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Abstract. Grey modeling is an alternative approach to time series forecasting with
growing popularity. There is no theoretical limitation to grey prediction models to
adapt to almost every process by taking the appropriate order. However, de�ciencies
of traditional higher-order models have made researchers overlook exibility and make
use of �rst-order models by default. In order to bridge the mentioned gap, this paper
makes two contributions. First, a novel discrete modeling is developed with the basic-form
equation, reconciling estimation and prediction processes. Second, the traditional least-
squares estimation technique is modi�ed by shifting the focus from nominal parameters to
parameters practically employed in the prediction process. The new approach named `Basic
Form'-focused Grey Model (BFGM) is applied to �rst-order, second-order, and Verhulst
grey models. Then, it is validated through comparing its performance with the traditional
approach's. Results show that, in most cases, BFGM makes considerable improvements
in simulation and prediction accuracy, while it has reasonable computational complexity.
Improvements are particularly dramatic when BFGM is applied to GM (2, 1). The resultant
BFGM (2, 1) is superior in simulation and short-term prediction and, therefore, can be
regarded as the basis for developing e�cient higher-order grey formulations.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Grey theory was introduced as a systems analysis
approach by Deng in 1982, quickly turning him into
the most-cited Chinese scholar [1]. It is called grey
because it is especially aimed at modeling systems with
limited information and partially unknown features.
It contrasts with white systems which are completely
known and black systems which the system modeler has
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no information about [2]. In other words, it focuses
on information incompleteness (greyness) instead of
information inaccuracy, contrary to the majority of
approaches to uncertainty. Today, grey theory is
among the most researched theories of uncertainty [1]
and is well known to many system analyzers because
of its successful implementation in di�erent �elds [2].

Grey prediction is a major component of grey
system theory [3] with increasing popularity among
forecasting researchers [2,4]. Such popularity may have
been derived from its ability to analyze limited data [5-
14], simple and e�cient computations [5-7,10,11,15],
and making no statistical assumptions [8,13]. In
addition to their countless applications to limited data,
grey prediction techniques have also proved applicable
to many high-frequency time series [2,3,14,16-23].
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Traditional grey prediction o�ers an assortment
of models. First-order models can be considered the
�rst generation of grey prediction models characterized
by their simplicity. However, this simplicity comes at
the price of a rigid structure adaptive to a narrow
range of real processes [21]. Higher-order models, on
the other hand, are capable of overcoming many of
these limitations. Nevertheless, most researches have
missed their remarkable advantages, especially due to
their complexity [19,21].

In lieu of utilizing higher-order models, most
researchers have developed a variety of revisions to the
�rst-order models, as summarized in Table 1. However,
there are a couple of researches that utilized the second-
order models, as shown in Table 2. Additionally,
nonstandard grey prediction models are also available.
Among these, Grey Verhulst Model (GVM) is an
important one [2,24-28] with widespread applications
[1,26]. It incorporates nonlinear features into the �rst-
order models while keeping them �rst-order. Being
well established, GVM is a current area of abundant
researches as Table 3 outlines.

Table 1 shows that most researchers working
on parameter estimation of �rst-order models have
missed the focal point, least-squares estimation of
primary parameters. A similar, yet bigger, research
gap is identi�ed in second-order models since the recent
literature has totally neglected to improve parameter
estimates therein, as implied by Table 2.

Most importantly, there is inherent inconsistency
in traditional grey models due to their continuous
prediction (simulation) process and discrete estimation
process [1,10,14,20,26,29-33]. Xie and Liu [32] proposed
a solution to this problem, called Discrete Grey Model
(DGM). It discretizes the whole algorithm to avoid
the error originating with skips from continuous to
discrete computations, and vice versa. As a milestone,
it has been applied to many further researches. Indeed,
every research involving discretization of the �rst-order
models in Table 1 has relied on DGM.

However, DGM does not adequately adhere to
the original grey modeling framework (Subsection 2.1)
as it omits the essential mean generation operation.
Moreover, Xie and Liu [32] focused only on discretizing
GM (1, 1). Notwithstanding theoretical feasibility of
DGM (n, h), our extensive literature review detected
no practical higher-order DGMs. Interestingly, the
few instances of discretization in Table 2, i.e., Chiang
and Tseng [17] and Chuang and Kao [7], are decade-
old researches being conducted before DGM was ever
introduced. Equally important, it is shown that
discretization of higher-order grey models has been
overlooked for years.

Furthermore, to the best of our knowledge, DGM
has never been customized for nonstandard grey mod-
els. This has led researchers to inexact applications

of DGM (1, 1)'s forecasting functions to GVM-based
forecasting problems, e.g., Wang et al. [31] and Xiao
and Qin [26]. It is noteworthy that Guo et al. [34]
managed to discretize GVM without relying on DGM.
Nonetheless, the lack of an exact discretization of
GVM persists since they only focus on a completely
transformed formulation of GVM.

