as an unknown symbol;

2. Unknown sequence: This is the generalized form of
an unknown symbol if a set of symbols that con-
structs a sequence is unprecedented in the training
phase, even if all its symbols are normal;

3. Rare sequence: This type of sequence is similar
to an unknown sequence with only considering the
frequent sequences in the training phase; in other
words, if a sequence occurred in the training phase,
but its number of occurrence is less than the rare-
threshold, it would be considered as a rare sequence.
The rare threshold is the minimum number of
occurrence in which the sentence is considered as
a normal sequence. It is worth mentioning that
the threshold of occurrence number needs to be
determined.

2.2. Anomaly detection
Anomaly detection utilizes a portion of the data stream
for its detection, and the size of this portion is known
as a window size [8]. Anomaly detection has a window
size [8] which determines the length seen from data
stream. Anomaly detection can be analyzed only
within this scope.

3. Related work

There have been several studies on anomaly detec-
tion [15-17]; nevertheless, they are not capable of
detecting anomalies in categorical data like TMR
(Triple Modular Redundancy) and DWC (Duplication
With Comparison); moreover, some studies have this
ability only for speci�c types of categorical data such
as eye-detection sensors [18]. Markov [8], Stide [8],
probability-based [19] and bu�er-based methods [19]
are some of the most signi�cant anomaly detection
methods presented for categorical data. Since Markov-
based and Stide-based detection methods are utilized
for generating two proposed methods, they are pre-
sented in a more detailed fashion as follows.

3.1. Markov-based anomaly detection [8]
Markov-based anomaly detection method consists of
three steps:

1. Training, in which all of the transitions are analyzed
and their respective probabilities are calculated.
This information forms a transition matrix;

2. Threshold setting, where a suitable threshold is
determined based on the transition matrix;

3. Testing, in which the probability of each transition
in the testing dataset is calculated and compared
with the threshold. Not surprisingly, when the com-
plementary probability of the transition exceeds the
threshold, the system will ag this transition as
anomaly.

This method is able to detect anomaly in the
stream of data by modeling the data into Markov
model. The key feature of this model is that each state
depends only on its previous state [8,20]. This feature
is depicted in Eq. (1), in which X(t+1) and X(t) are the
next and current states, whilst the rest are all previous
states from initial state X0 [8]:

P (Xt+1 =xt+1jXt=xt; Xt�1 =xt�1; � � � ; X0 =x0)

= P (Xt+1 = xt+1jXt = xt): (1)

Transition matrix is generated during the training
step by analyzing and calculating the probability of
each transition between two states. That is done by
counting the number of all transitions initiated from
state A and those terminated in B, along with the
division of the latter by the former to evaluate the
probability of transition A ! B. This calculation is
shown in Eq. (2), in which F (A;B) is the number of
times when B comes after A, and F (A) is the total
number of transitions after A:

P (A;B) =
F (A;B)
F (A)

: (2)

The threshold value is empirically determined based
on the value in the matrix, and their complement is a
surprise factor of the events.

3.2. Stide-based anomaly detection [8]
Stide-based anomaly detection similarly utilizes three
steps: Training datasets will be divided into over-
lapping sequences with a de�ned length of N , whose
value is determined in practice [21]. After removing
duplicates from these sequences, they will be stored in
a database along with their frequencies. Furthermore,
the testing dataset is similarly divided into overlapping
sequences with equal length of N . The detection
system looks up for each sequence in the database, and
if the search was successful, its score would be zero, and
one otherwise. The frame with the maximum number
of ones would show the place of the anomaly [20].



3090 R. Mojarad and H.R. Zarandi/Scientia Iranica, Transactions D: Computer Science & ... 24 (2017) 3087{3100

3.3. Probability-based anomaly detection [19]
This method utilizes the relative distance of symbols.
Likewise, it consists of three steps. In the training
step, the probability matrix is generated, in which rows
are possible permutations of symbols in the dataset
and columns are possible distance of two symbols in
one pair. In other words, element Ei;j , which is
placed in the ith column and jth row, is equal to
probability of the jth pair occurrence with exactly i
symbol between them. After formation of probability
matrix, the probability multiplication function is used
to determine the normality of each sequence. Then, if
the value exceeds the threshold, it will be detected as
anomaly [19].

3.4. Bu�er-based anomaly detection [19]
This method is analogous to Stide-based one with slight
alteration. That is, in the training step, all unique
sequences are obtained, and in the end of this step,
the rare sequences from the database are removed. In
the testing step, if the search for the sequences in
the database was successful, the score would be zero
and one if otherwise; afterwards, if the unsuccessful
searches exceed the de�ned threshold, it will be marked
as anomaly [19].

