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Abstract. In some processes, quality of a product should be characterized by functional
relationships between response variables and a signal factor. Hence, the traditional methods
cannot be used to �nd the optimum solution. In this paper, we propose a method, which
considers two di�erent dispersion e�ects in domain and between replicates variations in the
functional responses. Besides, we propose an integral based measure to �nd the deviation
from target function. A probabilistic method is applied to consider the correlation structure
of functional responses. Three numerical examples and a real case from literature are
studied to show the e�ciency of the proposed method.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Design of experiments is one of the o�ine quality engi-
neering methods to �nd level settings for controllable
factors in order to �nd optimum responses. In many
real production processes, there are more than one
response which should be optimized. The problem will
be more di�cult if optimization direction of responses
is con
icting. Many researchers tried to solve this
problem using aggregated measures. One of the most
popular measures is the desirability function. This
measure was proposed by Harrington [1] at �rst to
transform di�erent objective values into a free scaled
value between 0 and 1. He also proposed using the
geometric mean of obtained desirabilities as total de-
sirability. Thereafter, Derringer and Suich [2] proposed
di�erent desirability functions for Smaller-The-Better
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(STB), Larger-The-Better (LTB), and Nominal-The-
Best (NTB) responses. There are several examples of
using the desirability function in optimization prob-
lems. For example, Del Castillo et al. [3] employed
modi�ed desirability functions to optimize a wire
bounding process. Jeong and Kim [4] proposed an
interactive method based on the desirability function to
optimize an aggregated model. Ribardo and Allen [5]
incorporated mean, standard deviation, and possible
shifts in the process mean in the proposed desirability
function. Noorossana et al. [6] used an arti�cial neural
network to build a prediction model and then employed
a genetic algorithm to optimize a desirability function.
Mostafa et al. [7] tried to minimize a desirability
function, which aggregated shrinkage and warpage on
the fuel �lter in the injection molding process using
simulated annealing. He et al. [8] proposed a desirabil-
ity function by considering the worst response in the
con�dence region. Chen et al. [9] selected some proper
weights to balance location with dispersion desirability
values. Costa et al. [10] evaluated performance of
some desirability-based approaches and categorized
them into two less and more sophisticated approaches.

http://scientiairanica.sharif.edu/article_4458.html
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Based on the literature, we can conclude that the
desirability function is used as an e�cient measure in
multi-response optimization problems.

In the presence of signal factor(s), we deal with
a problem including functional response(s). There are
di�erent approaches in the literature that consider the
signal factor in the problem. For example, Taguchi [11]
proposed dynamic signal to noise ratio for such prob-
lems. Miller and Wu [12] divided signal-response
problems into two main categories of measurement
systems and multiple target systems. They showed
that Taguchi's method was appropriate for certain
measurement systems, but not for multiple target
systems. They proposed performance measure mod-
eling as well as response function modeling for signal-
response problems. Tong et al. [13] applied a fuzzy
TOPSIS (Technique for Order Preference by Similarity
to Ideal Solution) method to solve dynamic multi-
response problems. Ozdemir and Maghsoodloo [14]
developed a sensitivity measure for signal-response
problems with three correlated responses. Tong et
al. [15] used Data Envelopment Analysis (DEA) to an-
alyze the relations between signal factor and responses.
Fogliatto [16] proposed a desirability based method for
optimizing problems with functional responses. To do
this, he used the Hausdor� Distance (HD) to calculate
the deviation between response value and the target
value in each time point. Goethals and Cho [17] con-
sidered time as signal factor and tried to optimize the
problem in certain periods of time. Maghsoodloo and
Huang [18] extended quality loss function and signal
to noise ratio for a problem with di�erent types of
correlated responses. Wu [19] used double-exponential
desirability function to optimize multiple nonlinear
dynamic quality characteristics. Tong et al. [20]
used desirability function to propose an optimization
procedure using dual-response-surface method. Su et
al. [21] applied Arti�cial Neural Networks (ANN) to
model the relation of controllable factors and responses,
and used Scatter Search (SS) to �nd best setting in
a problem with dynamic characteristics. Chang [22]
also used ANN to build the dynamic response model
and proposed modi�ed desirability functions for op-
timizing phase. Chang [23] proposed a data mining
approach, which used arti�cial neural networks, desir-
ability functions, and simulated annealing algorithm to
optimize problems with multiple dynamic responses.
Chang and Chen [24] used a genetic algorithm to
optimize a dynamic multi-response model, which was
created using ANN. Storm et al. [25] extended classical
response surface methodology for modeling of time
series response data. Zhang et al. [26] proposed a
goal programming approach to model multi-response
optimization problems and used particle swarm op-
timization to search for the optimal global solution.
Gauri [27] proposed a Principal Component Analysis

(PCA)-based approach to optimize a multi-response
problem with linear functional responses by taking into
account the correlation structure of the responses. Cui
and He [28] used Kriging model to establish a func-
tional response model and applied a genetic algorithm
to reach the optimum global solution. Table 1 shows a
comparison between previous studies of signal-response
optimization methods and the current study.