Having targeted recognized research gaps, this
paper develops a new formulation named `Basic Form'-
focused Grey Model (BFGM) consisting of two main
contributions. First, BFGM introduces a novel mod-
eling for resolving leaps between continuous and dis-
crete computations, especially in higher-order and non-
standard models. Our proposed modeling reconciles es-
timation and prediction processes based on the discrete
equation known as basic form. Second, BFGM modi-
�es traditional least-squares for optimizing parameters
practically applied to the prediction (simulation) pro-
cess instead of optimizing nominal parameters. Notice
that BFGM focuses on primary (essential) parameters
of each grey model shared among all of its formulations
and not on its auxiliary (optional) parameters. Similar
to Xu et al. [27] and Zhu [28], the triplet of simple
�rst-order, second-order, and Verhulst grey models
are analyzed. By applying BFGM, these models are
respectively developed into BFGM (1, 1), BFGM (2,
1), and BFGVM in this research.

Despite the multitude of authors concerning com-
plexity when deciding among grey prediction models
[2,6,14,19,21,22,35], there are few authors actually
measuring it [22,23,36,37]. We believe that quan-
titative analyses can be the �rst step in relieving
the computational complexity of higher-order mod-
els. Therefore, our experimental analysis covers not
only the standard accuracy criterion, but also the
disregarded processing time statistics. In addition to
comparing the new formulation with the traditional
one, traditional grey models can be compared with
each other. Accordingly, the reported time-ine�ciency
of the second-order grey model may be particularly
investigated.

The remainder of this paper is organized as fol-
lows. Section 2 introduces computational procedures of
selected traditional grey prediction models. Section 3
describes our new formulation for these models. Sec-
tion 4 introduces the practical experimentation of all of
the models on some low-frequency and high-frequency
time series, making provisions for a detailed compar-
ative analysis. Eventually, Section 5 concludes results
and recommends some future research guidelines.

2. Traditional grey prediction models

2.1. The general grey modeling framework
GM (M , N) stands for standard Grey Model with an
underlying di�erential equation (Whitenization equa-
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Table 1. Major research trends on �rst-order grey models compared with this research.
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Table 2. Major research trends on second-order grey models compared with this research.
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Table 3. Major research trends on grey Verhulst model compared with this research.

P
re

p
ro

ce
ss

in
g

R
ol

li
n
g

m
ec

h
an

is
m

In
it

ia
l

co
n
d
it

io
n
s

D
ir

ec
t

m
od

el
in

g

A
d
ap

ti
n
g

to
n
on

-e
qu

id
is

ta
nt

d
at

a

H
yb

ri
d
iz

in
g

(s
im

p
le

ad
d
it

iv
e)

H
yb

ri
d
iz

in
g

(s
op

h
is

ti
ca

te
d
)

S
eq

u
en

ce
op

er
at

or
s

(m
ea

n
ge

n
er

at
io

n
)

T
ra

n
sf

or
m

in
g

m
ai

n
eq

u
at

io
n
s

(f
or

ec
as

ti
n
g

fu
n
ct

io
n
s)

P
ar

am
et

er
es

ti
m

at
io

n

D
is

cr
et

iz
at

io
n

(i
n
ex

ac
t)

D
is

cr
et

iz
at

io
n

(e
xa

ct
)

Wang et al. [25]
p p p p

Wang et al. [31]
p p p

Kayacan et al. [2]
p p p p

Zhu [28]
p p

Xu et al. [27]
p p

Xiao and Qin [26]
p p

Guo et al. [34]
p p p p p

Evans [24]
p p p

Bezuglov and Comert [5]
p p
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This research
p

tion) of order M holding 1 dependent plus N � 1
independent variables.

A de�ning characteristic of grey prediction is
preprocessing/post-processing by sequence operators,
e.g., accumulated generation, its inverse, and mean
generation.

Accumulation adapts grey models to quasi-
smooth sequences [1]. By applying the 1st-order Ac-
cumulated Generation Operation (1-AGO) to original
sequence (dependent) Y (0), the 1st-order accumulated
sequence Y (1) is formed as follows:

Y (1)(t) = Y (1)(t� 1) + Y (0)(t) =
tX

j=1

Y (0)(j);

t = 1; 2; : : : ; n: (1)

Inverse AGO (IAGO) complements AGO as its post-
processing. It is usually represented by operator �.
1-IAGO, i.e., the 1st-order IAGO, is formulated as
subtraction of two consecutive sequence values.

