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Abstract. The researchers of classical multidimensional knapsack problem have always
assumed that the weights, values, and capacities are constant values. However, in
the real-life industrial engineering applications, the multidimensional knapsack problem
often comes with uncertainty about a lack of information about these parameters. This
paper investigates a constrained multidimensional knapsack problem under uncertain
environment, in which the relevant parameters are assumed to be uncertain variables.
Within the framework of uncertainty theory, two types of uncertain programming models
with discount constraints are constructed for the problem with di�erent decision criteria,
including the expected value criterion and the critical value criterion. Taking full advantage
of the operational law for uncertain variables, the proposed models can be transformed into
their corresponding deterministic models. After theoretically investigating the properties
of the models, we do some numerical experiments. The numerical results illustrate that
the proposed models are feasible and e�cient for solving the constrained multidimensional
knapsack problem with uncertain parameters.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

The Multidimensional Knapsack Problem (MKP) is
one of the most extensively-studied problems in net-
work optimization. The task of MKP is to choose a
subset of items in which the total value is maximized
while the weight does not exceed the speci�ed capacity
of each dimension. MKP o�ers many practical appli-
cations in industrial engineering, such as production
planning [1], project scheduling [2], service center
location [3], and supply chain management [4], etc.
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For more comprehensive development of MKP, please
consult Freville [5]. Due to its wide range of applicabil-
ity, the multidimensional knapsack problem was widely
studied in deterministic environment. However, in
practice, some indeterminacy factors might appear in
the problems due to the lack of history data, insu�cient
information, or some other reasons. As previous
studies [6,7] pointed out, the available capacity or
weight might be unknown due to delay in previous
jobs, or the item rewards might depend on market
uctuations. Thus, it is not suitable to use the classical
models to investigate the multidimensional knapsack
problem in these situations.

Several researchers deemed that such indeter-
minacy behaves like randomness. Based on this as-
sumption, a lot of studies have been investigated
within the framework of probability theory. For in-
stance, Kosuch [8] studied a two-stage stochastic
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knapsack problem with random weights. Feng and
Hartman [9] investigated a stochastic knapsack prob-
lem with homogeneous-sized items and postponement
options. Han et al. [10] considered a certain class
of chance-constrained knapsack problems where each
item has an independent normally-distributed random
weight. For more research on the stochastic knapsack
problem, see Kleywegt and Papastavrou [7], Gibson et
al. [11], Merzifonluoglu et al. [12], and others.

It is undeniable that probability theory is a useful
tool to deal with indeterminacy factors. However, as is
known to all of us, a fundamental premise of applying
probability theory is that the estimated probability
distribution is close enough to the true frequency.
Thus, we have to rely on a great quantity of histor-
ical data and employ statistics to get the probability
distribution. In the real-world, however, there exist
many uncertain factors which cannot be ignored when
the decision-makers make their decisions. Motivated by
this consideration, several researchers have employed
fuzzy set theory to deal with nondeterministic param-
eters for multidimensional knapsack problem. Okada
and Gen [13] proposed the multiple-choice knapsack
problems under fuzzy environment. Changdar et
al. [14] considered an improved genetic algorithm to
solve constrained knapsack problem with fuzzy param-
eters. Changdar et al. [15] investigated the knapsack
problem with imprecise weight using genetic algo-
rithms. Chen [16] proposed a parametric programming
approach to analyze the fuzzy maximum total return in
the continuous knapsack problem with fuzzy objective
weights. Baykaso�glu and Ozsoydan [17] developed �re-
y algorithm to solve dynamic multidimensional knap-
sack problems. Kasperski and Kulej [18] considered the
knapsack problem with imprecise pro�ts and imprecise
weights of items. Our paper di�ers from those of Okada
and Gen [13] and Kasperski and Kulej [18] in the follow-
ing aspects. First, we use an uncertain measure, which
is a self-dual measure, to describe belief degree of the
relevant parameter in the multidimensional knapsack
problem. Based on this measure, the operational law
in the uncertainty theory is simpler and easier than
its counterpart in the fuzzy set theory. The details
of operational law of uncertain variable are shown in
Section 3. Second, we consider the multidimensional
knapsack problem with a price-discount constraint.
This type of multidimensional knapsack problem is
commonly used in the fruit and/or vegetable retailing
systems. Motivated by this discount strategy, our
paper establishes a medium between the existing uncer-
tainty theory and multidimensional knapsack problem.

However, if the uncertain factor comes from the
decision-maker's empirical estimation, then it is not
suitable to employ random variable or fuzzy variable
to describe this kind of uncertain factor. In such cases,
we have to invite some domain experts to give the

belief degrees of the weights, values, and capacities.
According to Kahneman and Tversky [19], human
beings usually overweight unlikely events, thus the
belief degree based on experts' estimations may be far
from the cumulative frequency. One the one hand, in
2012, Liu [20] pointed out that if we insist on dealing
with the belief degree by using probability theory in
this situation, some counter-intuitive phenomena might
occur. On the other hand, the fuzzy set theory is
not self-consistent in mathematics and may lead to
several counter-intuitive paradoxes in practice [21].
The details of counterintuitive paradoxes will be given
in Section 2. Therefore, in this situation, we have
no choice but to use the uncertainty theory, founded
by Liu [22], to deal with the belief degree in the
multidimensional knapsack problems.