In this paper, we propose a method to opti-
mize problems with multiple functional responses by
considering two di�erent dispersion e�ects. The �rst
e�ect is related to variability of a functional response
through the signal domain, which is named \In Domain
Variation (IDV)," and the second one, which is named
\Between Replicate Variation (BRV)," is related to
variability among functional responses corresponding
to di�erent replicates of a treatment. Many of the
signal factors, which were considered in the previous
works, have a continuous nature (for example, time,
pressure, etc.). However, all previous works have a
discrete viewpoint to the signal factors in the calcu-
lation steps. Although increasing number of signal
levels for sampling may lead to an approximately
continuous viewpoint, it increases the sampling cost
as well and may be economically unfeasible, especially
in the destructive experiments. Moreover, in some
cases, the target function has a prede�ned equation. In
these situations, we may want to know which factor's
setting leads to a function with the lowest deviation
from target in the whole signal's domain and what the
resulting function is, by selecting this setting. However,
in the discrete approaches, we may �nd the setting
which leads to minimum deviations by considering
the selected signal levels. For better comprehension,
consider the semiconductor manufacturing problem
from Kang and Albin [29]. A critical device in this
process is Mass Flow Controller (MFC), which controls
the 
ow of gases in the chamber. They showed
that if an MFC was in-control, the pressure in the
chamber would behave as a linear function of gases

ow. Thus, if we design an experiment to optimize
this process, we may search for a setting which leads
to a linear function with minimum deviation from the
target function. Besides, in some, cases optimization
may need to be done on some historical data when
response values have been collected over di�erent signal
levels for di�erent treatments and target values are
available for di�erent levels. In such cases, discrete
viewpoint is not applicable because the response values
of treatments cannot be compared. Another issue
comes when multiple functional responses are cor-
relative. In this situation, considering responses to
be independent ignores their correlational structure.
Moreover, �nding an optimal setting, which is not
among the experiments done, may be another issue in
the mind of the analyst. In this paper, we propose
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Table 1. Comparison of the previous signal-response studies with the proposed approach.
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Tong et al. [13] 1997
p p p

Maghsoodloo and Huang [18] 2001
p p p p

Tong et al. [20] 2002
p p p p

Ozdemir and Maghsoodloo [14] 2004
p p p p p

Su et al. [21] 2005
p p p p

Chang [22] 2006
p p p

Chang [23] 2008
p p p p

Fogliatto [16] 2008
p p p

Tong et al. [15] 2008
p p p p

Wu [19] 2009
p p p p

Chang and Chen [24] 2011
p p p

Goethals and Cho [17] 2011
p p p p

Storm et al. [25] 2013
p p p

Zhang et al. [26] 2014
p p p

Gauri [27] 2014
p p p p p

Cui and He [28] 2016
p p p

Proposed approach {
p p p p p p p p

an approach to optimize multi-response problems with
functional continuous response(s) by considering two
types of dispersion e�ect. To �nd the best factor-level
setting, a genetic algorithm is employed to search in
the solution space.

The structure of the paper is as follows. In the
next section, the problem statement is given. Section 3
includes the proposed methodology and the genetic
algorithm applied for solving the optimization model.
Three numerical examples are presented in Section 4.
A real case from literature is studied in Section 5 to
illustrate the application of the proposed method. Our
concluding remarks as well as some future researches
are given in the �nal section.

2. Problem statement

We deal with an experimental design with an m � 1
vector fkl containing m continuous functional responses
(f1kl; f2kl; :::; fmkl)T in replicate l of treatment k, with
covariance matrix �kl for residuals vector ekl; and
an n � 1 vector ykl containing n classic responses
(y1kl; y2kl; :::; ynkl)T in the form of STB, NTB, or LTB
in replication l of treatment k with covariance matrix

Skl for corresponding residuals vector 'kl. In the case
of STB responses, the smallest result is desired while in
the case of LTB responses, the largest result is desired.
In the case of NTB responses, the result with minimum
deviation from a prede�ned target is desired. There
are q controllable factors (x1; x2; :::; xq), which have
e�ect on both classic and functional type responses.
The relation between classic responses and controllable
factors is de�ned as:

ykl = Axk +'kl; (1)

where A is the coe�cient matrix and xk is in the form
of (1; xk1; x2k; ::: ; xqk)T . Moreover, there is a signal
factor t, which has e�ect on functional responses. To
address the curvature in the functional responses, we
suppose that there is a polynomial relation between
signal factor and functional response(s). In other words,
there is a polynomial target function for each functional
response. The functional responses relation can be
de�ned as follows:

fkl = �xk + Bkt + ekl; (2)

where � is the coe�cient matrix of controllable factors,
t is (1; t; t2; ::: ; tp)T , and Bk is the matrix of polyno-
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mial coe�cients in the kth treatment. It is assumed
that functional responses are independent from classic
ones. Moreover, the e�ects of possible nuisance factors
are randomly distributed and, hence, are considered
through the covariance matrix of the residuals. It is
assumed that all responses, including functional ones,
are normally distributed. However, in the case of other
distributions, a transformation method may be used to
satisfy the normality assumption. The goal is �nding
the best levels of controllable factor such that classic re-
sponses are optimized and functional response(s) have
minimum deviation from their corresponding target
functions.

3. Proposed methodology

The proposed method involves four main steps in-
cluding regression estimation, new index calculation,
aggregation, and optimization to �nd the best levels for
the factors. The continuous nature of the signal factor
is considered in the second step, while the correlation
structure of functional responses is considered in the
third step.