Mean generation is averaging on two successive
values (Eq. (2)) to smoothen data [24,30] or �ll missing
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Figure 1. Schematic comparison between the traditional and the proposed modeling. The �gure illustrates how the
proposed modeling avoids unnecessary leaps between continuous computations and discrete computations, which can be
identi�ed by light and dark gray boxes, respectively.

values [1]. It is usually formulated as follows:

Z(1)(t) =
Y (1)(t) + Y (1)(t� 1)

2
: (2)

Combined with Eq. (1), it can be transformed as
follows:

Z(1)(t) =
Y (0)(t) + 2Y (1)(t� 1)

2
: (3)

Traditional forecasting procedure comprises a bi-
partite solution of whitenization equation, as depicted
on the left side of Figure 1. The �rst part is
parameter estimation which requires to approximate
continuous whitenization equation into discrete basic-
form equation compliant with least-squares. The
second is prediction through calibrated whitenization
equation. Its solution called time response function
provides accumulated forecasts. Finally, 1-IAGO post-
processing creates the function that provides restored
values, i.e., non-accumulated forecasts.

2.2. Formulating traditional GM (1, 1)
GM (1, 1) is the basic grey model with whitenization
Eq. (4). It is also the most widely used mainly
due to its simplicity and computational e�ciency [2,
12,19,24,36,37]:

dY (1)(t)
dt

+ aY (1)(t) = b; t = 1; 2; : : : : (4)

The basic-form equation approximates integration and
di�erentiation to summation, i.e., AGO, and di�erence,
i.e., IAGO, respectively. In addition, it substitutes
Z(1) for Y (1) After simple manipulation, we have the
rearranged basic form:

Y (0)(t) = �aZ(1)(t) + b; t = 2; 3; : : : ; n; (5)

in which Z(1) is quanti�ed by Eq. (2). Formulated in

matrix term, it turns into:

Y0 = B:A; Y0 =

26664
Y (0) (2)
Y (0) (3)

...
Y (0) (n)

37775 ;

B =

26664
�Z(1) (2) 1
�Z(1) (3) 1

...
...

�Z(1) (n) 1

37775 ; A =
�
a
b

�
: (6)

Then, Eq. (7) derives least-squares parameters [1]:

Â = (BT :B)�1:BT :Y0: (7)

Now, the whitenization Eq. (4) can be solved to
establish the time response function. Tuned by tra-
ditional �rst-datum-based initial condition, it derives
accumulated forecasts Ŷ (1)(t). Then, 1-IAGO post-
processing gives restored values through Eq. (8):

Ŷ (0)(t) = (1� ea)(Y (0)(1)� b=a)e�a(t�1);

t = 2; 3; : : : : (8)

2.3. Formulating traditional GM (2, 1)
Instead of exploiting vast exibility of GM (M, N), the
literature has usually applied GM (1, 1) by default [2].
Despite its advantages, GM (1, 1) is inappropriate
for complicated time series, e.g., non-monotonic trends
[4,6,10,38]. Such de�ciency is best addressed by GM (2,
1), a standard grey model with whitenization Eq. (9):

d2Y (1)(t)
dt2

+ a1
dY (1)(t)

dt
+ a2Y (1)(t) = b;

t = 1; 2; : : : ; n: (9)
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Approximating the �rst and second derivatives of
Y (1)(t) to Y (0)(t) and �(1)Y (0)(t), respectively, fol-
lowed by replacing Y (1)(t) itself with Z(1)(t) provides
the basic form. Afterwards, we may readily sort out
some terms to obtain the rearranged basic form:

�(1)Y (0)(t) = �a1Y (0)(t)� a2Z(1)(t) + b;

t = 2; 3; : : : ; n; (10)

where Z(1) is calculated through Eq. (2). Translated
to matrix terms, Eq. (10) becomes:

�Y0 = B:A; �Y0 =

26664
�(1)Y (0) (2)
�(1)Y (0) (3)

...
�(1)Y (0) (n)

37775 ;

B =

26664
�Y (0) (2) �Z(1) (2) 1
�Y (0) (3) �Z(1) (3) 1

...
...

...
�Y (0) (n) �Z(1) (n) 1

37775 ; A=

24 a1
a2
b

35 :
(11)

Least-squares parameters are determined by Eq.
(12) [1].

