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Abstract. Data Envelope Analysis (DEA) is an approach to estimating the relative
e�ciency of Decision-Making Units (DMUs). Several studies have been conducted in order
to prioritize e�cient units, and some useful models, such as Cross-E�ciency Matrix (CEM),
have been presented. Besides, a number of DEA models with interval data have been
developed, and ranking DMUs with such data has been carried out. However, presenting an
obtained crisp data derived from interval data is a critical problem; hence, many researches
have been conducted so as to compute the weights and average of the interval data. This
paper proposes a new algorithm to �nd highly suitable weights by applying a data mining
approach of DMU's data. For this purpose, clustering and a pair-wise comparison matrix
were employed to estimate the given relative e�ciency of CEM. Results indicate that there
is a meaningful di�erence between e�ciency of DMUs with the lower bound and that of
DMUs with the upper bound.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Data Envelop Analysis (DEA) is a linear programming
model and a non-parametric approach that evaluates
relative technical e�ciency of Decision-Making Units
(DMUs) on the basis of multiple inputs and outputs by
computing the ratio of weighted sum of their outputs
to their inputs [1]. This technique has been used in
many �elds successfully with crisp values; however,
in real application, there are inaccurate data similar
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to probabilistic, interval, ordinal, qualitative, or fuzzy
data. Hence, some researchers have developed several
theoretical frameworks of DEA model with data such
as interval [1]. Although there are many models and
techniques to solve such a problem, there is a new
problem, that is, ranking the e�cient DMUs with
interval data. Thus, in some researches, DMUs were
ranked by these ideal points [2,3]. There are several
models to rank DMUs with crisp data [4]. However,
in all researches, ranking DMUs with interval data has
been done using ranking approaches, such as AHP or
TOPSIS or hybrid algorithm, to �nd suitable weights
in order to calculate crisp e�ciency basis of interval
inputs and outputs. Therefore, a new approach was
conducted using data mining techniques, similar to
clustering, to obtain these weights as a new model.
Jahanshahloo et al. [5] focused on ranking DMUs using
ideal points (ideal points are obtained by improving
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lower bounds of DMUs) by formulating the interval
DEA model in order to achieve an e�ciency interval
including evaluations from both the optimistic and
the pessimistic viewpoints. Wu et al. [3] presented a
method for ranking the performance of DMUs, named
cross-e�ciency method, with interval data in the DEA
model to calculate the interval of cross-e�ciency values
based on TOPSIS method. Akbarian [6] introduced a
method for ranking all extreme and non-extreme DEA-
e�cient DMUs based on the cross-e�ciency and Ana-
lytic Hierarchy Process (AHP) methods. Jahanshahloo
et al. [5] proposed a cross-e�ciency model based on
super-e�ciency for ranking units through the TOPSIS
approach. The proposed method was extended to
interval data. One of the main drawbacks of the
cross-e�ciency method is that di�erent optimal weights
associated with the e�ciency score of a given DMU
may exist. In their work, a super-e�ciency model was
presented to overcome this problem.

The aim of this paper is to combine clustering
method with AHP (Analytic Hierarchy Process) using
Sexton method, which is considered to be the novelty
of this work. The rest of this paper is structured
as follows. In Section 2, an overview of the research
techniques includes DEA model, interval DEA model,
cross-e�ciency matrix, and cluster analysis, to be
discussed. In Section 3, a multi-step algorithm is
introduced to compute the weights of the combination
of lower and upper bound e�ciencies of DMUs. There-
fore, crisp e�ciency, instead of the interval e�ciency,
is obtained. In Section 4, a case study about e�ciency
evaluation of a commercial bank branch in Iran is
implemented to illustrate and validate the proposed
method. Finally, the conclusion section is given at the
end of the paper.