4. Three correction methods: Markov-based,
Stide-based, and cluster-based methods

All methods proposed in this paper operate in three
steps:

1. Training;
2. Anomaly detection;
3. Anomaly correction.

The �rst two steps are analogous to their respective
steps in anomaly detection method, discussed in the
last section. In order to correct the anomaly suc-
cessfully, �rst, the anomaly sequence is identi�ed, and
afterwards all its symbols in this window size are
analyzed. It is noteworthy that those systems with
larger window size take in more information and can
detect and correct better; however, it will increase the
overheads of the system; hence, a suitable anomaly
detection or correction method should be able to work
favorably with small-sized window. For correction, the
system considers all possible options of substitution
and deletion of the symbols, and the most suitable one
will be chosen.

4.1. Anomaly correction
To correct an anomalous event, more than one state
may occur: unique substitution, multiple substitutions,
and deletion.

� Unique substitution: If only one of the options meets
the constraints;

� Multiple substitutions: If there is more than one op-
tion to meet the requirement, the frequency of their
corresponding transition is calculated and using
weighted random selection based on their frequency,
the most probable corrected event is selected;

� Deletion: If none of substitution options works,
the systems tries to �nd the corrected event by
considering the elimination of each symbol.

4.2. Markov-based anomaly correction
In Markov-based method, the number of constraints
is in direct relationship with the size of the window,
that is, for the system with window sizes equal to
3 and 4, the number of constraints would be 12
and 20. To illustrate that, assume that the training
data is KLMNOPABH, testing sequence is equal to
KLMNOLABH, and window size is set to 3. In the
training step, the transition matrix is formed. Figure 1
shows transition matrix of this particular example.

If the threshold value is equal to 0.9, the anomaly
detection is performed in the following way:

P (KLM;LMN) = 1

) Surprise Factor = 1� P (KLM;LMN)

= 0 < 0:9 X

P (LMN;MNO) = 1

) Surprise Factor = 1� P (LMN;MNO)

= 0 < 0:9 X

P (MNO;NOL) = 0

) Surprise Factor = 1� P (MNO;NOL)

= 1 > 0:9 � (3)

Based on Eq. (3), the third transition is not
normal and the system correctly detects that as
anomaly. As mentioned, the correction system �rst
needs to identify the location of the anomaly. Table 1
shows the required constraints for locating the place of

Figure 1. Transition matrix for mentioned example in
Markov-based method.



R. Mojarad and H.R. Zarandi/Scientia Iranica, Transactions D: Computer Science & ... 24 (2017) 3087{3100 3091

Table 1. Constraints for state of substitution of the
example in Markov-based method.

First symbol Second symbol Third symbol

KLM ! LM? LMN !MN? MNO ! NO?
LM?!M?O MN?! N?L NO?! O?A
M?O !?OL N?L!?LA O?A!?AB
?OL! OLA ?LA! LAB ?AB ! ABH

? shows that the symbol can be any symbol.

anomaly, where the question mark is for the unknown
placeholder and an arrow is used to show a transition;
in other words, KLM ! LM? conveys that the system
looks up the possible transitions initiating from KLM
to all the states with L and M as their two �rst entities.
An option �lling the question mark is a suitable one, if
and only if all the question marks in one group of the
constraints could be replaced by that option and all
of the transitions would be normal. In the particular
example, the �rst two symbols cannot be substituted
with any symbols to meet the constraints, and the
details are shown in Table 2.

Contrary to the �rst two symbols, the third
symbol is the location of anomaly. Because all of the
corresponding constraints are met, the system, there-
fore, searches for an alternative to substitute it with the
question mark. In this example, the system chooses P
because it meets all of the constraints, and because no
other symbol is able to �t in them; that would be a
unique substitution. If the correction system cannot
�nd the suitable substitution to correct the anomalous
event, the deletion case should be considered. Table 3
depicts the constraints of deletion case. For better
assurance, the detector does not move forward after
correction and reruns on the current window.

In the example, only one anomaly is in the
window, and it is not always the case. When there
are multiple anomalies in a window, the system uses

Table 2. States of constraints meeting for the �rst and
second symbols of anomalous sequence example in
Markov-based method.