Â = (BT :B)�1:BT :�Y0: (12)

Before solving Eq. (9), one should analyze its charac-
teristic by Eq. (13) [39]:

m2 + a1m+ a2 = 0: (13)

The solution procedure depends on the sign of discrim-
inant � = a2

1 � 4a2.
When the discriminant is a positive number (� >

0), is zero (� = 0), and is negative number (� < 0),
the following procedures are applied:

- Case I: � > 0. By acknowledging m1 =
1
2 (
p

�� a1) and m2 = �1
2 (
p

� + a1) as distinct real
roots of Eq. (13), the general solution to Eq. (9) is
formulated as the former time response function. Ev-
idently, applying 1-IAGO gives the former function
its restored values through Eq. (14):

Ŷ (0)(t) =em2(t�2)

 
c1e
p

�(t�2)
�
e
p

�+m2�1)

+ c2
�
em2 � 1

�!
: (14)

Eq. (14) together with traditional �rst-datum-based
initial conditions determines c1 and c2 thus creating
the �nal restored values.

- Case II: � = 0. Eq. (13) has a repeated real root
m = �a1=2; accordingly, Eq. (9) is solved to derive
former time responses and, then, former restored
values as follows:

Ŷ (0)(t) = em(t�2)

 
c1(em � 1)

+c2
�
em(t� 1)� (t� 2)

�!
: (15)

Once again, traditional initial conditions are estab-
lished and solved to quantify c1 and c2 and build
�nal forecasting functions.

- Case III: � < 0. Eq. (13) has no real roots. Similar
computational procedure derives restored values as
follows:

Ŷ (0) (t) = e�
a1
2 (t�1)0BBBB@

c1
�

cos
�pj�j(t�1)

2

�
�e a1

2 cos
�pj�j(t�2)

2

��
+

c2
�

sin
�pj�j(t�1)

2

�
�e a1

2 sin
�pj�j(t�2)

2

��
1CCCCA ;

(16)

which are, yet again, �nalized by applying �rst-datum-
based initial conditions.

2.4. Formulating traditional GVM
Grey Verhulst Model (GVM) is a nonstandard grey
model as it does not comply with GM (M, N). Its
whitenization equation and basic form are represented
in Eqs. (17) and (18), respectively:

dY (1)(t)
dt

+ aY (1)(t) = b(Y (1)(t))2;

t = 1; 2; : : : ; n: (17)

Y (0)(t) + aZ(1)(t) = b(Z(1)(t))2;

t = 1; 2; : : : ; n: (18)

The basic-form Eq. (18) can be easily transformed into:

Y0 = B:A; Y0 =

26664
Y (0) (2)
Y (0) (3)

...
Y (0) (n)

37775 ;

B =

266664
�Z(1) (2)

�
Z(1) (2)

�2
�Z(1) (3)

�
Z(1) (3)

�2
...

...
�Z(1) (n)

�
Z(1) (n)

�2
377775 ; A =

�
a
b

�
:
(19)
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Figure 2. Schematic comparison between the standard and the modi�ed parameter estimation techniques.

GM (1, 1)'s least squares formula in Eq. (7) applies
herein, too. Considering traditional initial conditions,
time responses and, then, restored values are formed as
follows [2]:

Ŷ (0)(t) = �(1)Ŷ (1)(t)

=

 
aY (0)(1)

�
a� bY (0) (1)

�
bY (0) (1) +

�
a� bY (0) (1)

�
ea(t�1)

!
 

(1� ea) ea(t�2)

bY (0) (1) +
�
a� bY (0) (1)

�
ea(t�2)

!
t = 2; 3; : : : (20)

3. Developing a new formulation for grey
prediction models

Within traditional grey models, the estimation process
relies on the discrete basic-form equation, while the
prediction process is based on the continuous whit-
enization equation. Moreover, the actual forecasting
applies to a discrete set of points. Such inconsistency
has been considered a major drawback to grey models
causing several instances of unsatisfactory outputs
[10,14,29,30,32,33]. This paper contributes to the
literature �rstly by proposing a novel discrete mod-
eling, which is cohesively reliant upon the basic-form
equation.

More speci�cally, both modeling methods dis-
cretize the whitenization equation to establish the
basic-form equation, which is the basis of subsequent
least-squares computations. Di�erences emerge when
making use of estimated parameters. Traditional
modeling applies estimated parameters to calibrate
the whitenization equation, which is then solved to
derive forecasting functions. On the contrary, the
proposed `basic form'-focused modeling utilizes esti-
mated parameters to calibrate the basic form itself,
which is then solved to build forecasting functions.
Accordingly, the proposed modeling is cohesive in that
both its estimation and prediction processes depend

on basic form. Additionally, it avoids the unnecessary
leap from discrete computations back to continuous
computations as Figure 1 illustrates.

The other contribution of this paper is modifying
the least-squares estimation technique. Such modi�ca-
tion is made through shifting the focus from nominal
parameters to the parameters practically applied to the
prediction process.