Step 1: Find the best regression function. Firstly, a
regression function should be �tted to the obtained
data in each treatment and should be compared with
the target function. Since the number of signal
factors in this paper is considered equal to one and we
are going to address the curvature in the regression
function, we use polynomial regression. Determining
the number of discrete levels of the signal factor for
sampling depends on the case. Increasing the number
of discrete levels may lead to better estimation of
functions, but it may also increase the cost of sam-
pling. Hence, if we are not worried about sampling
cost, we can increase the number of levels as much
as possible. On the other hand, in the cases with
considerable sampling cost, a bi-objective model can
be de�ned by considering parameters estimation error
and sampling costs as objective functions to facilitate
�nding of the optimum number of discrete levels. To
�nd the best order of the polynomial regression, we
test di�erent orders and select the one that minimizes
the Sum of Squared Errors (SSE) of the �tted model.
In the case of testing di�erent orders to avoid over-
�tting, we can limit the maximum order of estimated
functions based on the dispersion pattern and number
of data points. An over�tted function usually has
several extremum (maximum or minimum) points
near the data points. Hence, a function with few
extremum points and small SSE can be considered as
a good �t. Another alternative is to split the data
into training and testing sets. However, selecting
data for the test set may be another issue. A good
choice to overcome this problem is using the k-fold

cross-validation method [30]. In this method, data is
partitioned into k sets of equal size. Then, in each
iteration, k � 1 data sets are used to estimate the
polynomial regression and one set is used as test set
to �nd the SSE. This process is repeated k times
with di�erent test sets and the average of all SSEs
is used to evaluate the accuracy and precision of the
estimation. It should be noted that the number of
data should be large enough to use this method.
Step 2: Calculating a new index for functional
responses. Consider the example in Figure 1 is
comprised of an NTB functional response, f , and its
target function. If the researcher only considers the
four discrete levels of the signal factor, t, shown in
the �gure, there is a negligible di�erence between es-
timated and target functions. However, it is obvious
that the estimated function deviates from its target.
As a proposed solution, the area enclosed between the
two functions is considered as a deviation measure.
Therefore, for the NTB type functional responses,
cross points of �tted and target functions should be
found. To do this, MATLAB software can be used to
�nd roots of the obtained equation by subtracting the
�tted function from the target one. The next step is
aggregating the absolute values of integrals between
roots as deviation measure. If we are only interested
in the location e�ect and there are not any additional
response variables, the treatment with the minimum
Aggregated Absolute Integral Value (AAIV) can be
selected as the best. By considering one functional re-
sponse in the problem, the AAIV for the lth replicate
of the kth treatment may be calculated as follows:

AAIVhkl =
X
i;j

������
jZ
i

(Th(t)� f̂hkl(t))dt
������; (3)

where i; j are two consecutive cross points of the tar-
get and estimated functions, Th(t) is target function
of the hth functional response, and f̂hkl(t) is esti-
mated function of the hth response for the lth repli-
cate in the kth treatment. Note that in the problems

Figure 1. A sample of estimated functional response with
target function.
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Figure 2. Two di�erent functions with equal AAIVs but
di�erent shapes.

with more than one functional response, AAIV is cal-
culated for each response separately and, then, overall
index is calculated as expressed in the next step.

There are two di�erent dispersion e�ects in the
considered problem. The �rst one is IDV, which is
related to the di�erence in deviation of estimated
function from target in the signals domain. To
consider it, the maximum di�erence between target
and estimated functions obtained by considering all
replicates may be added in the new index. This
can help to distinguish sudden changes of deviation
between estimated and target functions. For better il-
lustration, two estimated functions with equal AAIV
values have been depicted in Figure 2. The estimated
function for treatment 1 is very close to the target
function in most of its signal levels, but there is a
large deviation for some levels, so it is clear that the
proposed index should consider such deviations. In
addition, the deviation between the target and esti-
mated functions for treatment 2 is almost constant
throughout the di�erent signal levels, which may be
preferable since both treatments have equal AAIV
values. Furthermore, in some cases, positive or nega-
tive deviations may have various importance and we
modify the proposed index to a Weighted Aggregated
Absolute Integral Value (WAAIV) as follows:

WAAIVhkl =w1
X
i;j

 jZ
i

�
Th(t)� f̂hkl(t)

�
dM

!

+ w2
X
p;q

 qZ
p

�
f̂hkl(t)� Th(t)

�
dM

!

+ w3 maxt
����Th(t)� f̂hkl(t)

����;
(4)

where i and j are two consecutive cross points where
target function of the hth functional response Th(t)
is above the estimated function of the hth functional
response for the lth replicate in kth treatment f̂hkl(t)

Figure 3. Three estimated functions for di�erent
replicates of a treatment.

and p; q, are two consecutive cross points where the
mentioned target function is below the mentioned
estimated function; and w1, w2, and w3 are weight
coe�cients for the negative, positive, and in domain
variations, respectively.

The second type of dispersion e�ect is BRV and
may be considered when there are di�erent estimated
functions for each treatment because of replicates.
For better comprehension, consider Figure 3. This
type of dispersion e�ect is incorporated in the next
step of the proposed method.

Some of the problems may have STB or LTB-
type functional responses. For example, consider
the air pollution rate through the time. It is desired
that this value should be near zero throughout the
whole signal domain. Thus, it may be considered
as an STB functional response. In such cases, the
AAIV index may be simply obtained by calculating
the area under the �tted curve in each treatment.
Note that we aim to minimize the AAIV for STB or
NTB-type functional responses while it is desired to
maximize it for LTB-type functional responses.
Step 3: Constructing the overall index for multiple
responses. In this step, all calculated indices
for di�erent responses should be summarized in
a total index. However, there are two possible
situations here. In the �rst case, responses are
uncorrelated and in the second one, they have a
signi�cant correlation structure. In the �rst case,
the desirability measure is employed. To calculate
the desirability of STB, LTB, and NTB-type classic
responses, the proposed indices by Derringer and
Suich [2] are used. In addition, the desirability for an
NTB or STB functional response may be calculated
based on Derringer and Suich [2] as follows:

dmh;k =

8<:
����UMh�Mh;k

UMh

����� 0 < Mh;k < UMh

0 Mh;k > UMh

; (5)

where Mh;k is the average of AAIV (or WAAIV)
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values of the hth functional response in the kth
treatment, UMh is the upper speci�cation limit for
Mh;k, and � is the shape constant of the desirability
function.