First symbol Second symbol
KLM ! LM? OK LMN !MN? OK
LM?!M?O OK MN?! N?L Not-OK
M?O !?OL Not-OK N?L!?LA Not-OK
?OL! OLA Not-OK ?LA! LAB Not-OK

similarity function to �nd the most similar sequence to
anomalous one, such that if it replaces the anomalous
event, it would be considered as normal. The system
uses a basic similarity function named as Overlap [8]
which is shown in Eq. (4), and the most similar
one would be considered as the correct form. The
pseudocode of the Markov-based anomaly correction
is presented in Figure 2:

Sk =

(
1 if (Xk = Yk)
0 Otherwise

) sim(X;Y ) =
NX
k=0

Sk: (4)

In the pseudocodes, W shows window size of correction
method, and variable Detect-Anomaly is a ag to show
the occurrence of anomaly. Variable CorrectionState is
obtained by checking the constraints and it determines
if Unique Substitution, Multiple Substitution, or Dele-
tion can correct the anomaly. If CorrectionState equals
Deletion, it means that neither Unique Substitution nor
Multiple Substitution can correct the anomaly; and
deletion must be used. Moreover, NumberofDeletion-
State depicts the number of candidates for correction by
deletion, and the anomaly will be corrected by deleting
di�erent symbols of anomalous event, and if this value
is equal to zero, then the similarity function is utilized
to correct the anomaly.

4.3. Stide-based anomaly correction
Analogous to Markov-based anomaly correction, Stide-
based one works in three phases with similar behavior.
In the training phase of the method, as mentioned,
anomaly detection method forms a database of unique
normal sequences with their frequency. Moreover, the
threshold value is heuristically determined based on the
database. In the anomaly detection phase, the method
compares the frequency of the occurred sequence in
the database with the threshold, and if it exceeds the
occurred sequence, it will be marked as anomaly and
directed to the correction phase.

In order to locate the position of anomaly in
Stide-based anomaly correction, similar to Markov-
based one, the constraints should be checked. That is,
for example, if the window size is equal to three, nine
constraints should be veri�ed. It is worth mentioning
that in contrast to Markov-based anomaly correction,
Stide-based anomaly correction method only analyzes
the current sequence, not the transitions. When the
source of anomaly is identi�ed, similar to Markov-based
correction method, the system tries to substitute a

Table 3. Constraints of deletion state for the example in Markov-based method.

First symbol Second symbol Third symbol
KLM ! LMO Not-OK LMN !MNL Not-OK MNO ! NOA Not-OK
LMO !MOL Not-OK MNL! NLA Not-OK NOA! OAB Not-OK
MOL! OLA Not-OK NLA! LAB Not-OK OAB ! ABH Not-OK



3092 R. Mojarad and H.R. Zarandi/Scientia Iranica, Transactions D: Computer Science & ... 24 (2017) 3087{3100

Figure 2. The Markov-based anomaly correction algorithm.

single and multiple symbols or delete the symbols. In
Multiple Substitutions, which are more than one state,
the anomaly can be corrected, so the weighted function
is used to select one of those states.

To illustrate how the method works, assume that
the training data are the same as those of the previous
example, for which the formed database is shown in
Table 4. With a similar testing dataset, assuming that
the threshold equals zero, the detector will identify
the fourth sequence as anomaly, as the previous three

Table 4. Database of normal sequences as an example in
the Stide-based correction method.

Sequence Frequency Sequence Frequency

KLM 1 OPA 1
LMN 1 PAB 1
MNO 1 ABH 1
NOP 1

are presented in the database. In order to locate
the anomaly, the constraints are generated for the
anomalous sequence; as for this example, it is rather
straightforward and presented in Table 5. Analyzing
the constraints shows that the third symbol in the
anomalous sequence is the source of anomaly because
the required constraints can be met. In this example,
unique substitution will correct the anomaly, and it
is not required to consider multiple substitutions and
deletion. Symbol `P ' is a suitable choice for correction.

Table 5. States of constraints meeting for symbols of
anomalous sequence example in the Stide-based correction
method.

First symbol Second symbol
LM? OK MN? OK
M?O OK N?L Not-OK
?OL Not-OK ?LA Not-OK



R. Mojarad and H.R. Zarandi/Scientia Iranica, Transactions D: Computer Science & ... 24 (2017) 3087{3100 3093

Table 6. Constraints for state of deletion for the example in Stide-based method.

First symbol Second symbol Third symbol

LMO Not-OK MNL Not-OK NOA Not-OK

MOL Not-OK NLA Not-OK OAB Not-OK

OLA Not-OK LAB Not-OK ABH OK

Table 6 shows the required constraints to analyze the
Deletion state in order to correct the anomalous event.

4.4. Cluster-based anomaly correction
Similar to Stide-based method, in the training phase,
the normal data are broken into overlapping sequences
of �xed length, W , denoted as the size of the window.
These sequences are used for making clusters of data.
For that purpose, a membership threshold is deter-
mined, which is the minimum similarity required be-
tween members of a cluster. The comparison between
sentences should be done using similarity functions,
which can be determined based on the types of data in
each speci�c application. In this context, two sequences
are similar if and only if the yielding result of their
corresponding similarity function is a value greater
than the membership threshold.

The system is trained in the following way. After
splitting the normal data into �xed length sequences,
they will be processed and clustered together. If a
sequence is similar to all sequences in a cluster, it would
be added to the cluster; if there is no cluster, for which
the sequence meets the criteria, a new cluster will be
created with only one member. At the end of training
phase, a representative is selected randomly for each
cluster.