Although multidimensional knapsack problems
have been widely investigated, it has not been studied
within the framework of uncertainty theory. This is
because the uncertainty theory is a quite recent and
new tool to deal with the belief degree mathematically.
To the best of our knowledge, only Peng and Zhang [23]
analyzed the uncertain knapsack problem with single-
capacity constraint. Following the main literature in
the �eld of uncertainty theory, in their paper [23], the
values and the weights were characterized as uncer-
tain variables. But, in the real-life decision-making
problems, the decision-makers usually encounter the
situations of the knapsack problem with multiple-
capacity constraints. Since no one has investigated the
multidimensional knapsack problem under uncertain
environment before, we have made attempts to �ll this
gap. Speci�cally, this paper considers a constrained
multidimensional knapsack problem, which is usually
encountered in the fruit and/or vegetable retailing
systems based on uncertain measure. We employed
two kinds of uncertain variables, i.e. linear uncertain
and zigzag uncertain variables, to characterize the
weights, values, and capacities of the multidimensional
knapsack problem with a discount constraint. Within
the framework of uncertainty theory, two types of
uncertain programming models are constructed for the
problem with di�erent criteria, e.g. the expected value
and the critical value criteria. Based on the operational
law for uncertain variables, some theoretical analyses
are provided. The theoretical results illustrate that the
maximum value of chance-constrained programming
model actually decrease with respect to the predeter-
mined con�dence level.

The structure of this paper is as follows. In
Section 2, we state the fact that the fuzzy set theory
cannot be employed to model the imprecise parameters
in multidimensional knapsack problem. To facilitate
the understanding of the paper, some basic concepts
and results related to uncertainty theory are outlined
and the classical multidimensional knapsack problem is
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briey reviewed in Section 3. Section 4 proposes two
types of uncertain programming models for uncertain
multidimensional knapsack problem and transforms
the models into their corresponding deterministic forms
within the framework of uncertainty theory. Some
numerical examples are given to show the applications
of the proposed models in Section 5. Section 6 gives
some concluding remarks and possible directions for
the future work.

2. Why using uncertain measure?

In this section, we present the fact that the fuzzy set
theory cannot be employed to model the imprecise
weights, imprecise values, and imprecise capacities in
multidimensional knapsack problem under uncertain
environment.

As discussed in the introduction, the previous
studies of using the fuzzy set theory to investigate
the multidimensional knapsack problem have indeed
opened a new research perspective for solving multi-
dimensional knapsack problems with imprecise param-
eters given by experts' estimations. However, with
a deeper research on the problem, we �nd out that
several counterintuitive paradoxes will appear if fuzzy
variables are employed to characterize the imprecise
parameters of MKP.

We take the imprecise capacities of MKP as an
example to illustrate several counterintuitive paradoxes
when we use the fuzzy set theory to study the mul-
tidimensional knapsack problem. Supposing that the
capacity of the di�erent knapsack is regarded as a fuzzy
number, we have a membership function to describe it.
In the fuzzy set theory, possibility measure (Pos) and
necessity measure (Nec) are the two basic measures.
Assume that the membership function of knapsack
capacity is a triangular fuzzy variable, � � (8; 9; 10).
Then, we can obtain the following two paradoxes.
First, based on the membership function, it is known
from possibility theory that Posf� = 9g = Posf� 6= 9g
and Necf� = 9g = Necf� 6= 9g. In other words, the
capacity of knapsack, being exactly 9 and not exactly
9, has the same belief degree in possibility measure and
necessity measure. This implies that the two events
will happen equally likely. This conclusion is obviously
unreasonable. Second, the capacity of knapsack is
exactly 9 with belief degree 1 in possibility measure.
However, this conclusion is also hard to accept because
the belief degree of exactly 9 should be almost zero.

It can be seen from the above two counterintuitive
examples that the fuzzy set theory is not a suitable
tool to model the imprecise weights, imprecise values,
and imprecise capacities in multidimensional knapsack
problem when the relevant parameters are given by
experts' estimations. In order to handle this di�culty,
Liu [22] introduced an uncertain measure within the

framework of uncertainty theory. When we use the
uncertain measure to gauge the subjective uncertain
quantities, the abovementioned paradoxes will disap-
pear immediately. In fact, the uncertainty theory
has been widely applied to various real-life industrial
engineering problems, e.g. knapsack problem with sin-
gle capacity [23], optimal assignment problem [24],
the shortest path problem [25], railway transportation
planning problem [26], supply chain contract design
problem [27], and so on. In the next section, we will
introduce the uncertainty theory briey.

3. Preliminary

In this section, some basic concepts and results of
uncertainty theory are recalled, and the classical mul-
tidimensional knapsack problem is briey reviewed.

3.1. Uncertainty theory
Uncertainty theory was founded by Liu [22] in 2007
and re�ned by Liu [21] in 2010. The uncertain pro-
gramming, established by Liu [28], was a type of math-
ematical programming involving uncertain variables.
In recent years, several scholars have employed uncer-
tain programming to investigate the real-life decision-
making problems. For instance, Gao [25] studied the
uncertainty distribution of the shortest path length and
proposed an e�ective method to �nd the �-shortest
path and the shortest path in an uncertain network.
Zhang and Peng [24] employed uncertain programming
to deal with uncertain optimal assignment problem in
which pro�t is an uncertain variable. Recently, Peng et
al. [29] presented a state-of-the-art review on the recent
advances in the area of uncertain network optimization.

Assume that � is a nonempty set, and L is a �-
algebra over �. Each element � in L is called an event.

A set functionM :L ! [0; 1] is called an uncertain
measure if it satis�es the following three axioms [22]:

Axiom 1 (normality axiom). Mf�g = 1 for the
universal set �;

Axiom 2 (duality axiom). Mf�g+Mf�cg = 1 for
any event � 2 L;

Axiom 3 (subadditivity axiom). For every count-
able sequence of events �1;�2; � � � , we have:

M
( 1[
i=1

�i

)
�
1X
i=1

Mf�ig:

De�nition 1 [22]. Let � be a nonempty set, L a �-
algebra over �, and M an uncertain measure. Then,
the triplet (�;L;M) is called an uncertainty space.