2. Overview of the research techniques

2.1. DEA models
It is assumed that there are n DMUs to evaluate and
index by j = 1; 2; � � � ; n; each DMU is assumed to
produce di�erent s outputs from di�erent m inputs.
Let the observed input and output vectors of DMUj be
Xj = (x1j ; x2j ; � � � ; xmj) and Yj = (y1j ; y2j ; � � � ; ymj),
respectively, where all components of vectors Xj and
Yj for all DMUs are non-negative, and each DMU
has at least one strictly positive input and output.
vi(i = 1; � � � ;m) is the input weight of x vectors.
yr(r = 1; � � � ; s) is the output weight of y vectors.
Weights of vi and yr are positive. In the previous
section, DEA technique was de�ned completely. In this
part, existing models are described in relation to DEA.
There are three commonly orientations for DEA model,
which can be formulated as follows:

1. Model 1 is an input-oriented CCR model related

to the minimizing level of the inputs in order to
achieve a given level of the outputs. Therefore, the
further the value of � gets from unity, the more ideal
the condition of the problem will be:

min �p =
mX
i=1

vixip

,
sX
r=1

uryrp ;

subject to:
mX
i=1

vixij

,
sX
r=1

uryrj � 1 j = 1; � � � ; n;

ur; vi � 0: (1)

2. Model 2 is an output-oriented CCR model con-
cerned with the maximizing level of the outputs
per given level of the inputs. Hence, the further
the value of � gets from unity, the more ideal the
condition of the problem will be [7-9]:

max �p =
sX
r=1

uryrp

,
mX
i=1

vixip ;

subject to:
sX
r=1

uryrj

,
mX
i=1

vixij � 1 j = 1; � � � ; n;

ur; vi � 0: (2)

3. Base-oriented model, unlike the others, pertains to
the optimal combination of the inputs and outputs.
Consequently, this model has control over inputs as
well as outputs, concluding the e�ciency of input
utilization and e�ciency of output production [8].

2.2. Interval DEA models
Entani and Tanaka [10] already proposed the interval
DEA model to obtain the e�ciency interval. The
e�ciency interval is represented by its upper and lower
bounds.

Instead of exact data, models with interval data
will be applied in order to rank DMUs. Input-oriented
model with interval data for upper and lower bound
e�ciencies is formulated, respectively, as follows:

Upper bound e�ciency:

�U = max
sX
r=1

uryUrp;

subjected to:
mX
i=1

vixLip = 1;

sX
r=1

uryLrj �
mX
i=1

vixUij � 0;
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j = 1; � � � ; n; j 6= p;

sX
r=1

uryUrp �
mX
i=1

vixLip � 0;

vi; ur � 0: (3)

Lower bound e�ciency:

�L = max
sX
r=1

uryLrp;

subjected to:
mX
i=1

vixUip = 1;

sX
r=1

uryUrj �
mX
i=1

vixLij � 0;

j = 1; � � � ; n; j 6= p;

sX
r=1

uryLrp �
mX
i=1

vixUip � 0;

vi; ur � 0: (4)

The purpose of Models 3 and 4 is to raise the
maximum e�ciency in the interval state. Input and
output vectors are individually considered as interval
and Upper (U) and Lower (L) bounds. Two states
are considered for each of input and output vectors:
In the �rst state, the input value is minimum and
maximum such that Xij 2 [xLij ; xUij ]. In the second
state, the output value is minimum and maximum such
that Yrj 2 [yLrj ; yUrj ].

The purpose of Model 3 is to �nd the best
condition of unit under assessment, DMUp, which
includes xij(p) and yrj(p) vectors. In this model, the
goal is to �nd an increase in outputs and a decrease in
inputs for the unit under assessment. On the contrary,
for other units (j 6= p), the purpose is to �nd the
worst condition, implying a decrease in outputs and
an increase in inputs. In Model 4 (lower bound, �L),
the objective is �nding the worst condition for DMUp
which consists of xij(p) and yrj(p). In this model, the
target is to �nd a decrease in outputs and an increase
in inputs for the unit under assessment. Contrarily,
for other units (j 6= p), the purpose is to �nd the best
condition, implying a mean increase in outputs and a
decrease in inputs.

2.3. Cross-e�ciency matrix
Sexton et al. [11] introduced the cross-e�ciency matrix
in 1986. This approach aids us in evaluating e�ciency
of one DMU considering the optimal input and output

weights of another DMU [9]. Matrix element, �ij , of the
Cross-E�ciency Matrix (CEM) in the ith column and
the jth row of CEM represents the e�ciency of DMUi
when evaluated with the optimal weights of DMUj ,
according to the following relationship:

�DMUj
DMUi = �ij = e�i(uj ; vj) =

sX
r=1

uryrp: (5)

It is expected that `good' DMU has several high values
in its row.