In the detection phase, the testing data will be
broken into �xed length sequences, and each sequence
is compared with all the representatives; if there is no
representative for it, the similarity function yields a
greater or equal value rather than anomaly threshold,
and the sequence will be considered as anomaly. Other-
wise, the members of cluster(s) whose representatives
are similar to the sequence will be compared to the
sequence. In other words, a sequence is agged as
normal when the system �nds one cluster whose all
members are similar to that sequence. The system
checks similarity with representatives before verifying
the similarity value for all the other members.

In the correction phase, the most similar represen-
tative replaces the anomalous sequence. To illustrate
that, assume that ABCABFBKALCKBA is the normal
data in the training phase, and window size and
membership threshold are determined as 3 and 2,
respectively. The details of forming the clusters based
on the training data and Overlap similarity function
are depicted in Table 7, where for each sequence, the
conditions are checked and if there is a suitable cluster

to join, the action will be to join and create if otherwise.
Eventually, nine clusters are constructed in the training
phase and one representative for each cluster. During
the testing phase, assume that the testing data are
ABCLBFBK, and the anomaly threshold value is two.

1. ABC ! Cluster 1, (sim(ABC, ABC) = 3 > 2);

2. BCL ! Anomaly, since there is no similar repre-
sentative for it.

In order to make correction, the sequence is substituted
with the most similar sequence. Table 7 shows the
similarity between the anomalous sequence and all
other sequences, and clearly sequence BCA is the most
similar choice and, therefore, is selected for correction.
The pseudocode of Cluster-based anomaly correction
is presented in Figures 3 and 4. Various similarity
functions exist which can be used in this method [22]:
Overlap, Skin, Goodall1, Goodall2, Goodall3, Goodall4,
Gambaryan, and Burnaby. These are implemented and
evaluated for comparison in the context of the anomaly
correction.

5. Experimental study

The embedded system receives and learns about the
outside world via sensors, and that is where anomaly
happens. Hence, the anomaly correction should be
located just after the sensor. As stated in the previous
sections, the proposed methods of correcting an event
need to investigate events in the range of window.
Although it will insert some delay into data, it can
work in a real-time system. A real-time system is
de�ned as a system which can provide suitable response
in less than a speci�ed delay. Since this system can
work with the delay of the half of window events in
addition to an overhead of calculation, the proposed
anomaly correction methods can be considered as real-
time systems.

The normal datasets are extracted from the
University of New Mexico's website [23], which are
synthetic data for sendmail functions at the afore-
mentioned university on Sun SPARC stations running
unpatched 4.1.1 and 4.1.4 [23]. The three proposed
methods are evaluated in three steps:

1. To extract the testing dataset, a utility program is
developed. It takes a random part of the normal



3094 R. Mojarad and H.R. Zarandi/Scientia Iranica, Transactions D: Computer Science & ... 24 (2017) 3087{3100

Table 7. Constructing of clusters in the proposed method.

Sequence Reasoning Action Clusters

ABC Since there is no cluster Create fABCg
BCA Sim(ABC;BCA) = 0 < 2 Create fABCg, fBCAg
CAB Sim(CAB;ABC) = 0 < 2;

Sim(CAB;BCA) = 0 < 2
Create fABCg, fBCAg, fCABg

ABF Sim(ABF;ABC) = 2 � 2 Join fABC, ABFg, fBCAg, fCABg

BFB
Sim(BFB;ABC) = 0 < 2;
Sim(BFB;BCA) = 1 < 2
Sim(BFB;CAB) = 1 < 2

Create fABC, ABFg, fBCAg, fCABg, fBFBg

FBK

Sim(FBK;ABC) = 1 < 2;
Sim(FBK;BCA) = 0 < 2;
Sim(FBK;CAB) = 0 < 2;
Sim(FBK;BFB) = 0 < 2

Create fABC, ABFg, fBCAg, fCABg, fBFBg, fFBKg

BKA Sim(BKA;BCA) = 2 � 2 Join fABC, ABFg, fBCA, BKAg, fCABg, fBFBg, fFBKg
KAL Not similar to any cluster Create

fABC, ABFg, fBCA, BKAg, fCABg, fBFBg, fFBKg,
fKALg

ALC Not similar to any cluster Create
fABC, ABFg, fBCA, BKAg, fCABg, fBFBg, fFBKg,
fKALg, fALCg

LCK Not similar to any cluster Create
fABC, ABFg, fBCA, BKAg, fCABg, fBFBg, fFBKg,
fKALg, fALCg, fLCKg

CKB Sim(CKB;CAB) = 2 � 2 Join
fABC, ABFg, fBCA, BKAg, fCAB, CKBg, fBFBg,
fFBKg, fKALg, fALCg, fLCKg