According to the schematic demonstration given
in Figure 2, the standard estimation process makes
use of Eq. (2). Thus, it derives the rearranged basic-
form equation with a linear function of Z(1)(t) and
maybe Y (0)(t) on its right side{Eqs. (5) and (10).
The modi�ed parameter estimation technique, on the
other hand, employs Eq. (3). Hence, it establishes the
transformed basic{form equation with a linear function
of Y (1) (t� 1) and maybe Y (0) (t� 1) on its right
side{Eqs. (21) and (28). Therefore, B is formulated
based on current point t in the rearranged basic-form
equation, while it relies upon previous point t � 1 in
the transformed basic-form equation.

Of note, regardless of the estimation technique,
the prediction process should treat preceding points of
data to generate the forecast at a speci�c point, e.g.,
Eqs. (8), (14), (15), and (16) as well as Eqs. (24), (25),
and (30). Accordingly, the advantage of the modi�ed
parameter estimation technique is found since the
formulation of its B is consistent with its subsequent
application in the prediction process. Consequently,
the set of estimated parameters Â is directly applied
to prediction without any rearrangement.

3.1. Formulating the new GM (1, 1): BFGM
(1, 1)

An appropriate manipulation after introducing Eq.
(3) into basic-form of Eq. (5) leads to the following
transformed basic-form equation:

Y (0) (t) =
b

a
2 + 1

� a
a
2 + 1

Y (1) (t� 1) ;

t = 2; 3; : : : ; n: (21)

It can also be outlined in matrix terms as follows:
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Y0 = B:A; Y0 =

26664
Y (0) (2)
Y (0) (3)

...
Y (0) (n)

37775 ;

B =

26664
Y (1) (1) 1
Y (1) (2) 1

...
...

Y (1) (n� 1) 1

37775 ; A=

24 A1 = �a
a
2 +1

A2 = b
a
2 +1

35 :
(22)

The modi�ed parameter estimation technique
keeps the fundamental equation (Eq. (7)), yet switches
the formulation of its A from Eq. (6) to Eq. (22). We
expect it to result in the least square error due to its
focus on parameters directly applicable to the predic-
tion process. In other words, the modi�ed parameter
estimation technique optimizes actual parameters of
predictions A1 and A2 instead of its nominal param-
eters a and b.

In addition to the modi�ed parameter estimation
technique, the novel discrete modeling of GM (1, 1)
also relies on the transformed basic-form equation (Eq.
(21)). The new function for restored values is as
follows:

Ŷ (0) (t) = A2 +A1Y (1) (t� 1) ;

t = 2; 3; : : : ; n+ 1: (23)

Eq. (23) may be applied to forecast within the one-
period horizon and farther horizons via Eqs. (24) and
(25), respectively:

Ŷ (0) (n+ 1) = A2 +A1Y (1) (n) : (24)

Ŷ (0) (t) = A2 +A1Ŷ (1) (t� 1) ;

t = n+ 2; n+ 3; : : : : (25)

Ŷ (1) is computed recursively as Eqs. (26) and (27):

Ŷ (1)(n+ 1) = Ŷ (0)(n+ 1) + Y (1)(n): (26)

Ŷ (1) (t) = Ŷ (0) (t) + Ŷ (1) (t� 1) ;

t = n+ 2; n+ 3; : : : : (27)

3.2. Formulating the new GM (2, 1): BFGM
(2, 1)

BFGM (2, 1) shares its central idea with BFGM (1,
1). By transforming basic-form equation (Eq. (10)),
we obtain:

Y (0) (t) =
b

1 + a1 + a2
2

+
1

1 + a1 + a2
2
;

Y (0) (t� 1) +
�a2

1 + a1 + a2
2
;

Y (1) (t� 1) t = 2; 3 : : : n: (28)

The transformed basic-form Eq. (28) presents a recur-
sive formula underlying BFGM (2, 1). If we translate
it into matrix operations, we will have:

Y0 = B:A; Y0 =

26664
Y (0) (2)
Y (0) (3)

...
Y (0) (n)

37775 ;

B =

26664
1 Y (0) (1) Y (1) (1)
1 Y (0) (2) Y (1) (2)
...

...
...

1 Y (0) (n� 1) Y (1) (n� 1)

37775 ;

A =

2664 A1 = b
1+a1+a2

2
A2 = 1

1+a1+a2
2

A3 = �a2

1+a1+a2
2

3775 : (29)

Similarly, Eq. (7) yields the least-squares estimate for
A.

Eq. (28) is the basis of BFGM (2, 1)'s prediction
process, too. The new function deriving restored values
is:

Ŷ (0) (t) = A1 +A2Y (0) (t� 1) +A3Y (1) (t� 1) ;

t = 2; 3; : : : n+ 1: (30)

Practical one-period and multi-period forecasts ex-
tracted from this function are expressed in Eqs. (31)
and (32), respectively.