Product uncertain measure M on product �-
algebra L was de�ned by Liu [30], thus producing the
following product axiom.
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Axiom 4 (product axiom). Let (�k;Lk;Mk) be
uncertainty spaces for k = 1; 2; � � � The product uncer-
tain measure, M, is an uncertain measure satisfying:

M
( 1Y
k=1

�k

)
=
1̂

k=1

Mkf�kg;

where �k refers to arbitrarily chosen events from Lk
for k = 1; 2; � � � , respectively.

Uncertain variable is mainly used to model the
uncertain quantities. A formal de�nition was given by
Liu [22] as follows:

De�nition 2 [22]. An uncertain variable is a func-
tion � from an uncertainty space (�;L;M) to the set
of real numbers such that f� 2 Bg is an event for any
Borel set B.

On the basis of uncertain measure, Liu [22] gave
the de�nition of uncertainty distribution of an uncer-
tain variable, �, which was de�ned by �(x) = Mf� �
xg. If an uncertainty distribution, �(x), is a continuous
and strictly increasing function with respect to x at
which 0 < �(x) < 1 and the following limitations hold:

lim
x!�1�(x) = 0; lim

x!+1�(x) = 1;

then, uncertainty distribution, �(x), is said to be
regular [21].

De�nition 3 [30]. Uncertain variables �1; �2; � � � ; �n
are said to be independent if:

M
(

n\
i=1

(�i 2 Bi)
)

=
n̂

i=1

Mf�i 2 Big;

for any Borel sets B1; B2; � � � ; Bn.

Theorem 1 [21]. Let �1; �2; � � � ; �n be independent
uncertain variables with regular uncertainty distribu-
tions �1;�2; � � � ;�n, respectively. If function f(x1;� � � ; xm; xm+1; � � � ; xn) is strictly increasing with re-
spect to x1; x2; � � � ; xm and strictly decreasing with
respect to xm+1; xm+2; � � � ; xn, then the uncertain vari-
able:

� = f(�1; � � � ; �m; �m+1; � � � ; �n);

has an inverse uncertainty distribution:

	�1(�) = f(��1
1 (�); � � � ;��1

m (�);��1
m+1(1� �);

� � � ;��1
n (1� �)):

Theorem 2 [21]. Let �1; �2; � � � ; �n be independent
uncertain variables with regular uncertainty distribu-
tions �1;�2; � � � ;�n, respectively. If function f(x1;

� � � ; xm; xm+1; � � � ; xn) is strictly increasing with re-
spect to x1; x2; � � � ; xm and strictly decreasing with
respect to xm+1; xm+2; � � � ; xn, then:

Mff(�1; � � � ; �m; �m+1; � � � ; �n) � 0g � �
if and only if:

f(��1
1 (�); � � � ;��1

m (�);��1
m+1(1� �); � � � ;

��1
n (1� �)) � 0:

According to Theorems 1 and 2, we can easily ob-
tain the inverse uncertainty distribution of function
f(�1; �2; � � � ; �n). Therefore, we can transform an
indeterminacy model into a deterministic form based
on Theorems 1 and 2. On the basis of uncertain mea-
sure, Liu [22] de�ned the expected value of uncertain
variables as follows. If � be an uncertain variable, then
the expected value of � is de�ned by:

E[�] =
Z +1

0
Mf� � rgdr �

Z 0

�1
Mf� � rgdr;

provided that at least one of the integrals was �nite.
If � had an uncertainty distribution, �(x), Liu [22]
veri�ed that the expected value could be calculated by:

E[�] =
Z +1

0
(1� �(x))dx�

Z 0

�1
�(x)dx:

In addition, Liu [21] veri�ed that if the uncertainty dis-
tribution, �(x), was regular, then E[�] =

R 1
0 ��1(�)d�.

Theorem 3 [21]. Assume that �1 and �2 are indepen-
dent uncertain variables with the �nite expected values.
For any real numbers, a1 and a2, we have:

E[a1�1 + a2�2] = a1E[�1] + a2E[�2]:

Example 1. Uncertain variable, �, is called zigzag if
it has a zigzag uncertainty distribution (see Figure 1):

�(x) =

8>>><>>>:
0; if x � a
(x� a)=2(b� a); if a � x � b
(x+ c� 2b)=2(c� b); if b � x � c
1; if x � c;

Figure 1. Zigzag uncertainty distribution.
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Figure 2. Linear uncertainty distribution.

denoted by Z(a; b; c); where a, b, and c are real numbers
with a < b < c. The inverse uncertainty distribution,
��1(�), of uncertain variable, �, is given by:

��1(�) =

(
(1� 2�)a+ 2�b; if � < 0:5
(2� 2�)b+ (2�� 1)c; if � � 0:5

The expected value of � is E[�] = (a+ 2b+ c)=4.

Example 2. Assume that � � L(a; b) is a linear
uncertain variable, where a and b are real numbers with
a < b. Its uncertainty distribution, �(x), (see Figure 2)
and inverse uncertainty distribution, ��1(�), are given
by:

�(x) =

8><>:0; if x � a
(x� a)=(b� a); if a � x � b
1; if x � b;

and:

��1(�) = (1� �)a+ �b;

respectively. The expected value of � is E[�] = (a+b)=2.