KBA Not similar to any cluster Create
fABC, ABFg, fBCA, BKAg, fCAB, CKBg, fBFBg,
fFBKg, fKALg, fALCg, fLCKg, fKBAg

Select representative (marked as underline)
fABC, ABFg, fBCA, BKAg, fCAB, CKBg, fBFBg,
fFBKg, fKALg, fALCg, fLCKg, fKBAg

dataset as the background data and stored as nor-
mal data; afterwards, considering [23], the program
randomly injects anomalies into the normal data to
be stored as testing data. This program inserts one
to seven anomalies and generate 1000 testing data
for each number of injected anomalies;

2. The proposed methods are implemented using
VHDL. The key factor in terms of fault-tolerant
embedded system is correction coverage. For its
calculation, the proposed methods runs over 7000
testing datasets and corrects them. The system
is synthesized using Synopsis Design Compiler
with 45 nm Nangate opencell library for hardware
analysis that is estimating power, area and time
consumption [24,25];

3. For evaluating the correction coverage, as men-
tioned in the previous paragraph, the testing
datasets, which are anomalous data, are fed into
the systems and then the output, which are the

corrected data, are compared with the original
normal data. If they are the same, the correction
coverage score is increased by 0.001. In other words,
if the systems successfully correct all the anomalous
data, the coverage score would be 1 since they are
1000 datasets.

5.1. Correction coverage analysis
The methods are evaluated with di�erent window sizes
and various numbers of injected anomalies. Figures 5,
6, and 7 depict the e�ect of number of anomalies in
the correction coverage for all three proposed methods
and these �gures are for window sizes 3, 4, and 5,
respectively; as might be expected, more anomalies
make the correction harder for the system, and thus
decreasing the correction coverage score. Typically,
since the larger window size has more information,
it helps to provide better correction coverage. In
addition, the use of random functions in the case of
multiple substitutions makes the correction coverage



R. Mojarad and H.R. Zarandi/Scientia Iranica, Transactions D: Computer Science & ... 24 (2017) 3087{3100 3095

Figure 3. The pseudo code of training phase of the proposed cluster-based anomaly correction algorithm.

Figure 4. The pseudo code of testing phase of the proposed cluster-based anomaly correction algorithm.

be below perfect. In other words, since the system
randomly selects a substitution based on the weights of
the choices, the results will not be 100 percent, overall.
Moreover, Figures 5, 6, and 7 show the performance of
the proposed methods against each other. It shows that

the Markov-based correction method performs better
in the matters of anomaly correction coverage for all
di�erent window sizes.

In addition, various similarity functions are im-
plemented to obtain the best similarity function for



3096 R. Mojarad and H.R. Zarandi/Scientia Iranica, Transactions D: Computer Science & ... 24 (2017) 3087{3100

Figure 5. Correction coverage of all three proposed
methods (window size = 3).

Figure 6. Correction coverage of all three proposed
methods (window size = 4).

Figure 7. Correction coverage of all three proposed
methods (window size = 5).

anomaly correction. The results of the correction
coverage of Cluster-based anomaly correction with
di�erent similarity functions are shown in Tables 8, 9,
and 10. These tables present correction coverage of

the proposed method with window sizes 3, 4, and 5,
respectively.

The results of Tables 8, 9, and 10 show that
Goodall2 is the best similarity function to correct the
anomalies. Another evaluation is done to �nd the
best membership threshold value to obtain a better
correction coverage. Table 11 presents di�erent correc-
tion coverages of Cluster-based anomaly detection, and
correction method uses similarity function Goodall2
with various membership threshold values. The best
membership threshold value is 0.5 according to the
results of Table 11.

5.2. Power, area, and time consumption
analyses

The proposed methods are implemented by and syn-
thesized in design compiler. The corresponding results
of power, area, and time consumption are shown in
Table 12. The results are also normalized to minimum
value obtained. It shows that the overheads of Markov-
based method are noticeably higher than those of the
other two methods are. This is due to its more
information needed for constructing transition between
events in comparison to Stide-based and Cluster-based
methods, resulting in a better correction coverage and,
as expected, more power, area and time are consumed
for checking more constraints.

Similar to most digital systems, there is a trade-
o� between performances and overheads, in which
performance is correction coverage and overheads are
power, area and time consumption. The parameter of
tuning this trade-o� is the window size, that is, larger
window size yields better correction coverage and more
overheads.

All of the proposed methods are performed ac-
ceptably in small window sizes, depicting the methods
that are well designed. Their general drawback is that,
regardless of the overheads of the correction circuit, it

Table 8. Anomaly correction coverage (in percentage) of cluster-based anomaly detection and correction with window
size 3.

