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Abstract. Recently, an alternative multi-delivery policy into imperfect Economic
Production Quantity (EPQ) inventory model with partial rework has been proposed, which
considers the number of shipments as a �xed and given value. This paper, treating the long-
run average costs per unit time as a function of replenishment lot size Q and the number
of shipments n, adopts the di�erential calculus approach to get the optimal solution of Q
and n jointly. In numerical examples, it is illustrated that the solution procedure is simple
and accurate.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

An interesting research topic in inventory theory is the
development of inventory models when the manufac-
turing system produces defective items which can be
reworked. Within this context, Chiu et al. [1] proposed
a multi-delivery policy into an imperfect Economic
Production Quantity (EPQ) inventory model with
partial rework. Essentially, they treat their long-run
average cost as a function of the replenishment lot size,
Q. Consequently, the long-run average cost function
of Chiu et al. [1] is a function of only one decision
variable, Q. Furthermore, they consider the number
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of shipments, n, as a constant. Conversely, C�ardenas-
Barr�on et al. [2] generalized the model of Chiu et
al. [1] to allow the number of shipments, n, to be a
decision variable, such that the long-run average cost
is a function of two decision variables, Q and n. A
solution procedure to determine both Q and n is also
proposed.

Following the approach of C�ardenas-Barr�on et
al. [2], this paper adopts the calculus approach to
obtain the optimal solution of Q and n jointly. The
solution procedure simpli�es that of C�ardenas-Barr�on
et al. [2]. Research on EPQ inventory models with
partial rework can be found in C�ardenas-Barr�on et
al. [2], Chiu et al. [1], Sana [3], Sana [4], Sana and
Goyal [5], and their references.

In the following paper, Section 2 presents the
mathematical formulation of the inventory model. Sec-
tion 3 proposes two theorems to locate the optimal
solution. Section 4 illustrates the use of the theorems
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with numerical examples. Finally, a remark conclusion
is given.

2. Model formulation

We adopt all of the notation and assumptions described
in Chiu et al. [1] and C�ardenas-Barr�on et al. [2] to
establish a new manufacturing model which allows
the number of shipments n to be a decision variable.
Following Chiu et al. [1] and C�ardenas-Barr�on et al. [2],
we can get the long-run average costs, E[n;Q], per unit
time for the new manufacturing model as follows:
E[n;Q] =  3 +  2(n)Q�1 +  1(n)Q; (1)

where:
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3. The optimal solution (n�; Q�) of E[n;Q]

When n is given, Chiu et al. [1] obtain the optimal
replenishment lot size Q�(n) as:

Q�(n) =

s
2(K + (n+ 1)K1)�

A� B
n +D

: (8)

So, the optimal solution (n�; Q�) of E[n;Q] can be
obtained by:

E[n�; Q�] = minimum
n�1

fE[n;Q�(n)]g : (9)

If we treat n as a continuous variable, Eqs. (8) and (9)
yield:
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Incorporating Eqs. (10) and (11), we have:
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Eq. (12) illustrates that if B � 0, then E[n;Q�(n)] is
increasing with respect to n � 1. So, based on Eq. (9),
we have:

E[n�; Q�] = E[1; Q�(1)]

= minimize
n�1

fE[n;Q�(n)]g if B � 0: (13)

Consequently, if B � 0, we have n� = 1 and Q� =
Q�(1) =

q
2(K+2K1)�
A�B+D . Therefore, we conclude that

the optimal number of shipments is n� = 1 if B � 0.
Hence, we obtain the following results.

Theorem 1: Suppose that B � 0. Then:

(i) E[n;Q�(n)] is increasing with respect to n � 1;

(ii) The optimal solution, (n�; Q�), of E[n;Q] can
be expressed by Eq. (13), that is (n�; Q�) =

(1; Q�(1)) = (1;
q

2(K+2K1)�
A�B+D );

(iii) The optimal number of shipments of the proposed
model is n� = 1.

Conversely, if B < 0, there exist two cases:

Case (I): IfA+D � 0, Eq. (12) implies dE(n;Q�(n))
dn <

0 for all n � 1. So, E[n;Q�(n)] is decreasing on n � 1.
Therefore, (n�; Q�) = (1;1);

Case (II): If A+D > 0, Eq. (12) implies:
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Eqs. (14a), (14b), and (14c) reveal that dE[n;Q�(n)]
dn is

decreasing on (0;
] and increasing on [
;1). Let n0 =
b
c = the greatest integer � 
. Then, we have the
following results.

Theorem 2: Suppose that B < 0. Then:

Case (I): If A+D � 0, then (n�; Q�) = (1;1);

Case (II): If A + D > 0, then E[n�; Q�] =
minimumfE[n0; Q�(n0)]; E[n0 + 1; Q�(n0 + 1)]g. That
is, (n�; Q�) = (n0; Q�(n0)) or (n0 + 1; Q�(n0 + 1))
associated with the less cost.