Ŷ (0) (n+ 1) = A1 +A2Y (0) (n) +A3Y (1) (n) : (31)

Ŷ (0) (t) = A1 +A2Ŷ (0) (t� 1) +A3Ŷ (1) (t� 1) ;

t = n+ 2; n+ 3; ::: : (32)

Y ^(1) is computed in a recursive manner similar to Eqs.
(26) and (27).

3.3. Formulating the new GVM: BFGVM
Developing the `Basic Form'-focused Grey Verhulst
Model (BFGVM) consists of a method similar to
Subsections 3.1 and 3.2. Accordingly, Eq. (3) is used to
expand and, then, rearrange traditional GVM's basic-
form Eq. (18) to obtain:

�
�
b
4

��
Y (0)(t)

�2
+
�

1 +
a
2
� bY (1)(t� 1)

�
Y (0)(t)

+
�
�b�Y (1)(t� 1)

�2
+ aY (1)(t� 1)

�
= 0:

(33)
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The nonlinear right side of GVM's whitenization
Eq. (17) is the model's distinguishing characteristic.
Notwithstanding its advantages, it leads to a second-
order Eq. (33) underlying BFGVM which imposes spe-
ci�c complications. For instance, the proposed matrix
formulation for estimating parameters is inapplicable
herein. Moreover, solving Eq. (33) yields dual functions
(34) and (35) for restored values:

Ŷ (0)
1 (t) =

�2bY (1)(t�1)+(a+2)+
q

(a+ 2)2 � 8bY (1)(t� 1)
b

;
(34)

Ŷ (0)
2 (t) =

�2bY (1)(t�1)+(a+2)+
q

(a+ 2)2 � 8bY (1)(t� 1)
b

:
(35)

Final restored values may not be determined unless
such duality is resolved. Restored values of both
functions can be computed for every point in the
dataset. Negativity of a single restored value for one
function implies that the other (all-positive) one is
appropriate. In the case both sets of restored values
are totally non-negative, we will consider accuracy cri-
terion to identify the appropriate BFGVM forecasting
function.

4. Results and discussion

This section comprises comparative performance anal-
yses of models developed in Section 3. Consistent
with the recent key researches, e.g., Tsai [40], Wu
et al. [13], Wu et al. [41], Xia and Wong [3],
and Zhou and He [14], data splitting is applied. We
analyze simulation accuracy, i.e., in-sample errors, and
prediction accuracy, i.e., out-of-sample errors.

More than half of the data at the beginning of
each sequence are introduced into the sample. Con-
sidering the huge di�erence in sample sizes of test
problems 2 and 3, common percentage of out-of-sample
data can hardly be selected. Hence, we set it to be
40% for test problem 2 and 20% for test problem 3. In

other words, the last 40 points of data are kept out of
the sample for both problems which su�ce to analyze
predictions in the short and long terms. Similar to
researchers such as Hsu [8], Xie and Liu [32], and Zhou
and He [14], the three forthcoming periods and farther
forecast horizons are considered as short-term and long-
term periods.

In order to prepare the comparison of the pro-
posed modi�ed parameter estimation technique with
traditional least-squares, Sum of Squares Error (SSE)
is employed. This is also in accordance with grey
prediction researches, e.g., Chang [6] and Kayacan
and Kaynak [19], exclusively relying on square error
measures.

However, the performance analysis in this re-
search extends beyond accuracy criterion. In fact,
processing time statistics are also evaluated as a
quantitative proxy for computational complexity.
MATLABr 7.8 is utilized to code and implement grey
models on an AMDr A10 4600M processor with 6
Gigabytes of RAM. Processing times are based on 1000
runs excluding graphical operations. Certainly, there
are outstanding outliers in almost all of the cases.
Therefore, we prefer medians due to their robustness to
outliers and higher levels of reliability according to our
results. Nevertheless, averages are generally consistent
with these results.

We apply some time series existing in the lit-
erature to facilitate further comparisons as Figure 3
depicts. LCD-TV sales data [42] are used as test
problem 1 for low-frequency time series. Besides,
numerically-simulated exponential-sine and sine-cosine
sequences [21] are used respectively as test problems 2
and 3 for high-frequency time series.

Table 4 provides an overview of results in terms
of forecasting SSEs as well as the processing time.
Forecasting errors are illustrated in Figure 4, too.
Since test problem 1 lacks the sample size required for
data splitting, the performance analysis is limited to
simulation errors therein.