In the case of problems with two or more
replicates in each treatment, we also have variance
for AAIV (or WAAIV) values in each treatment.
Hence, to incorporate the BRV as the second type of
dispersion e�ect in the problems with uncorrelated
responses, we consider the variance of the AAIV (or
WAAIV) for each functional response as an STB-type
response, and then calculate its desirability as follows.

d�h;k =

8<:
����UVh�Vh;kUVh

����� 0 < Vh;k < UVh

0 Vh;k > UVh
; (6)

where Vh;k is the variance of AAIV (or WAAIV)
values of the hth functional response in the kth
treatment, UVh is the upper speci�cation limit for
Vh;k, and � is the shape constant of the desirability
function.

To calculate the overall desirability, D, at
each treatment, Derringer [31] proposed a modi�ed
geometric average with weighting terms, which is
employed in this paper as well.

In the second case, there are correlated re-
sponses and thus, the previous approach is not recom-
mended because it ignores the correlation structure of
responses. To consider multiple correlated responses,
Chiao and Hamada [32] proposed a method in which
the treatment with maximum probability of being all
responses in the corresponding speci�cation limits is
selected as the best solution. The probability is calcu-
lated by considering multivariate normal distribution,
which considers the covariance matrix of responses.
Hence, the correlation structure is considered as well
as the BRV in the calculations. The Proportion Of
Conformance (POC) for correlated responses in the
kth treatment can be calculated as follows:

POCk = P (y 2 E jxk); (7)

where y is the vector of classic responses and
E is the corresponding speci�cation region. For
better comprehension, consider two correlated y1,
y2 responses with speci�cation region and 95%
con�dence interval as shown in Figure 4. The shared
area, which is illustrated with dashes, shows the
proportion of conformance.

On the other hand, when the functional
responses correlate, we should compute the
covariance matrix of AAIVs (or WAAIVs) through
the replicated data. It should be noted that before
calculating the POC index for AAIVs (or WAAIVs),
we should check the normality assumption for them.
If the AAIVs (or WAAIVs) do not follow a normal

Figure 4. Proportions of conformance for two supposed
responses.

distribution, we should use a transformation method.
Then, the Proportion Of Conformance (POC) for
each treatment can be calculated by replacing y
with AAIV (or WAAIV) in Eq. (7). Note that the
speci�cation region for AAIV (or WAAIV) is in the
form of [0 bh]m, where bh is the desired upper bound
for AAIVhkl (or WAAIVhkl) de�ned by the analyst.

Step 4: Optimizing the overall index to �nd the best
setting. By doing the previous steps, the analyzer can
select the best treatment based on the overall index.
However, if the analyzer wants to search for a better
setting in the whole solution space, they may run
this step. Before running the optimization algorithm,
a relation function between controllable factors
and calculated indices (POC or total desirability)
should be estimated. The �nal step is employing an
algorithm to �nd the best settings for the controllable
factors. Genetic Algorithm (GA) is one of the
popular methods to search for near-optimal solution
in the problems with discrete or continuous solution
spaces. In each iteration, it makes better solutions
using crossover and mutation operators. There are
several examples of using GA in multi-response
optimization problems. For example, refer to [6,33-
36]. However, it should be noted that GA is not the
only alternative and the optimization algorithm may
be selected by the analyst based on their preferences
and the problem conditions. Thus, we recommend
it to search for the optimum total index. It should
be noted that tuning of GA parameters is performed
using the Taguchi method. In this method, through
a factorial design, the mean of calculated responses
in each try for di�erent parameter levels is computed
and the best level for each parameter is selected.

4. Numerical examples

4.1. Example 1: Performance evaluation
As the �rst example, suppose a 22 factorial design with
a signal factor t limited by [�5, 5] and a functional
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Figure 5. Target function versus �tted functions for di�erent treatments in Example 1.

Table 2. Experimental design of Example 1

Treatment x1 x2 t = �5 t = �3 t = �1 t = 1 t = 3 t = 5 SSE

1 1 1 {3168.01 {305.97 {42.02 {342.23 {202.08 2711.04 4:56� 10�25

2 1 {1 {2927.91 {216.87 {52.45 {22.69 57.38 2871.99 4:31� 10�25

3 {1 1 {2527.56 234.19 109.01 197.67 488.40 2982.20 7:51� 10�25

4 {1 {1 186.15 {162.13 4.32 2.83 {2826.86 2876.91 7:76� 10�23

response y. It is supposed that the target function for
y is t5�2t3+t2�4t+1:5. To evaluate the performance of
the proposed method, suppose that we know the exact
functional response corresponding to each treatment as
shown in Eqs. (8)-(11), respectively:

0:6149 t5 + 0:3904 t4 + 14:7584 t3

� 11:6588 t2 � 165:2982t� 181:4266; (8)

1:2314 t5 + 0:3522 t4 � 8:4762 t3

� 8:7811 t2 � 22:2397 t� 29:3061; (9)

1:3374 t5 � 1:4330 t4 + 13:6787 t3

+ 40:3379 t2 � 57:1314 t� 113:9450; (10)

4:1653 t5 + 15:6840 t4 � 97:0485 t3

� 344:1352 t2 � 91:9832 t� 331:6912: (11)

Figure 5 shows the target and treatment functions. For
the �rst evaluation, we consider (�5, �3, �1, 1, 3,
5) as initial signal levels to generate response values
and add a standard normal residual to them. The
resulting response values under di�erent signal levels
are reported in Table 2.