2.4. Cluster analysis
Clustering is a popular data mining approach that
deals with the separation of a set of objects from
a useful set of mutually exclusive clusters in order
that the similarity between the observations from the
di�erent clusters (i.e., subset) is low, whereas the
similarity between the observations within each cluster
is high [8]. Unlike decision trees which assign a class to
an instance (supervised method), clustering procedures
are applied when instances are divided into natural
groups (unsupervised method). There are di�erent
ways of producing these clusters. The groups may
be exclusive, that is, any instance belongs to only one
group:

1. Probabilistic or fuzzy, i.e., an instance belongs
to each group to a certain degree or probability
(membership value);

2. Hierarchical group: There is a crude division of
instances into groups at the top level, and each
of these groups is re�ned further up to individual
instances [12].

In other literature, the overview of the two general
approaches to clustering was provided: hierarchical
clustering and partitional clustering (e.g., k-means,
k-median). The hierarchical clustering could make
clusters by one of the two methods: agglomerative or
divisive. An agglomerative method assumes that each
data point is its own cluster and, with each step of
the clustering process, these clusters are combined to
form larger clusters, which are eventually combined
to form a single cluster [13]. A divisive method of
the hierarchical clustering, on the contrary, commences
with the single cluster including all data points within
the sample and proceeds to divide it into the smaller
dissimilar clusters. Unlike hierarchical clustering, k-
means clustering requires the number of resulting
cluster, k, to be speci�ed prior to analysis. Thus, k-
means clustering will produce di�erent k clusters of the
greatest possible distinction [8].

3. Methodology

In this section, a multi-step algorithm is introduced
to compute the weights of the combination of lower
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and upper bound e�ciencies of DMUs so that the
crisp e�ciency can be obtained rather than the interval
e�ciency.

In the proposed algorithm, there are �ve stages as
follows:

1. Evaluating e�ciency of DMUs: The DMU's per-
formance is measured using DEA (�L; �U ) based
on Eqs. (3) and (4). It is underlined that input-
oriented model was applied, because, in the con-
ducted research by Samoilenko et al. (2008) [13],
the most natural grouping of DMUs was provided
by the results of that model using a Constant
Return to Scale (CRS) criterion (i.e., CCR model);

2. Applying the cross-e�ciency matrix: The e�cient
DMUs are prioritized according to CEF and Eq. (5).
The matrices are implemented as in Tables 1 and 2.

3. Cluster analysis of upper and lower bounds: The
DMUs are clustered using the k-mean approach
(indicators including outputs and inputs as the
attributes):

a. Clustering of DMUs with lower e�ciency is done
according to the data points of Table 3;

b. Clustering of DMUs with upper e�ciency is
applied by the data points of Table 4.

4. Obtaining the score for each cluster: The average
relative e�ciency of some clusters identi�ed in the

Table 1. CEM for the lower e�ciency of the DMU.

1 2 3 � � � n Avg.

1 �L11 �L12 �L13 � � � �L1n
�Pn

j=1 �
L
1j

�
=n

2 �L21 �L22 �L23 � � � �L2n
�Pn

j=1 �
L
2j

�
=n

� � � � � � � � � � � � � � � � � � � � �
n �Ln1 �Ln2 �Ln3 � � � �Lnn

�Pn
j=1 �

L
nj

�
=n

Table 2. CEM for the upper e�ciency of the DMU.

No. 1 2 3 � � � n Avg.

1 �U11 �U12 �U13 � � � �U1n
�Pn

j=1 �
U
1j

�
=n

2 �U21 �U22 �U23 � � � �U2n
�Pn

j=1 �
U
2j

�
=n

� � � � � � � � � � � � � � � � � � � � �
n �Un1 �Un2 �Un3 � � � �Unn

�Pn
j=1 �

U
nj

�
=n

Table 3. Clustering with lower e�ciency.

Indicators

A
tt

ri
b
u
te

s xL11 xLi1 xLm1 yL11 yLr1 yLs1
� � � � � � � � � � � � � � � � � �

xLij yLrj
xL1n xLin xLmn yL1n yLrj yLsn

Table 4. Clustering with upper e�ciency.

Indicators Cluster no.

A
tt

ri
b
u
te

s xU11 xUi1 xUm1 yU11 yUr1 yUs1
� � � � � � � � � � � � � � � � � �

xUij yUrj
xU1n xUin xUmn yU1n yUrj yUsn

previous step is computed according to the research
by semoilinko et al. (2008). It is noted that average
of the clusters in the lower bound is di�erent from
that for clusters in the upper bound.