Function
Correction coverage (%) for

di�erent number of anomalies

1 2 3 4 5 6 7

Overlap 75.48 52.87 39.72 30.45 22.05 16.9 12.58

Skin 78.74 60.01 45.32 35.98 27.74 21.28 15.74

Goodall1 75.52 51.32 37.12 29.68 21.08 14.72 8.71

Goodall2 78.3 63.64 52.51 41.38 34.22 27.1 21.02

Goodall3 76.18 51.00 36.04 29.27 21.51 14.2 8.75

Goodall4 20.64 16.02 13.01 8.11 6.28 5.45 3.94

Gambaryan 76.42 62.21 48.91 37.87 30.11 23.8 19.02

Burnaby 81.55 56.17 45.42 32.82 28.3 20.84 13.72



R. Mojarad and H.R. Zarandi/Scientia Iranica, Transactions D: Computer Science & ... 24 (2017) 3087{3100 3097

Table 9. Anomaly correction coverage (in percentage) of cluster-based anomaly detection and correction with window
size 4.

Function
Correction coverage (%) for

di�erent number of anomalies
1 2 3 4 5 6 7

Overlap 87.12 77.02 67.92 58.57 54.32 46.98 41.31
Skin 88.75 78.58 70.51 62.52 55.32 48.05 44.81
Goodall1 88.01 75.51 62.58 58.62 53.98 46.32 40.12
Goodall2 90.01 82.60 75.72 67.50 61.97 57.45 51.38
Goodall3 88.64 75.92 67.60 58.92 54.17 46.73 41.47
Goodall4 30.21 24.81 22.91 17.97 15.80 14.61 12.24
Gambaryan 87.54 78.57 70.12 61.84 54.30 49.07 43.27
Burnaby 92.17 81.81 75.41 65.61 61.42 57.08 50.71

Table 10. Anomaly correction coverage (in percentage) of cluster-based anomaly detection and correction with window
size 5.

Function
Correction coverage (%) for

di�erent number of anomalies

1 2 3 4 5 6 7

Overlap 91.01 81.81 74.41 64.14 69.91 59.43 54.67

Skin 91.63 84.29 77.57 73.14 66.46 61.70 55.50

Goodall1 92.13 82.11 77.21 71.41 65.21 60.73 53.59

Goodall2 96.14 88.39 82.13 78.34 72.61 68.99 65.80

Goodall3 91.89 82.59 76.26 72.11 65.69 61.24 52.64

Goodall4 33.73 28.89 27.63 23.24 20.91 21.11 19.43

Gambaryan 94.34 86.49 79.37 74.79 68.71 63.67 60.71

Burnaby 97.37 90.14 85.21 81.34 76.63 72.44 66.81

Table 11. Anomaly correction coverage (in percentage) of cluster-based anomaly detection and correction with di�erent
window sizes and membership threshold values.

Membership threshold

Correction coverage (%) for
di�erent number of window size

3 4 5 Average correction
coverage (%)

0.0 46.70 69.86 78.40 64.99

0.2 46.56 70.14 79.13 65.28

0.4 46.94 70.24 78.60 65.26

0.5 47.74 70.36 78.89 65.66

0.6 41.67 70.67 79.26 63.87

0.8 41.60 65.11 79.91 62.21

1.0 46.99 70.27 78.21 65.16

forces some delay in delivering the data to the controller
since the system needs to analyze all events in the range
of the window. All in all, based on the application of
the correction coverage, it can be tuned based on the
priorities using the window size.

5.3. Cost-e�ective correction coverage
In order to �nd the best anomaly correction method,
which can detect and correct most of anomalies in
testing data and also impose the least overhead, we
proposed a metric which is called Cost-E�ective Cor-



3098 R. Mojarad and H.R. Zarandi/Scientia Iranica, Transactions D: Computer Science & ... 24 (2017) 3087{3100

Table 12. Hardware consumption of anomaly correction methods for di�erent window sizes.

Window
size

Methods Area Dynamic power Leakage power Delay
(�m2) Normal (�w) Normal (�w) Normal (ns) Normal

3
Markov-based 249.64 120.20 62.85 3142.50 1.87 6.23 3.98 66.33
Side-based 63.35 30.46 3.96 198.00 0.4 1.33 0.87 14.50
Cluster-based 2.08 1 0.02 1 0.3 1 0.06 1

4
Markov-based 415.48 153.88 87.43 4371.50 1.91 6.16 4.12 51.50
Side-based 239.61 88.74 39.72 1986.00 0.11 0.35 1.39 17.38
Cluster-based 2.7 1 0.02 1 0.31 1 0.08 1