To evaluate the e�ciency of the proposed mea-
sure, we compare it with HD proposed by Fogliatto [16].

The HD between two vectors y1 and y2 is calculated
as follows:

h(y1;y2) = max
�

max
y12y1

�
min
y22y2

q
(y1 � y2)2

�
;

max
y22y2

�
min
y12y1

q
(y1 � y2)2

��
; (12)

As can be seen in Eq. (12), HD uses two points,
which have minimum deviation from each other, to
calculate the distance between the two vectors and
ignores the order of points. For example, by considering
y1 = (2; 10; 5) and y2 = (10; 5; 2), the result is
h(y1;y2) = 0; however, it is obvious that they are
di�erent. To calculate the AAIV for each treatment,
we estimate a function for it based on the results
reported in Table 2. The goodness of �tness is evaluated
through the sum of squared di�erences between each
observation and its estimated value (SSE), which is
reported in Table 2 as well. Table 3 shows the AAIV
and HD for each treatment. It can be seen that using
the HD (based on [16]) as comparing measure leads
to selecting treatment 4 as the best one. However,
it is obvious from Figure 5 that it is not the best
choice. This shows that the HD is not an e�cient
measure in such problems. Another con
ict of results
can be seen between treatments 1 and 3. Based on the
AAIV measure, treatment 1 dominates 3, but based
on the HD measure, the result is the opposite. This
is another problem with employing HD and occurs due



2274 M.H. Bakhtiarifar et al./Scientia Iranica, Transactions E: Industrial Engineering 25 (2018) 2267{2281

Table 3. AAIV and HD results for each treatment in
Example 1 by considering [�5, 5] as signal domain.

Treatment x1 x2 AAIV HD

1 1 1 2389.98 339.51
2 1 {1 681.02 130.11
3 {1 1 2615.77 300.93
4 {1 {1 12180.79 5.32

Figure 6. AAIV changes due to change in signal levels.

Figure 7. HD changes due to change in signal levels.

to its discrete nature. To compare the variations of
AAIV and HD results, we change each signal level in
a speci�ed interval [�0:5, 0:5]. Hence, the signal levels
is changed from (�5:5, �3:5, �1:5, 0.5, 2.5, 4.5) to
(�4:5, �2:5, �0:5, 1.5, 3.5, 5.5) in 10 iterations. As
shown in Figure 6, by changing the signal levels, AAIVs
are approximately robust against the added values to
the initial signal levels; however, the changes in HD
according to the signal level shifts are considerable as
shown in Figure 7. This shows that HD is related to
signal levels and the best treatment may be changed
by selecting di�erent signal levels, but AAIV is more
robust. Nonetheless, HD may be a good choice in
the cases that we deal with monotonic functions for
the treatments. In such problems, response values in
di�erent signal levels may be far from each other and,
hence, ignoring the order due to the use of HD cannot
a�ect the selected solution. For better illustration,
consider [4, 5] as limit of signal domain. As can be
seen in Figure 5, all of the functions are monotonic
in this range. To compute the HD and AAIV in this

Table 4. AAIV and HD results for each treatment in
Example 1 by considering [4, 5] as signal domain.

Treatment x1 x2 AAIV HD

1 1 1 195.55 251.74
2 1 {1 115.76 169.40
3 {1 1 156.65 218.50
4 {1 {1 2350.59 3633.97

Table 5. Supposed experimental results for each signal
level in Example 2.

Treatment x1 x2 t = 0 t = 1 t = 2 t = 3

1 1 1 4.4 7.4 11.0 6.3
2 1 {1 5.5 8.3 10.0 7.4
3 {1 1 7.3 6.4 8.0 3.3
4 {1 {1 1.5 5.0 6.5 3.4

Figure 8. Fitted functional responses in Example 2.

range, we consider (4, 4.2, 4.4, 4.6, 4.8, 5) as signal
levels and generate response values based on Eqs. (9)-
(12) by adding standard normal residuals to them. It
can be seen in Table 4 that HD results con�rm the
AAIV results. It should be noted that although the
proposed method considers the continuous nature of
the responses, it may incorporate an estimation error
in the calculations. Therefore, it is very important to
�nd an estimated function with acceptably small error.

4.2. Example 2: In-domain dispersion e�ect
Suppose that there is a problem with one functional
response and two controllable factors. The functional
response is a�ected by a signal factor (t) with four
levels (0, 1, 2, 3). The target values are supposed
to be (4.5 , 7.3, 9, 6.4) and the experimental results
are supposed as reported in Table 5. Suppose that
the analyst is interested in ranking treatments by
considering deviation from target as well as IDV. By
considering polynomial order equal to 6, the SSE values
are approximately zero and each function has only one
maximum point. Hence, we are not worried about
over�tting. Figure 8 illustrates the �tted functions
for target and treatments. As can be seen, the �tted
responses corresponding to treatments 1 and 2 have
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small deviations from the target in comparison with
treatments 3 and 4.