3.2. Classical multidimensional knapsack
problem with discount constraint

In this section, we present the formulation of Multi-
dimensional Knapsack Problem (MKP) with discount
constraint in deterministic environment. Generally
speaking, MKP is concerned with a set of items,
N = f1; 2; � � � ; ng, to be packed in a knapsack that
has a set of dimensions, M = f1; 2; � � � ;mg. The
maximum capacity of each dimension, i, is denoted as
ci, i = 1; 2; � � � ;m. Each item, j 2 N , has a weight,
wij , in each dimension, and a corresponding value vj ,
i = 1; 2; � � � ;m, j = 1; 2; � � � ; n. The task of MKP
is to choose a subset of items that the total value is
maximized, while the weight does not exceed speci�ed
capacity, ci, of each dimension, i. Motivated by various
examples in the real-life decision making problems,
we consider the MKP with discount constraint. For
example, some of the objects are available to which

discount has been o�ered if the selected quantity is
greater than a predetermined level. The fruit and/or
vegetable retailing systems exhibit the characteristic
where the wholesalers adopt the discount strategy.
If the minimum predetermined amount of object is
selected, then a discount is to be considered for that
item and the total discount must reach or exceed a
predetermined total discount, D. For jth item, if
minimum, mj , unit of object is consumed, the discount
is dj ; otherwise, no discount is considered and the total
predetermined minimum discount is D. Therefore,
we construct the mathematical model for multidimen-
sional knapsack problem with discount constraint as
follows:

max
nX
j=1

vjxj ;

subject to:

nX
j=1

wijxj � ci; for i = 1; 2; � � � ;m;

nX
j=1

djyj � D;

xj 2 f0; 1g; yj 2 f0; 1g; for j = 1; 2; � � � ; n: (1)

It is necessary to point out that the �rst constraint
requires that the knapsacks not exceed the capacity of
any knapsack. The second constraint is the discount
constraint. Variables xj and yj are all binary vari-
ables. The detailed characteristics of these two binary
variables are as follows. If the jth item is selected, then
xj = 1; otherwise xj = 0. If xj � mj (mj take value
from [0; 1]) and dj > 0, then yj = 1; otherwise yj = 0.

4. Uncertain multidimensional knapsack
models

Model (1) assumes that the weights, values, and capac-
ities are constant values. However, in practice, these
parameters are not usually constant values. As dis-
cussed in the introduction, we always lack history data,
or even history data are invalid. Then, one problem is
naturally produced; that is, how can we deal with this
kind of indeterminacy factor in the multidimensional
knapsack problem? In this situation, the relevant
data can only be obtained from the decision-makers'
empirical estimations in a practical way. As mentioned
before, the uncertainty theory provides a new tool to
deal with uncertain information, especially subjective
or empirical information. Hence, in this paper, we
assume that each item, j, has an uncertain weight,
�ij , in each dimension and an uncertain value, �j ; each
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capacity of any knapsack is an uncertain variable, �i,
and the discount of the jth item is also an uncertain
variable �j , i = 1; 2; � � � ;m, j = 1; 2; � � � ; n.

Without loss of generality, we also assume that
the parameters are nonnegative and independent un-
certain variables. Such an independent assumption
is extensively used in a recent work in the area
of uncertain network optimization (Gao [25], Zhang
and Peng [24], and Peng et al. [29], to name a
few). For the sake of convenience, all the uncertain
values, uncertain weights, uncertain capacities, and
uncertain discount coe�cients are presented by un-
certain vectors � = (�1; �2; � � � ; �n), � = (�ij ji =
1; 2; � � � ;m; j = 1; 2; � � � ; n), � = (�1; �2; � � � ; �m) and
� = (�1; �2; � � � ; �n), respectively. Then, the uncertain
multidimensional knapsack can be denoted by K =
(V; �;�; �; � ) in which V is the maximum value by
which the knapsack can be carried out. Then, the
total value of maximum pack scheme of uncertain
multidimensional knapsack is f(�) =

Pn
j=1 �jxj :

It is clear that f(�) is also an uncertain variable
because uncertain values �j are all uncertain variables
for j = 1; 2; � � � ; n. Then, the Uncertain Multidimen-
sional Knapsack Problem (UMKP) can be expressed as
follows:

max
nX
j=1

�jxj

subject to:

nX
j=1

�ijxj � �i � 0; for i = 1; 2; � � � ;m;

nX
j=1

�jyj � D;

xj 2 f0; 1g; yj 2 f0; 1g; for j = 1; 2; � � � ; n. (2)

Model (2) turns meaningless in the sense of mathemat-
ical viewpoints under uncertain environment. In order
to optimize the objective, it is inevitable for us to rank
uncertain variables according to some decision criteria.
Generally speaking, there exist two kinds of decision
criteria to rank the uncertain variables according to
the manager's philosophy of modeling uncertainty. The
two kinds of decision criteria are the expected value
criterion and the critical value criterion which are based
on the manager's di�erent risk attitude. On the one
hand, the main idea of the expected value criterion
is to optimize the expected value of the manager's
objective. On the other hand, the essential idea of the
critical value criterion is to optimize the critical value of
the manager's objective with predetermined con�dence
level. In the next section, we will employ these

two kinds of criteria to rank the uncertain variables
and construct two kinds of uncertain programming
models with discount constraint. One is the expected
value model, and another is the chance-constrained
programming model.