4. Numerical examples

In this paper, all instances in C�ardenas-Barr�on et al. [2]
are used for comparison. The data are shown in
Table 1. Table 2 reveals that all optimal solutions are
consistent with those in C�ardenas-Barr�on et al. [2].

5. Conclusion

C�ardenas-Barr�on et al. [2] treated the long-run average
costs per unit time for the model of Chiu et al. [1] as
a function of the replenishment lot size, Q, and the
number of shipments n. Since n is restricted to being
an integer number, they did not use the di�erential
calculus approach to �nd the optimal solution (n�; Q�).
Basically, they adopted the approach of Garc��a-Laguna
et al. [6] and used Eqs. (13) and (14) in C�ardenas-
Barr�on et al. [2] to develop the algorithm for locating
the optimal solution (n�; Q�). However, this paper
considered n as a continuous variable and used the
di�erential calculus approach to obtain Theorems 1
and 2 to locate the optimal solution (n�; Q�). There
exist two cases:

Case (I): When B � 0, then (n�; Q�) = (1; Q�(1));

Case (II): When B < 0 and A+D > 0, then:

(n�;Q�)

=minimizef(n0; Q�(n0)); (n0+1; Q�(n0+1))g;
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Table 1. Data of the instances in C�ardenas-Barr�on et al. (2012) [2].

Parameter Instance 1 from
Chiu et al. (2012) [1]

Instance 2 Instance 3 Instance 4 Instance 5 Instance 6

C 100 190 21 100 120 300
CR 60 170 5 50 110 100
Cs 20 100 4 25 80 20
CT 0.1 40 3 40 60 5
K 20000 4000 400 65690 4000 89000
K1 4350 1 0.1 0.5 1 9.8
h 20 30 10 10 90 150
h1 40 20 30 3 80 50
� 3400 560 210 300 400 600
P 60000 590 260 300 800 1200
P1 2200 360 130 200 200 300
x U(0; 0:3) U(0; 0:21) U(0; 0:11) U(0; 0:4) U(0; 0:69) U(0; 0:35)

E(x) 0.15 0.105 0.055 0.2 0.345 0.175
� 0.1 0.3 0.26 0.4 0.65 0.2

E(1=(1� x)) 0.18889164 1.12248730 1.0593983 1.27706405 1.6973666 1.23080833
E(x=(1� x)) 0.1889164 0.12248730 0.0593983 0.27706405 0.6973666 0.23080833
E(x2=(1� x)) 0.0389164 0.01748730 0.00493983 0.07706405 0.3523666 0.0550833

Table 2. The optimal solution of E[n;Q].

Parameters Instance
1 2 3 4 5 6

B 10.325275 {1.523229 {0.104973 {0.92400 {20.07692 {0.11625
A {0.29032 39.65082 5.532814 23.16403 53.42922 43.47971
D 17.99790 0.98289 1.88041 {0.41120 23.80281 54.25375

 | 12.24683 7.52697 73.04401 32.25033 3.286856
n0 1 12 7 73 32 3
 3 374512.58883 141306.76304 5159.51912 47217.39130 101974.86304 198668.39378

 2(n0) 99065989.84772 2320371.70883 85389.06361 21432717.39130 2079535.93297 55361160.62176
 2(n0 + 1) | 2320949.92256 85410.36827 21432880.43478 2080051.56300 55367253.88601
 1(n0) 3.74736 21.04318 3.76799 12.37254 50.18333 50.65918

 1(n0 + 1) | 21.03814 3.76704 12.37245 50.17107 50.65416
Q�(n0) 5141.61287 332.06497 150.53795 1316.16125 203.56518 1045.37842

Q�(n0 + 1) | 332.14613 150.57573 1316.17120 203.61527 1045.48774
E[n0; Q�(n0)] 413047.57481 155282.17086 6293.97144 79785.91957 122406.01888 304584.41390

E[n0+1; Q�(n0+1)] | 155282.23779 6293.96978 79785.92110 122406.05676 304584.99488
(n�; Q�) (1; Q�(1)) (12; Q�(12)) (8; Q�(8)) (73; Q�(73)) (32; Q�(32)) (3; Q�(3))

where:

n0 =

$s�B(K +K1)
K1(A+D)

%
:

Compared with the solution procedure for Cases
1-1 and 1-2 described in C�ardenas-Barr�on et al. [2],
the one shown by Theorems 1 and 2 in this paper

is simpler. In addition, numerical examples illustrate
that our solution procedure is rather accurate. A
relevant managerial insight is that we consider the
number of shipments in the paper as a decision variable
and also as an integer value. Future research directions
are in line for applying our proposed solution procedure
to other inventory models and also extending it to more
realistic situations such as considering di�erent types of
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variable demand, e.g. stock-dependent demand, credit-
linked demand, and advertisement-dependent demand.
These are some interesting research directions on which
studies can be done in the near future.
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