5. Assigning the relative weight to each DMU: A
numerical scale and a derived graphic scale in
AHP are approximated (analytic hierarchy process)
and assigned to each cluster according to given
score. A pair-wise comparison matrix is used in
order to obtain relative importance for indices (e.g.,
clusters) and rank them. In fact, results indicate
relative importance of DMU within each cluster
considering the obtained relative importance of its
cluster.

As a result, the �nal crisp e�ciency of each DMU
is calculated by computing Weighted Average (W.A.)
of (

Pn
j=1 �

L
1j)=n and (

Pn
j=1 �

U
1j)=n. Therefore, more

W.A. indicates more ranks for each DMU. The pro-
posed algorithm is shown in Figure 1 [14].

4. Numeric example and results

4.1. Data
The numerical example is taken into account, and this
approach is applied to the selected commercial bank
branch in Iran, used as interval data in the conducted
research by Jahanshahloo and Hosseinzadeh Lot� in
2009 [15] (reference of data). Each branch utilizes
three inputs to generate �ve outputs, and there are
20 branches. The three inputs are payable interest,
personnel, and non-performing loans. The �ve outputs
of the bank include the total sum of four main deposits,
other deposits, granted loans, received interest, and fee.

4.2. Implementation, results, and discussion
First, the cluster analysis is applied to the whole
data including 20 bank branches. For this purpose,
the k-means approach is employed according to the
introduced approach of the conducted research by
Samoilenko et al. in 2008 [13]; hence, they de�nedKmax
and �Outlier as parameters, and then Kmax clusters
was generated. Following the examination of the
segmentation with K clusters, they were able to show
that the current segmentation with K clusters does
not provide the natural grouping of DMUs; if K > 1,
there is at least one cluster that includes less than
�Outlier percentage of DMUs. Therefore, by decreasing
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Figure 1. Proposed algorithm for evaluating DMUs.

the number of clusters, the previous examination is
repeated in order to evaluate a new segmentation.
Otherwise, they could access the best segmentation
with K clusters.

It should be noted that �Outlier is an index to
identify natural clustering. Moreover, a silhouette
index introduced by Peter J. Rousseeuw in 1987 is
considered so as to �nd natural and quali�ed clustering.
Average silhouette width is inside the interval [�1; 1]
so that the value close to 1 indicates natural grouping
and that close to �1 indicates incorrect clustering.

Parameters Kmax and �Outlier are set to 5 and
10%; thus, with the average silhouette more than 0.5,
we could come up with two solutions that disaggregate
upper data and lower data into two and three clusters,
respectively. Results of clustering are shown in Table 5.

As discussed in the steps of algorithm, CCR
(constant return to scale) and input-oriented models
are applied in order to measure the relative e�ciency of
DMUs with interval data. Details are shown in Table 6.

In addition, the average relative e�ciencies of the
two and three identi�ed clusters of upper and lower
data are calculated separately, and the results are
shown in Table 7.

Table 5. Results of clustering.

Number of
clusters

Number of
DMUs in

each cluster

Average
Silhouette

width

U
p
p

er

Five clusters 1, 7, 1, 6, 5 0.2481
Four clusters 11, 5, 3, 1 0.4734
Three clusters 7, 1, 12 0.5098
Two clusters 12, 8 0.6037

L
ow

er Five clusters 3, 5, 8, 3, 1 0.2335
Four clusters 7, 1, 5, 7 0.2039
Three clusters 3, 14, 3 0.5735

Table 6. Interval e�ciency of DMU.

DMU (�L; �U) DMU (�L; �U)

1 (1.0, 0.29) 11 (1.0, 1.0)
2 (0.21, 0.77) 12 (0.32, 0.49)
3 (0.52, 1.0) 13 (0.44, 0.70)
4 (1.0, 1.0) 14 (0.25, 0.72)
5 (0.63, 0.38) 15 (0.41, 1.0)
6 (0.90, 1.0) 16 (0.22, 1.0)
7 (0.73, 1.0) 17 (1.0, 1.0)
8 (1.0, 1.0) 18 (0.26, 0.95)
9 (1.0, 1.0) 19 (0.99, 1.0)
10 (1.0, 1.0) 20 (0.18, 0.97)

Table 7. Score of clusters.

Cluster no. Score

Upper C1 0.9113
C2 0.8317

Lower
C1 0.9967
C2 0.6433
C3 0.5814

Table 8. Numerical scale of lower data.