4.1. Expected value model
Di�erent from a deterministic environment, the total
value for UMKP is an uncertain variable under uncer-
tain environment. It is di�cult for us to rank two un-
certain variables directly. The �rst way is to adopt the
expected value criterion to rank the uncertain variable.
Therefore, the �rst type of uncertain programming,
i.e. the so-called expected value model, is constructed
based on this kind of ranking criterion. The main idea
of the expected value model is to optimize the expected
value of objective function subject to some expected
constraints. Motivated by this most understandable
method for modeling the real-life industrial engineering
problems, we present the expected value model for
UMKP as follows:

maxE

24 nX
j=1

�jxj

35 ;
subject to:

E

24 nX
j=1

�ijxj � �i � 0

35 ; for i = 1; 2; � � � ;m;

E

24 nX
j=1

�jyj

35 � D;
xj 2 f0; 1g; yj 2 f0; 1g; for j = 1; 2; � � � ; n: (3)

We can see that Model (3) is constructed under the
light of uncertain environment. To seek the optimal
solution of Model (3), it is necessary for us to compute
expected values of the relevant parameters. In order to
solve the model easily, it is better for us to convert
the model into its crisp equivalent model. Taking
full advantage of the concept of expected value for
uncertain variable mentioned in Section 3, we can
easily obtain the corresponding equivalent model of
Model (3). In the following, we shall discuss this issue.

Theorem 4. If �j, �ij, �i, and �j are independent un-
certain variables with regular uncertainty distributions
�j, 	ij, �i, and Fj, i = 1; 2; � � � ;m, j = 1; 2; � � � ; n,
respectively. Then, Model (3) is equivalent to the
following model:

max
nX
j=1

xj
Z 1

0
��1
j (�)d�
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subject to:

nX
j=1

xj
Z 1

0
	�1
ij (�)d� �

Z 1

0
��1
i (�)d�;

for i = 1; 2; � � � ;m;
nX
j=1

yj
Z 1

0
F�1
j (�)d� � D;

xj 2 f0; 1g; yj 2 f0; 1g; for j = 1; 2; � � � ; n; (4)

where ��1
j , 	�1

ij , ��1
i , and F�1

j are the inverse
uncertainty distributions of �j, �ij, �i, and �j, for
i = 1; 2; � � � ;m, j = 1; 2; � � � ; n, respectively.

Proof. It follows from Theorem 3 that the expected
value of pack scheme can be rewritten as:

E

24 nX
j=1

�jxj

35 =
nX
j=1

xj
Z 1

0
��1
j (�)d�:

Similarly, the remaining uncertain constraints can
be transformed into their corresponding deterministic
constraints. Therefore, the proof of the theorem is
complete.

4.2. Chance-constrained programming model
The expected value model depends only on the ex-
pected values of uncertain variables, but variance is
not considered in the process of the decision making.
This may lead to the risk of making a bad decision.
In order to avoid such a risk, many decision-makers
may �rst set a con�dence level, � 2 (0; 1), as a
safety margin. What's more, in many situations,
the managers want to make decisions in the case
of the knapsack value wants satisfying some chance
constraints with at least some given con�dence level
which reects his/her attitude for the risk during the
decision-making process.

As we know, the essential idea of the critical
value criterion is to maximize the critical value of
the relevant parameters with predetermined con�dence
levels. Therefore, based on the critical value criterion,
the chance-constrained programming was pioneered
by Charnes and Cooper [31]. Chance-constrained
programming deals with uncertainty by specifying the
desired levels of con�dence with the chance constraints
and o�ers another e�ective method of modeling uncer-
tain decision systems. It o�ers a powerful means of
modeling uncertain decision systems with the assump-
tion that the uncertain constraints will hold at least
con�dence level, �.

As for UMKP in this paper, if the decision-
maker prefers to treat the problem under the chance

constraints, then the model can be constructed as
follows:

maxV;

subject to:

M
8<: nX
j=1

�jxj � V
9=; � �;

M
8<: nX
j=1

�ijxj � �i
9=; � �; for i = 1; 2; � � � ;m;

M
8<: nX
j=1

�jyj � D
9=; � ;

xj 2 f0; 1g; yj 2 f0; 1g; for j = 1; 2; � � � ; n; (5)

where �, �, and  are the predetermined con�dence
levels.

Theorem 5. If �j, �ij, �i, and �j are independent un-
certain variables with regular uncertainty distributions
�j, 	ij, �i, and Fj, i = 1; 2; � � � ;m, j = 1; 2; � � � ; n,
respectively. Then, Model (5) is equivalent to the
following model:

maxV;

subject to:

nX
j=1

xj��1
j (1� �) � V;

nX
j=1

xj	�1
ij (�)���1

i (1��); for i = 1; 2; � � � ;m;

nX
j=1

yjF�1
j (1� ) � D;

xj 2 f0; 1g; yj 2 f0; 1g; for j = 1; 2; � � � ; n; (6)

where ��1
j , 	�1

ij , ��1
i , and F�1

j are the inverse uncer-
tainty distributions of �j, �ij, �i, and �j, respectively.

Proof. By using the inverse uncertainty distribution,
constraint MfPn

j=1 �jxj � V g � � converted into
a deterministic constraint

Pn
j=1 xj�

�1
j (1 � �) � V .

Similarly, the remaining uncertain constraints can
be transformed into their corresponding deterministic
constraints. Therefore, the proof of the theorem is
complete.
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Since the objective of Model (6) is a function of
the con�dence level, �, the relationship between the
optimal objective value and parameter � should be
investigated. The following theorem will answer this
research question.

Theorem 6. The optimal objective value of model (6)
is non-increasing with respect to con�dence level, �.