To better illustrate the e�ciency of the proposed
measure, consider another approach from the literature
with discrete viewpoint to the signal levels. Wu [19]
proposed an approach for optimizing multiple func-
tional responses using double-exponential desirability
function. Based on his proposition, the desirability for
the kth treatment by considering NTB type uncorre-
lated responses is calculated as follows:

WDk=

"
m
�
h=1

�
�
�
u=1

exp (�chjyhku�ghuj�h)
� 1
�
# 1
m

; (13)

where yhku is the value of the hth response for the uth
signal level in treatment k, ghu is target value of the
hth response for the uth signal level, � is number of
signal levels, m is number of functional responses, �h
is shape constant of the hth response, and ch is scale
constant of the hth response.

Using the prede�ned equations, WD (by consider-
ing �h = ch = 1), AAIV, and WAAIV (by considering
[0.2 0.2 0.6] as weight vector) are calculated and the
results are summarized in Table 6. Based on the
WD results, treatment 1 is selected as the best by a
wide di�erence from the second treatment. This is

Table 6. The results of di�erent measures in Example 2.

Treatment WD AAIV WAAIV

1 0.56 3.25 2.39
2 0.37 3.00 1.20
3 0.12 5.20 3.96
4 0.07 7.89 3.67

because of ignoring the IDV. By employing the AAIV,
treatment 2 may be selected as the best while it has
a negligible di�erence from treatment 1. However,
by employing the WAAIV, which can consider the
comments of the analyst as weights, it can be seen that
treatment 2 is very better than treatment 1.

4.3. Example 3: Correlated functional
responses

Expand Example 1 to include two controllable factors,
x1 and x2, a signal factor, t, and two correlated
functional responses, y1 and y2. Target pro�les for
functional responses are T1 = t5+2t4+3t3�2t2+t+2:5
and T2 = t5 � 2t3 + t2 � 4t + 1:5, respectively, which
are depicted in Figure 9. The covariance matrix of

the response functions is
�

10 11:4
11:4 18

�
. By replicating

the experiment in each signal level of each treatment
for 10 times, mean m and covariance matrix s of the
functional responses may be estimated based on the
observed values of the responses. Table 7 shows the
experimental design, including mean and covariance

Figure 9. Target pro�les for functional responses in
Example 3.

Table 7. Experimental design of Example 3.
Treatment t = �5 t = �3 t = �1 t = 1 t = 3 t = 5

1
M0 =

"�2301:18
�2826:89

#
M0 =

"�180:81
�166:27

#
M0 =

"�3:49
�650

#
M0 =

"
7:22
�2:64

#
M0 =

"�475:95
�191:01

#
M0 =

"�4707:80
�2881:95

#
S =

"
3:57 5:81
5:81 9:85

#
S =

"
7:90 8:38
8:38 11:47

#
S =

"
7:17 9:44
9:44 13:30

#
S =

"
9:85 14:92
14:92 24:29

#
S =

"
6:03 7:40
7:40 9:28

#
S =

"
8:18 10:27
10:27 14:02

#

2
M0 =

"�2304:83
�2832:15

#
M0 =

"�180:97
�167:51

#
M0 =

"�2:31
7:71

#
M0 =

"
8:84
�1:23

#
M0 =

"
471:24
184:15

#
M0 =

"
4710:44
2885:08

#
S =

"
1:83 2:64
2:64 4:64

#
S =

"
5:49 6:98
6:98 9:88

#
S =

"
15:68 19:25
19:25 24:77

#
S =

"
6:81 7:81
7:81 10:12

#
S =

"
17:07 21:63
21:63 28:13

#
S =

"
13:23 16:41
16:41 21:56

#

3
M0 =

"�2302:74
�2829:05

#
M0 =

"�180:66
�166:38

#
M0 =

"�2:24
8:71

#
M0 =

"
7:78
�1:73

#
M0 =

"
474:01
188:15

#
M0 =

"
4705:18
2878:56

#
S =

"
18:01 24:57
24:57 35:46

#
S =

"
12:97 17:42
17:42 24:00

#
S =

"
8:95 12:69
12:69 19:47

#
S =

"
6:05 7:86
7:86 11:60

#
S =

"
6:72 8:83
8:83 12:20

#
S =

"
4:61 6:85
6:85 10:64

#

4
M0 =

"�2302:89
�2828:66

#
M0 =

"�181:45
�168:18

#
M0 =

"�2:00
7:66

#
M0 =

"
6:69
�4:18

#
M0 =

"
471:89
185:19

#
M0 =

"
4708:43
2883:12

#
S =

"
6:47 7:32
7:32 8:73

#
S =

"
13:21 16:81
16:81 21:84

#
S =

"
6:29 8:84
8:84 13:28

#
S =

"
4:92 5:66
5:66 7:45

#
S =

"
14:01 19:17
19:17 27:00

#
S =

"
6:24 8:38
8:38 11:93

#
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Table 8. AAIVs and POC results in Example 3.

Treatment x1 x2 MAAIV SAAIV POCk D

1 1 1 (24.70 33.81)

"
166:76 188:29
188:29 219:48

#
0.3872 0.5566

2 1 {1 (29.67 39.05)

"
37:66 36:28
36:28 49:12

#
0.0978 0.6194

3 {1 1 (25.48 35.28)

"
76:79 91:72
91:72 126:41

#
0.3186 0.6222

4 {1 {1 (26.14 36.46)

"
112:61 161:82
161:82 259:25

#
0.3381 0.5361

Table 9. Polynomial regression parameters corresponding to each treatment in Example 4.