5
Markov-based 10787.73 2580.80 814.89 5820.64 96.21 2405.25 18.8 56.97
Side-based 348.58 83.39 59.91 427.93 0.18 4.50 1.6 4.85
Cluster-based 4.18 1 0.14 1 0.04 1 0.33 1

rection Coverage (CECC). This metric is de�ned as
follows:

(CECC) =
Correction Coverage

Area� Power�Delay
: (5)

In safety-critical embedded systems which require more
correction coverage and also need to have the least
area, power and also delay overheads, this metric
should be used as much as possible. Therefore, the
methods are re-evaluated based on CECC metric and
the results are mentioned in Table 13. Based on the
results in this table, Cluster-based method shows the
best performance in terms of having the best fault-
tolerant property (correction coverage) versus other
overheads. This is due to the trading-o� between
advantages and disadvantages of the method, showing
better advantages compared to its disadvantage.

6. Conclusions

This paper provides three methods to correct the
anomalies in embedded systems in order to make
them more fault-tolerant. These methods show good
performance with small window size in categorical
data. Table 14 shows a general comparison between
the methods discussed in this paper, where symbols
\+" and \-" depict holding the attributes. The main
implications of this paper are as follows:

� It is important in embedded systems to not only
identify the faults, but also to recover from them;

� It is possible to construct an anomaly correction
method based on anomaly detection one;

� Markov modeling can be also used in anomaly
correction;

Table 13. Cost e�ective correction Coverage for di�erent anomaly correction methods versus di�erent window sizes.

Window
size

Methods

Average correction
coverage

Cost E�ective Correction
Coverage (CECC)

(%) Normal (1/�m2/�w/ns) Normal

3
Markov-based 72.5 1.57 1.12E-3 9.79E-7

Side-based 50.2 1.09 2.08E-1 1.81E-4

Cluster-based 46 1 1151.82 1

4
Markov-based 81.1 1.17 5.30E-4 5.45E-7

Side-based 65 0.93 4.90E-3 5.03E-6

Cluster-based 69.4 1 973.63 1

5
Markov-based 84.5 1.09 4.57E-7 1.46E-9

Side-based 80.5 1.03 2.40E-3 7.68E-6

Cluster-based 77.7 1 312.94 1



R. Mojarad and H.R. Zarandi/Scientia Iranica, Transactions D: Computer Science & ... 24 (2017) 3087{3100 3099

Table 14. Analyzing of mentioned di�erent methods.

Methods Detection Correction Area overhead Correction vs.
overhead trade-o�

Markov [9] + � ++ �
Stide [9] + � + �
Probability-based [14] + � + �
Bu�er-based [14] + � + �

Introduced correction
methods

Markov-based + ++ ++ +

Stide-based + + + +

Cluster-based + ++ + ++

� In the Cluster-based anomaly correction, it was
shown that the similarity of the events has enough
information to be considered for anomaly correction;

� In the Stide-based anomaly correction, it is still
able to perform adequately, even though it has
less information about the data in comparison with
Markov-based method.

References

1. Lovato, A.V., Araujo, E. and da Silva, J.D.S. \Fuzzy
decision in airplane speed control", IEEE International
Conference on Fuzzy Systems, pp. 1578-1583 (2006).

2. Patcha, A. and Park, J.M. \An overview of anomaly
detection techniques: Existing solutions and latest
technological trends", Computer Networks, 51(12), pp.
3448-3470 (2007).

3. Spence, C., Parra, L. and Sajda, P. \Detection,
synthesis and compression in mammographic image
analysis with a hierarchical image probability model",
In Mathematical Methods in Biomedical Image Analy-
sis, 2001. MMBIA 2001. IEEE Workshop on, 2001, pp.
3-10 (2001).

4. Imran, N., Jooheung, L., Youngju, K., Mingjie, L.
and Ronald, F.D. \Amorphous slack methodology for
autonomous fault-handling in recon�gurable devices",
International Journal of Multimedia & Ubiquitous En-
gineering, 7(4), pp. 29-44 (2012).

5. Dilillo, L., Alberto, B.V., Miroslav, G., Patrick, P.
Serge, and Arnaud, V. \Error resilient infrastructure
for data transfer in a distributed neutron detector",
In IEEE International Symposium on Defect and
Fault Tolerance in VLSI and Nanotechnology Systems
(DFT), pp. 294-301 (2011).

6. Kaur, K. and Singh, E.N. \A survey of intrusion de-
tection techniques", International Journal of Advanced
Research, 3(6), pp. 402-405 (2013).

7. Bicego, M., Murino, V., Pelillo, M. and Torsello, A.
\Similarity-based pattern recognition", Pattern Recog-
nition, 39(10), pp. 1813-1814 (2006).

8. Maxion, R.A. and Tan, K.M.C. \Anomaly detection
in embedded systems", IEEE Transactions on Com-
puters, 51(2), pp. 108-120 (2002).