Proof. Suppose that the feasible domain of Model (6)
is denoted by I, and the corresponding optimal objec-
tive value is denoted by V . Without loss of generality,
we assume �1 � �2. Let V1 and V2 be the correspond-
ing optimal objective values of Model (6). Then, we
have:

V1 =
X
vi2V

xi��1
i (1��1)�X

vi2V
xi��1

i (1��2) = V2:

Thus, the proof is completed.
It is worth noting that Models (4) and (6) are

both 0-1 integer programming models. Generally
speaking, solving such models requires much compu-
tational e�ort. As mentioned earlier, however, with
the aid of some well-developed optimization solvers,
such as LINGO, BARON, and CPLEX, we can solve
Models (4) and (6) easily and e�ectively. Like the
previous studies [23-25], we solve Models (4) and (6)
by using LINGO 5software.

5. Numerical example

In order to show the application of the models, two
numerical examples are given in this section. To solve
the above models, the developed optimization software
solver LINGO 11.0 will be employed in the examples to
produce the optimal solutions. The computational ex-
periments are performed on a personal computer (Dell
with Intel(R) Core(TM) i5-2450 M CPU 2.50 GHZ and
RAM 2.50 GB).

Example 3. Suppose that there are eight items and
four knapsacks. Each item has a weight and a value
in each dimension, and the weight of each knapsack
is di�erent. The task is to �nd a pack scheme that
yields the maximum total value under the capacity
constraints of the di�erent knapsacks. At the beginning
of this task, the decision-maker needs to obtain the
basic data, such as the weights, values, and capacities
of the MKP. However, due to economic reasons or
technical di�culties, the decision-maker cannot always
get these data exactly. For this condition, the usual
way is to obtain the uncertain data by means of expe-
rience evaluation or expert advice. It should be noted
that there are several researchers who characterize the
relevant parameters as fuzzy variables, such as Okada

and Gen [13], Kasperski and Kulej [18], and Kasperski
and Zieli�nski [32]. However, as pointed out in Section 2,
the fuzzy set theory is not a suitable tool to model
the imprecise weights, imprecise values, and imprecise
capacities in the multidimensional knapsack problem
when the relevant parameters are given by domain
experts. Therefore, in this paper, we assume that
the uncertain parameters are all independent uncertain
variables.

It is necessary to point out that although the func-
tional form of the uncertain variables are a little similar
to the fuzzy variables, the theoretical foundations are
di�erent. One the one hand, the distribution functional
graphs of zigzag uncertain variable and linear uncertain
variable are shown in Figures 1 and 2, respectively.
One can �nd that the distribution functional forms
of uncertain variables are quite di�erent from those
of fuzzy variables. On the other hand, the two
theoretical foundations are the uncertainty theory and
the fuzzy set theory, respectively. We study the
uncertain multidimensional knapsack problem within
the framework of uncertain programming, while the
paper [18] investigates the fuzzy knapsack problem
based on the fuzzy programming, so our numerical
example is quite di�erent from the example given
in [18].

Like the previous studies (Zhang and Peng [24],
Gao [25], and Peng et al. [29], to name a few), we
assume that values �j of eight items and capacities
�i of four knapsacks are independent zigzag uncertain
variables, which are listed as follows:

�1 � Z(24; 26; 28); �2 � Z(23; 24; 25);

�3 � Z(20; 22; 24); �4 � Z(23; 25; 27);

�5 � Z(29; 31; 33); �6 � Z(27; 28; 29);

�7 � Z(23; 26; 29); �8 � Z(30; 32; 34);

�1 � Z(32; 62; 92); �2 � Z(37; 77; 97);

�3�Z(50; 80; 110); �4 � Z(60; 80; 100):

Additionally, all weights, �ij , of each item in each
dimension are listed in Table 1. Let items I1, I3, I5,
and I7 be considered for discount with the minimum
weights as 70%, 80%, 85%, and 90% of the total
available objects, respectively. So, mathematically,
m1 = 0:7, m3 = 0:8, m5 = 0:85, and m7 = 0:9. The
total discount is D = 6. We assume that similar to
the item values and knapsack capacities, the discounts
are also zigzag uncertain variables, which are listed as
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Table 1. The weights �ij of each item in each dimension.

Items/dimensions 1 2 3 4
1 Z(5; 13; 19) Z(6; 8; 11) Z(7; 12; 15) Z(5; 9; 13)
2 Z(5; 9; 13) Z(10; 12; 13) Z(5; 8; 12) Z(10; 12; 15)
3 Z(8; 12; 14) Z(8; 13; 17) Z(7; 12; 13) Z(6; 9; 13)
4 Z(5; 9; 13) Z(12; 14; 16) Z(10; 13; 17) Z(7; 12; 15)
5 Z(6; 9; 13) Z(7; 12; 15) Z(10; 13; 15) Z(5; 7; 10)
6 Z(10; 12; 17) Z(8; 10; 15) Z(10; 11; 14) Z(17; 18; 23)
7 Z(10; 13; 18) Z(5; 10; 13) Z(11; 14; 19) Z(11; 15; 19)
8 Z(10; 12; 16) Z(5; 10; 14) Z(17; 18; 19) Z(17; 20; 22)

follows:

�1 � Z(3; 4; 5); �2 � Z(4; 6; 8);

�3 � Z(5; 6; 7); �4 � Z(8; 9; 10);

�5 � Z(7; 8; 9); �6 � Z(5; 6; 7);

�7 � Z(4; 7; 10); �8 � Z(6; 8; 10):

According to Theorem 4, the expected value model for
UMKP is equivalent to the following one:

max
8X
j=1

xj
Z 1

0
��1
j (�)d�;

subject to:

8X
j=1

xj
Z 1

0
	�1
ij (�)d� �

Z 1

0
��1
i (�)d�;

for i = 1; 2; 3; 4;

8X
j=1

yj
Z 1

0
F�1
j (�)d� � D;

xj 2 f0; 1g; yj 2 f0; 1g; for j = 1; 2; � � � ; 8. (7)

Taking by LINGO, we obtain the optimal solution to
Model (7) as follows:

(x1; x2; x3; x4; x5; x6; x7; x8)T=(0; 0; 0; 1; 1; 1; 0; 1)T ;

i.e. the decision-maker should carry goods 4, 5, 6, and
8 into the bag, and the expected maximum total value
of the items that can be carried in the bag is 116.