Index C1 C2 C3

C1 1 2 7
C2 0.5 1 6
C3 0.143 0.167 1

Sum 1.643 3.147 14

In this stage, a numerical scale is approximated
considering the given score of each cluster (Tables 8
and 9). Therefore, the relative importance or the
weight of each DMU for upper and lower e�ciencies
is obtained (Table 10).

Finally, the crisp e�ciency of each DMU is com-
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Table 9. Numerical scale of upper data.

Index C1 C2
C1 1 2
C2 0.5 1

Sum 1.5 3

Table 10. Relative importance of clusters.

Cluster Weight

Upper C1 0.67
C2 0.33

Lower
C1 0.58
C2 0.35
C3 0.07

puted using the obtained relative weight and score
concerning to upper and lower data in interval data
(Table 11). The ranking process is implemented for
the following parts separately:

1. DMU with the interval e�ciency (�L = 1, �U = 1);

2. DMU with the interval semi-e�ciency (�L < 1,
�U = 1) or (�L = 1, �U < 1);

3. DMU with the interval ine�ciency (�L < 1, �U <
1).

It is noted that the e�cient value of DMUs is set
according to results of the cross-e�ciency matrix.

5. Conclusion

This paper studied the ranking methodology of DMUs
with the interval data. There are several approaches
to prioritizing DMUs using the combination of DEA
and ranking techniques such as AHP or TOPSIS. In
contrast, Data Mining (DM) techniques were applied,
similar to cluster analysis, in order to investigate
partitional data (DMUs) based on their attributes.
Assigning the relative weights to DMUs with interval
data (lower and upper) helped compute the weighted
average of lower and upper data; however, the ap-
proximation of weights and suitable methodology to
obtain these is an important problem. Therefore,
clustering as a DM approach has the ability to explore
appropriate relative importance for all DMUs that
are similar to each other. On the other hand, the
e�ciency of DMUs was evaluated by applying DEA and
was ranked using the CEM approach. The proposed

Table 11. Ranking DMU with interval data.

(�L = 1; �U = 1)
DMU Score Weight Score Weight Crisp Rank

4 0.466 0.07 0.578 0.33 3.520857 4
8 0.7 0.58 1.195 0.67 2.750431 6
9 0.525 0.07 1.432 0.67 14.90129 2
10 0.959 0.07 4.097 0.33 20.60343 1
11 0.376 0.07 0.599 0.67 6.779286 3
17 0.892 0.58 1.257 0.67 3.014052 5

(�L < 1; �U = 1) or (�L = 1; �U < 1)
DMU Score Weight Score Weight Crisp Rank

1 1.166 0.35 0.29 0.67 2.391143 13
3 0.52 0.35 1.256 0.67 3.594343 9
6 0.9 0.07 0.659 0.33 4.336714 8
7 0.73 0.07 0.436 0.33 3.115429 11
15 0.41 0.35 1.136 0.67 3.254629 10
16 0.22 0.07 0.951 0.33 5.033286 7
19 0.99 0.58 1.128 0.67 2.963034 12

(�L < 1; �U < 1)
DMU Score Weight Score Weight Crisp Rank

2 0.21 0.07 0.77 0.33 4.17 16
5 0.63 0.07 0.38 0.33 2.751429 20
12 0.32 0.07 0.49 0.33 2.96 19
13 0.44 0.07 0.7 0.33 4.07 17
14 0.25 0.07 0.72 0.33 3.974286 18
18 0.26 0.07 0.95 0.33 5.068571 15
20 0.18 0.07 0.97 0.33 5.082857 14
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algorithm was employed for 20 bank branches. Results
show the crisp e�ciency obtained for each DMU by
using the combined cluster analysis, and CEM was
computed based upon the correct weighting. Because
this weighting originates from natural similarity of
DMUs to each other, their inputs and outputs have
been considered as attributes. Future works could
focus on the DEA and cluster analysis with fuzzy data.
In addition, the multi-stage DEA with fuzzy data can
be considered as our next research in the future.

Nomenclature

yLr Lower limit of an output vector
yur Upper limit of an output vector

xLi Lower limit of an input vector
xui Upper limit of an input vector
�u E�ciency of upper limit
�p E�ciency of \P" point
vi Input weight
ur Output weight
xi Input vector
yr Output vector

�L E�ciency of lower limit
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