Treatment x1 x2 x3 B

1 {1 {1 {1 [{5.74, {50.91, 784.57, 1201, 10724.97, {51981.87, {22339.75, {128407.13]
2 -1 0 0 [2, {45.91, 300, {3000, 11724.97, {10000, 21000, {120000]
3 -1 1 1 [9.74, {40.91, {184.57, {7201, 12724.97, 31981.87, 64339.75, {111592.87]
4 0 {1 0 [{5, 5, {120, 3501, {2000, 1000, {48339.75, 110000]
5 0 0 1 [2.74, 10, {604.57, {700, {1000, 42981.87,{5000, 118407.13]
6 0 1 {1 [2.26, {15, 724.57, {2801, 3000, {43981.87, 53339.75, {228407.13]
7 1 {1 1 [{4.26, 60.91, {1024.57, 5801, {14724.97, 53981.87, {74339.75, 348407.13]
8 1 0 {1 [{4.74, 35.91, 304.57, 3700, {10724.97, {32981.87, {16000, 1592.87]

matrices for the functional responses in each signal
level.

Now, we estimate the functional responses for
each replicate and, then, compute the mean and
covariance matrices of the AAIVs for each treatment.
To calculate POC, we test the AAIVs for normality and
consider [0 30]2 as their desired speci�cation region.
Now, we ignore the covariance structure and calculate
the desirabilities to compare the results. To do this for
each response, h, a desirability corresponding to mean
with UMh = 60 and a desirability corresponding to
variance with UVh = 500 are calculated and the total
desirability is found by considering 0.25 as weight of
each desirability. Results are summarized in Table 8;
as shown, the �rst treatment presents the best POCk
value; however, the third treatment presents the best
D value. This shows that ignoring covariance structure
in the problems with correlative responses may result
in a wrong choice.

4.4. Example 4: Dissolved dose of tablet
Suppose the problem of �nding the best composition
of a tablet comprised of three raw materials x1, x2,
and x3, such that the relation between time t and
dissolution of tablet y (based on milligrams) follows

a target function, T , given in Eq. (14):

T =� 1:13 t7 + 29:53 t6 � 327:45 t5

+ 1999:12 t4 � 7270:48 t3 + 15805:83 t2

� 19130:77 t+ 110033:64: (14)

We consider an orthogonal array with 8 treatments
as experimental design. The polynomial regression
parameters, b, for each treatment are given in Table 9.

It may be dangerous if the dissolving speed of the
tablet is higher than the target or if the dissolution in a
time point has a large di�erence from its target. Hence,
we should assign a larger weight to integral values when
the target function is below the treatment function.
Also, the maximum di�erence should be considered as
well, because increasing the speed of dissolution may be
dangerous. Since there is only one functional response
in this problem, we do not need to construct the overall
index and optimization may be done on the WAAIV.
By considering [0.1, 18, 3] as the weight vector and [0,
10] as range, WAAIVs are calculated with the results
given in Table 10. The estimate of WAAIV is obtained
using ordinary least squares method after removing
the terms with large p-values (p-values are provided
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Table 10. WAAIV for each treatment in Example 4.

Treatment x1 x2 x3 WAAIV

1 �1 �1 �1 797098.7
2 �1 0 0 443368.4
3 �1 1 1 700695.5
4 0 �1 0 427297.3
5 0 0 1 5783643.0
6 0 1 �1 1733688.0
7 1 �1 1 14908102.0
8 1 0 �1 1096071.0

Table 11. Experimental design of the problem.

Treatment x1 x2 x3 y1 y2 y3

1 {1 {1 {1 5.1 8.3 0.78
2 {1 1 {1 5.4 8.24 0.72
3 1 {1 {1 6.1 8.49 0.7
4 1 1 {1 6.2 8.48 0.77
5 0 0 {1 5.6 8.17 0.78
6 {1.41 0 1 5.8 9 0.65
7 1.41 0 1 7.3 9.56 0.67
8 0 {1.41 1 7.6 9.28 0.69
9 0 1.41 1 7.9 9.62 0.65
10 0 0 1 5.1 8.95 0.62

in parentheses), as follows:

WdAAIV = 3679816(0:006) + 3548565x1(0:016)

+ 2960930x3(0:021)

+3477109x1 x3(0:024); R2 =91:40%: (15)

Finally, by employing GA with population size of 1000,
and crossover and mutation rates of 0.7 and 0.4, after
60 iterations, we achieve [{0.9605, 0.2288, 0.7172] as the
best factors levels array with WAAIV equal to 45.7711.
A con�rmation experiment may be performed to check
the validity of the GA result.

5. A real case

Consider the real case given by Fogliatto [16] from the
pet food production industry about the development
of an alternative formula for a well-known brand of
dog biscuits. The percentages of three ingredients
are rewritten as two mixture variables and, thus, by
considering the biscuit thickness, there are three con-
trollable factors. Levels are de�ned based on a Central
Composite Design (CCD) including ten treatments
illustrated in Table 11.

There are three real responses and a simulated
functional response in this problem. Response types

Table 12. Best �tting order for each target and
treatment.

Treatment Best order SSE
Target pro�le 8 0.16968

1 8 1.21
2 8 0.11237
3 8 0.16784
4 8 0.13582
5 8 0.13898
6 8 0.22952
7 8 0.18642
8 8 0.18127
9 8 0.23478
10 8 0.20691

and speci�cations are as follows: y1 is nominal-the-
best (U1 = 8; m1 = 7:5; L1 = 5), y2 is nominal-
the-best (U2 = 10; m2 = 9:5; L2 = 8), and y3 is
larger-the-better (U3 = 0:8; L3 = 0:6), where mi is the
target value and Ui and Li are the upper and lower
speci�cation limits of the ith response, respectively.
Note that the values of functional response in signal
levels are driven from Table AI of Fogliatto [16].