Assume that the con�dence levels are � = � =
 = 0:9. According to Theorem 5, the chance-
constrained programming model for UMKP is equiv-
alent to the following one:

maxV;

subject to:

8X
j=1

xj��1
j (0:1) � V;

8X
j=1

xj	�1
ij (0:9) � ��1

i (0:1); for i = 1; 2; 3; 4,

8X
j=1

yjF�1
j (0:1) � D;

xj 2 f0; 1g; yj 2 f0; 1g; for j = 1; 2; � � � ; 8: (8)

Using LINGO software, we obtain the optimal solution
to Model (8) as follows:

(x1; x2; x3; x4; x5; x6; x7; x8)T=(0; 0; 0; 1; 1; 1; 0; 1)T ;

i.e. the decision-maker should carry goods 4, 5, 6,
and 8 into the bag, and the best objective value is
110.4. Since the objective of the chance-constrained
programming model is a function of parameter �, the
sensitivity of the optimal objective can be investigated
with respect to di�erent parameters. The following
predetermined con�dence levels are selected to test the
sensitivity:

� = 0:1; 0:2; 0:3; 0:4; 0:5; 0:6; 0:7; 0:8; 0:9; 0:95:

The other predetermined con�dence levels are set as
follows:

� =  = 0:9:

By choosing di�erent con�dence levels, �, we obtain
Table 2. From Table 2, we �nd out that � has
an e�ect on the optimal solutions, so that the total
weight of the UMKP increases when the con�dence
level decreases, which just coincides with Theorem 6.
For understanding this results better, Figure 3 is given.
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Table 2. List of �-maximum pack when � =  = 0:9.

� 1� � �-maximum pack V � � 1� � �-maximum pack V �

0.95 0.05 (4, 5, 6, 8) 109 0.5 0.5 (4, 5, 6, 8) 116

0.9 0.1 (4, 5, 6, 8) 110.4 0.4 0.6 (2, 3, 6, 8) 117.2

0.8 0.2 (4, 5, 6, 8) 111.8 0.3 0.7 (2, 3, 6, 8) 118.4

0.7 0.3 (4, 5, 6, 8) 113.2 0.2 0.8 (2, 3, 6, 8) 119.6

0.6 0.4 (4, 5, 6, 8) 114.6 0.1 0.9 (2, 3, 6, 8) 120.8

Figure 3. The sensitivity of the optimal value with
di�erent � of Example 3.

Example 4. To further show the application of the
models, more complex experiments have been done.
Suppose that there are sixteen items and eight knap-
sacks. Let m1 = 0:7, m3 = 0:8, m5 = 0:85, m7 = 0:9,
m9 = 0:9, m11 = 0:95, m13 = 0:8, m15 = 0:9,
and D = 12. In this numerical experiment, all
uncertain parameters are assumed to be independent
linear uncertain variables. The relevant uncertain
parameters are shown in Tables 3-6.

Based on Theorem 4, the expected value model
for UMKP is equivalent to the following model:

Table 3. Values, �j , of sixteen items.

j �j j �j j �j j �j
1 L(32; 36) 5 L(33; 36) 9 L(34; 40) 13 L(35; 41)

2 L(34; 38) 6 L(34; 36) 10 L(37; 42) 14 L(38; 42)

3 L(32; 39) 7 L(32; 37) 11 L(34; 35) 15 L(31; 36)

4 L(36; 39) 8 L(36; 38) 12 L(41; 44) 16 L(42; 46)

Table 4. Capacities �i of eight knapsacks.

i 1 2 3 4

�i L(42; 102) L(47; 107) L(50; 120) L(70; 120)

i 5 6 7 8

�i L(50; 100) L(40; 115) L(40; 100) L(74; 120)

Table 5. Discount coe�cients �j of sixteen items.

j � j j � j j � j j � j
1 L(3; 5) 5 L(3; 6) 9 L(5; 10) 13 L(5; 11)
2 L(4; 6) 6 L(3; 6) 10 L(8; 12) 14 L(8; 13)
3 L(2; 7) 7 L(3; 8) 11 L(3; 12) 15 L(3; 15)
4 L(6; 8) 8 L(6; 11) 12 L(4; 15) 16 L(4; 14)

max
16X
j=1

xj
Z 1

0
��1
j (�)d�;

subject to:

16X
j=1

xj
Z 1

0
	�1
ij (�)d� �

Z 1

0
��1
i (�)d�;

for i = 1; 2; � � � ; 8;
16X
j=1

yj
Z 1

0
F�1
j (�)d� � D;

xj 2 f0; 1g; yj 2 f0; 1g; for j = 1; 2; � � � ; 16. (9)

With the help of mathematical software LINGO, we
can solve this 0-1 programming problem (9). The result
shows that the decision-maker should carry goods 2, 3,
5, 7, 9, 12, 13, and 14 into the bag, and the expected
maximum total value of the items that can be carried
in the bag is 296.

Assume that the con�dence levels are � = � =
 = 0:9. Based on Theorem 5, the chance-constrained
programming model for UMKP is equivalent to the
following one:

maxV;

subject to:

16X
j=1

xj��1
j (0:1) � V;

16X
j=1

xj	�1
ij (0:9)���1

i (0:1); for i = 1; 2; � � � ; 8;
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Table 6. Weights, �ij , of each item in each knapsack.