9. Aleskerov, E. and Rao, B. \A neural network based
database mining system for credit card fraud de-
tection", In Computational Intelligence for Financial
Engineering (CIFEr), pp. 220-226 (1997).

10. Chandola, V., Banerjee, A. and Kumar, V. \Anomaly
detection: A survey", ACM Computing Surveys
(CSUR), 41(3), p. 15 (2009).

11. Quanz, B., Fei, H., Huan, J., Evans, J., Frost, V.,
Minden, G., Deavours, D., Searl, L., DePardo, D.,
Kuehnhausen, M., Fokum, D., Zeets, M. and Oguna,
A. \Anomaly detection with sensor data for distributed
security", Proceedings of 18th International Confer-
ence on Computer Communications and Networks, pp.
1-6 (Aug. 2009).

12. Mojarad R. and Zarandi H.R. \Two e�ective anomaly
correction methods in embedded systems", CSI Sym-
posium on Real-Time and Embedded Systems and
Technologies (RTEST), pp. 68-76 (2015).

13. Mojarad, R. and Zarandi, H.R. \Markov-based
anomaly correction in embedded systems", Interna-
tional Journal of Computer Theory and Engineering,
8(4), pp. 272-2979 (Aug. 2016).

14. Mojarad, R., Kordestani, H. and Zarandi, H.R. \A
cluster-based method to detect and correct anomalies
in sensor data of embedded systems", 24th Euromicro
International Conference on Parallel, Distributed, and
Network-based Processing (PDP), pp. 240-247 (2016).

15. Branch, J.W., Giannella, C., Szymanski, B., Wol�,
R. and Kargupta, H. \In-network outlier detection in
wireless sensor networks", Knowledge and Information
Systems, 34(1), pp. 23-54 (2013).

16. Hill, D.J. and Minsker, B.S. \Real-time Bayesian
anomaly detection for environmental sensor data", In
Proceedings of the Congress-International Association
for Hydraulic Research, 32(2), p. 503 (2007).

17. Du, W., Fang, L. and Peng, N. \Lad: Localization
anomaly detection for wireless sensor networks", Jour-
nal of Parallel and Distributed Computing, 66(7), pp.
874-886 (2006).



3100 R. Mojarad and H.R. Zarandi/Scientia Iranica, Transactions D: Computer Science & ... 24 (2017) 3087{3100

18. Amir, A., Zimet, L., Sangiovanni-Vincentelli, A. and
Kao, S. \An embedded system for an eye-detection
sensor", Computer Vision and Image Understanding,
98(1), pp. 104-123 (2005).

19. Zandrahimi, M., Zarandi, H.R. and Mottaghi, M.H.
\Two e�ective methods to detect anomalies in embed-
ded systems", Microelectronics Journal, 43(1), pp. 77-
87 (2012).

20. Hamilton, J.D., Time Series Analysis, Princeton:
Princeton University Press (1994).

21. Hofmeyr, S.A. Forrest, S. and Somayaji, A. \Intrusion
detection using sequences of system calls", Journal of
Computer Security, 6(3), pp. 151-180 (1998).

22. Das, K. and Schneider, J. \Detecting anomalous
records in categorical datasets", In Proceedings of
the 13th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 220-229
(2007).

23. http://www.cs.unm.edu/immsec/data/synthsm.html (Sep.
2011).

24. Bhatnagar, H. \Advanced ASIC chip synthesis using
synopsys design compiler", Physical Compiler and
PrimeTime, Springer (2002).

25. http://www.tkt.cs.tut.�/tools/public/tutorials/ syn-
opsys/design compiler/gsdc. html, Date Visited: Aug.
2013.

Biographies

Roghayeh Mojarad received her BS degree in Com-
puter Hardware Engineering from University of Tehran
in 2011. She continued studying the same �eld and
managed to receive her MS degree in Computer En-
gineering from Department of Computer Engineering
and Information Technology, Amirkabir University of
Technology (Tehran Polytechnic) in 2013. She was
recognized as the top student in her graduate school.
She is currently a PhD student in University Paris-Est
Creteil (UPEC). Her research interests include answer
set programming, activity recognition, fault-tolerant
systems, digital system design, and FPGA architecture
design.

Hamid Reza Zarandi received his PhD, MS, and
BS degrees in Computer Engineering all from Sharif
University of Technology, Iran, in 2006, 2002, and 2000,
respectively. He is currently an Associate Professor
of Computer Engineering and Information Technology
Department at Amirkabir University of Technology
(Tehran Polytechnic). His research interests include
high-performance computing, dependable computer
architecture, fault-tolerant computing and embedded
systems on which he published more than 100 refereed
conference and journal papers. Dr. Zarandi is a
member of IEEE Computer Society and Computer
Society of Iran.