Regarding the fact that grey prediction models
make no statistical assumptions about data, they
hardly allow statistical tests. Nevertheless, inconsistent
interpretations should be avoided; hence, common
sense tells us to regard 10% as the threshold of
signi�cant di�erence.

Figure 3. The original time series. Horizontal axes represent time, while vertical axes show original non-accumulated
time series values.
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Table 4. Experimental results.

Class
of models �

Modeling Parameter
estimation

Model zzz Simulation
SSE

Short-term
prediction

SSE xxx

Long-term
prediction

SSE xxx

Processing
time

(millisecond)

T
es

t
pr

ob
le

m
1

GM (1, 1)
Traditional Standard GM (1, 1) 15009.373 { { 0.110

Modi�ed GM (1, 1)+ 14644.140 { { 0.128

`Basic form'-focused Standard BFGM (1, 1) 1216.540 { { 0.118
Modi�ed BFGM (1, 1)+ 1215.678 { { 0.117

GM (2, 1)
Traditional Standard GM (2, 1) 79702.465 { { 0.163

Modi�ed GM (2, 1)+ 79702.465 { { 0.168

`Basic form'-focused Standard BFGM (2, 1) 9.51E-20 { { 0.128
Modi�ed BFGM (2, 1)+ 5.37E-21 { { 0.128

GVM
Traditional Standard GVM 25678.693 { { 0.124

`Basic form'-focused Standard BFGVM 0.003 { { 0.281

T
es

t
pr

ob
le

m
2

GM (1, 1)
Traditional Standard GM (1, 1) 28.050 0.708 25.999 0.437

Modi�ed GM (1, 1)+ 28.045 0.737 26.750 0.438

`Basic form'-focused Standard BFGM (1, 1) 27.910 0.724 26.273 1.085
Modi�ed BFGM (1, 1)+ 27.907 0.757 27.069 1.008

GM (2, 1)
Traditional Standard GM (2, 1) 84.211 1.255 322.718 0.541

Modi�ed GM (2, 1)+ 52.603 3.196 106.567 0.560

`Basic form'-focused Standard BFGM (2, 1) 1.719 0.222 143.053 0.498
Modi�ed BFGM (2, 1)+ 1.619 0.303 76.860 1.063

GVM
Traditional Standard GVM 195.666 0.282 5.934 0.495

`Basic form'-focused Standard BFGVM 96.486 2.272 92.194 2.436

T
es

t
pr

ob
le

m
3

GM (1, 1)
Traditional Standard GM (1, 1) 138.66 0.18 18.37 0.554

Modi�ed GM (1, 1)+ 138.66 0.19 18.26 0.537

`Basic form'-focused Standard BFGM (1, 1) 138.60 0.18 18.37 1.654
Modi�ed BFGM (1, 1)+ 138.60 0.19 18.26 1.567

GM (2, 1)
Traditional Standard GM (2, 1) 202.51 2.41 143.19 0.715

Modi�ed GM (2, 1)+ 139.64 0.03 27.44 0.699

`Basic form'-focused Standard BFGM (2, 1) 2.20 0.02 31.34 0.615
Modi�ed BFGM (2, 1)+ 2.17 0.03 27.31 1.735

GVM
Traditional Standard GVM 1715.02 1.97 31.32 0.652

`Basic form'-focused Standard BFGVM 467.31 6.19 118.27 3.457
�: Standard grey models are represented by GM (M;N) in which M is the order of the underlying di�erential equation and
N is the total number of variables. Besides, GVM stands for Grey Verhulst Model.
z: BF at the beginning of acronyms shows `Basic Form'-focused modeling, while the plus sign at the end indicates
the modi�ed parameter estimation.
x: Prediction performance is left blank for test problem 1 since its low frequency allows no data splitting.

Finally, we should note that the two contributions
regarding the modeling and the parameter estimation
technique are analyzed separately to demonstrate their
individual advantages. Furthermore, each model is
represented by an appropriate acronym (Table 4) in
which the added plus sign indicates the use of the
modi�ed parameter estimation technique.

4.1. The `basic form'-focused versus the
traditional modeling

In GM (1, 1) class for low-frequency time series,
`basic form'-focused modeling is preferred because of its
obviously higher accuracy without imposing additional
complexity. For high-frequency time series, there
is no signi�cant di�erence among the four models;
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Figure 4. Forecasting errors of the traditional model versus the proposed grey models. Each chart portrays performance
of a class of models in a test problem. Top, middle, and bottom rows represent �rst-order, second-order, and Verhulst
classes of grey models, respectively, while columns are sorted according to test problems. Charts on the bottom row
comprise only two curves since the modi�ed parameter estimation is not applicable to GVM class. Vertical dash-dot and
dotted lines divide charts with data splitting into simulation, short-term prediction, and long-term prediction, respectively,
from left to right.

thus, we can prefer the lower complexity of traditional
continuous modeling.