Items/knapsack 1 2 3 4 5 6 7 8

1 L(5; 19) L(6; 11) L(7; 15) L(5; 13) L(13; 19) L(8; 11) L(12; 15) L(9; 13)
2 L(5; 13) L(10; 13) L(5; 12) L(10; 12) L(9; 13) L(12; 13) L(8; 12) L(12; 15)
3 L(8; 14) L(8; 17) L(7; 13) L(6; 13) L(12; 14) L(13; 17) L(12; 13) L(6; 13)
4 L(5; 13) L(12; 16) L(10; 17) L(7; 12) L(9; 14) L(14; 16) L(13; 17) L(13; 15)
5 L(6; 13) L(7; 15) L(10; 15) L(5; 7) L(9; 13) L(12; 15) L(13; 15) L(7; 10)
6 L(10; 17) L(8; 15) L(10; 14) L(17; 23) L(12; 17) L(10; 15) L(11; 14) L(18; 23)
7 L(10; 18) L(5; 13) L(11; 19) L(11; 15) L(13; 18) L(10; 13) L(14; 19) L(15; 19)
8 L(10; 16) L(5; 14) L(17; 19) L(17; 22) L(12; 16) L(10; 14) L(18; 19) L(20; 22)
9 L(5; 19) L(6; 11) L(7; 15) L(5; 9) L(13; 19) L(8; 11) L(12; 15) L(9; 13)
10 L(5; 13) L(10; 13) L(5; 12) L(10; 15) L(9; 13) L(12; 13) L(8; 12) L(12; 15)
11 L(8; 14) L(8; 17) L(7; 13) L(6; 13) L(12; 14) L(13; 17) L(12; 13) L(9; 14)
12 L(5; 13) L(12; 16) L(10; 17) L(7; 12) L(9; 13) L(14; 16) L(13; 17) L(12; 16)
13 L(6; 13) L(7; 15) L(10; 15) L(5; 10) L(9; 15) L(12; 15) L(13; 15) L(7; 10)
14 L(10; 17) L(8; 15) L(10; 14) L(17; 23) L(12; 17) L(10; 15) L(11; 14) L(18; 23)
15 L(10; 18) L(5; 13) L(11; 19) L(11; 15) L(13; 18) L(10; 13) L(14; 19) L(15; 19)
16 L(10; 16) L(5; 14) L(17; 19) L(17; 22) L(12; 16) L(10; 14) L(18; 19) L(20; 22)

16X
j=1

yjF�1
j (0:1) � D;

xj 2 f0; 1g; yj 2 f0; 1g; for j = 1; 2; � � � ; 16: (10)

By using the mathematical software LINGO, the op-
timal solution to Model (10) can be obtained as x1 =
x3 = x4 = x7 = x9 = x11 = x13 = x15 = 1, and the
other remaining variables are equal to 0. The optimal
value of the objective is equal to 294.6.

If the weights, values, and capacities are general
uncertain variables, then it is di�cult for us to obtain
their uncertainty distributions. Therefore, we can use
uncertain statistics [21] to determine the uncertainty
distribution. With the help of the designed ques-
tionnaire survey, the uncertainty distribution can be
determined from the expert's experimental data by
using the principle of least squares, the method of
moments, the Delphi method, and so on [33].

6. Conclusions and future research

In the real-life industrial engineering applications, we
usually encounter the uncertain factors due to lack
of observed data about the unknown state of nature.
Di�erent from previous studies in indeterminacy envi-
ronment, this paper mainly investigated multidimen-
sional knapsack problem under uncertain environment
with discount constraint, where the weights, values,
and capacities of each item were depicted as uncertain
variables. This work provided signi�cant contributions
to the existing research in the area of uncertain net-
work optimization in which the relevant parameters

might be characterized by uncertain variables and have
signi�cant implications in the real-world industrial
engineering applications.

The main contributions of this paper include
the following three aspects. Firstly, in order to deal
with uncertain factors in multidimensional knapsack
problem, the uncertainty theory was introduced into
the problem under the light of uncertain environment.
Secondly, two types of mathematical models for uncer-
tain multidimensional knapsack problem were proposed
according to two kinds of decision criteria, i.e. the
expected value and the critical value criteria. We found
out that the maximum value of chance-constrained pro-
gramming model was actually decreasing with respect
to the predetermined con�dence level. Thirdly, some
numerical examples were given to show the applications
of the proposed models. In the numerical examples, we
employed two kinds of uncertain variables, i.e. linear
uncertain variables and zigzag uncertain variables, to
characterize the weights, values, and capacities of the
multidimensional knapsack problem. The numerical
results illustrated that the proposed models are feasible
and e�cient for solving the multidimensional knapsack
problem with uncertain parameters.

It should be noted that the proposed uncertain
programming models in this paper have their unique
advantages; that is, they can be easily transformed
into their corresponding deterministic equivalent model
which can be solved by the classical methods conve-
niently. In spite of these advantages, a few issues
need to be addressed in the future. For example, we
can continue to study the minimum weight dominating
set problem and the maximum bi-section problem in
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uncertain environment within the axiomatic framework
of uncertainty theory. In addition, the current work
can be extended to the uncertain random environ-
ment [34,35] where uncertainty and randomness coexist
in a system. What's more, the situation in which
the decision-makers adopt the minimax regret crite-
rion [32,36] to make the decisions in the uncertain mul-
tidimensional knapsack problem might be considered.
While these issues beyond the scope of the present
study, we believe they can be potential avenues for
future studies.
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