In GM (2, 1) class, `basic form'-focused modeling
is the choice because of its considerably higher accu-
racy, while it has comparable computational complex-
ity. The two `basic form'-focused models are carried
out rather similarly in simulation; however, prediction
results recommend BFGM (2, 1) for the short-term and
BFGM (2, 1)+ for the long-term period. Between the
two traditional models, there is not much di�erence
concerning short-term prediction and computational
complexity, even though one can con�dently prefer GM
(2, 1)+ to GM (2, 1) due to its superior simulation and
long-term prediction.

In GVM class, `basic form'-focused modeling has
greatly improved every simulation result; its SSE is
9 � 106 times smaller in test problem 1. However,
regarding the unsatisfactory performance of BFGVM
in predicting test problems 2 and 3, we recommend
applying it just to low-frequency time series. Further-
more, BFGVM is not computationally e�cient, which
is an apparent consequence of the time-consuming
selection process between its dual forecasting func-
tions.

4.2. The modi�ed versus the standard
parameter estimation technique

The modi�ed parameter estimation technique almost
always improves simulation SSE, either slightly or
remarkably. These results con�rm our postulation
about this technique to be the actual least squares,
as compared with the traditional one, which is claimed
to be least-squares. This technique is specially rec-
ommended for GM (2, 1) class as it meaningfully
improves simulation and long-term prediction often
without considerable computational cost. Meanwhile,
it is not suggested for GM (1, 1) class since it does not
make signi�cant improvements.

4.3. Comparison of GM (1, 1), GM1 (2, 1),
and GVM

Each of the three classes of grey prediction models has
its own range of applications. However, there are cases
in which all of them are applicable. Hence, making
the following comparison among di�erent classes can
be valuable.

Among three classical models, GM (2, 1) is
neither accurate nor e�cient. For the low-frequency
time series, GM (1, 1) is absolutely superior. For
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high-frequency time series, GM (1, 1) is also dominant
except in test problem 3 where GVM is a better
predictor. Therefore, one should consider both GM
(1, 1) and GVM for the speci�c high-frequency time
series to determine the appropriate traditional model.
Such results can explain opposite traditional attitudes
toward GM (1, 1) versus GM (2, 1) in grey prediction
community.

Eventually, the results are summarized to perform
a comprehensive comparison among all of traditional
and proposed models. BFGM (2, 1) and BFGM (2,
1)+ are superior simulators, while BFGM (2, 1) is also
the best short-term predictor. Nonetheless, long-term
results suggest all of GM (1, 1)-classed models as well
as the traditional GVM to be preferable. In high-
frequency time series, where computational complexity
is an issue, BFGM (2, 1) is recommended for simulation
and short-term prediction. Yet, one has to choose
between GM (1, 1), GM (1, 1)+, and GVM for long-
term prediction.

5. Conclusions and recommendations

The `basic form'-focused modeling, i.e., the discrete
modeling, developed in this paper was superior to the
traditional continuous modeling for limited data. Such
superiority was inherent to each class of models-GM (1,
1), GM (2, 1), and Grey Verhulst Model (GVM). For
adequate data, `basic form'-focused modeling excelled
in GM (2, 1)-classed models.

The modi�ed parameter estimation technique was
con�rmed to be the actual least squares due to its
awless superiority in simulation SSE. It also improves
long-term predictions, especially when applied to GM
(2, 1)-classed models.

Employing the proposed `basic form'-focused for-
mulation, we turned the inferior GM (2, 1) into the
superior BFGM (2, 1) with unrivalled simulation and
short-term prediction. Interestingly, it has no excess
computational complexity. The new BFGM (2, 1) may
be acknowledged as a critical revision, which reveals
higher-order grey models' potential. The developed
BFGVM also has some accuracy advantages over the
traditional GVM, but it has much room for improve-
ment in computational complexity.

Herein, BFGM was successfully applied to GM (1,
1), GM (2, 1), and GVM. Nevertheless, it is a general
approach which can also prove e�ective when applied to
many other grey prediction models. The computational
complexity of BFGVM may be relieved by developing
rules to decide between its dual forecasting functions.
Working on our modi�ed estimation technique to han-
dle GVM will further reinforce BFGVM. A variety of
initiatives originally developed to improve traditional
formulations may be readily incorporated into our
BFGMs for additional improvements. Finally, further

investigation will ensure researchers where BFGM can
be utilized best, e.g., high-frequency or low-frequency
time series- smooth, quasi-smooth, or uctuating time
series- and short-term, medium-term, or long-term
predictions.
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