As expressed in the previous section, the next
step is �nding the best �t with the best order for each
treatment. To avoid over�tting, we limit the maximum
order of functions between 5 and 9. Table 12 shows the
best order with corresponding SSE for each treatment.

Figure 10 shows the �tted functions for target and
the other treatments. The shapes of �tted functions are
smooth enough and there are not several maximum or
minimum points for each function. Hence, over�tting
is unlikely. It can be seen that �tted pro�le of the
treatment 3 can visually be selected as the nearest
pro�le to the target.

The next step is calculating the absolute integral
value between target pro�le and each of the treatments
from one cross point to the next one. To do this, cross
points between target and each of pro�les should be
found. After that, aggregating absolute integral values
and selecting the treatment with minimum AAIV are
desirable. Table 13 shows the cross points and AAIV
for each of the treatments. It should be mentioned
that lower limit of the integral range is equal to zero
and upper limit is assumed to be equal to the number
of values in functional response for each treatment.

Now, the desirability of each response and AAIV
should be calculated for each treatment. Then, we
should �nd the estimating equation for desirabilities.
By considering � = 1, and UMh = 25, desirabilities
(di) can be calculated as shown in Table 14. Note
that total desirability (Di) has been calculated by
considering wi = 0:25, which is same as the �rst
scenario in Fogliatto [16].

As shown in Table 14, treatment 8 can be selected
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Figure 10. Fitted polynomial pro�les for target and treatments.

Table 13. Cross points and AAIV for each treatment.

Treatment Cross points AAIV
1 1.3011 3.4710 7.7301 20.3327 28.0974 31.5621 3.6308
2 1.2301 38.9803 40.8241 45.0043 12.7561
3 1.3257 34.2576 40.1817 44.7791 0.7264
4 1.2358 37.5111 40.4301 44.8857 7.3987
5 1.2368 37.4034 40.3069 44.8664 6.7312
6 1.2069 40.0524 44.6308 25.8691
7 1.1436 40.1416 44.7220 3.0190
8 1.0653 40.1753 44.7377 2.0058
9 1.2044 40.0414 44.6190 20.0280
10 1.1930 40.0974 44.6747 1080.1195

Table 14. Desirability values for each treatment.

Treatment d1 d2 d3 dAAIV D
1 0.0400 0.2000 0.9000 0.8185 0.2771
2 0.1600 0.1600 0.6000 0.3622 0.2731
3 0.4400 0.3267 0.5000 0.9637 0.5130
4 0.4800 0.3200 0.8500 0.6301 0.5355
5 0.2400 0.1133 0.9000 0.6634 0.3570
6 0.3200 0.6667 0.2500 0 0
7 0.9200 0.8800 0.3500 0.8491 0.7004
8 0.8000 0.8533 0.4500 0.8997 0.7251
9 0.2000 0.7600 0.2500 0 0
10 0.0400 0.6333 0.1000 0 0

as the best one. To search for better treatments, we
need to �nd �tting models for desirabilities. Note that
normality assumption cannot be rejected for any of the
desirabilities. After �tting di�erent regression models

and removing terms with large p-values (p-values are
provided in parentheses), we �nd the following equa-
tions with acceptable coe�cients of determination, R2:

d̂1 = 0:26556 (0:042) + 0:19633x1 (0:046);

R2 = 81:42%; (16)

d̂2 =0:373323 (0:015) + 0:073657x1 (0:037)

+ 0:267682x3 (0:009) + 0:0656x2
1

(0:055)

+ 0:082349x2
2

(0:044); R2 = 99:98%; (17)

d̂3 =0:515 (0:000)� 0:235x3 (0:003)

+ 0:1625x1x2 (0:066); R2 = 87:42%; (18)



M.H. Bakhtiarifar et al./Scientia Iranica, Transactions E: Industrial Engineering 25 (2018) 2267{2281 2279

Figure 11. Changes in total desirability and controllable factors versus iteration numbers.

d̂AAIV =0:51867 (0:000) + 0:20219x1(0:035)

� 0:25808x2 (0:013)� 0:16891x3 (0:044);

R2 = 86:67%: (19)

To prevent unreal results, we set 1 for di > 1 and
0 for di < 0. Now, we can search for better treatments.
To do this, we employ GA with population size of
1000, and crossover and mutation rates of 0.7 and 0.4,
respectively. After 60 iterations, we �nd a treatment
with x1 = 1:41, x2 = 1:41, x3 = �0:69, and D̂=0.6487
as the best result. Note that although based on Table
14, the total desirability of treatment 8 is 0.7251, we
�nd D̂=0.6487 for it. Hence, it is necessary to do a real
experiment with the setting of x1 = 1:41, x2 = 1:41,
and x3 = �0:69 to �nd the exact total desirability
value and compare it with treatment 8. Figure 11
shows the changes in total desirability and controllable
factors in each treatment versus iteration numbers. As
can be seen, increasing x1 and x2 will increase total
desirability.

It should be noted that in [16], treatment 8 is
selected as the best by considering equal weights for
calculating total desirability. By solely considering
functional response, Fogiatto [16] found treatment 4
using maximum and summation operators and treat-
ment 5 using average operator as the best. However,
as can be seen in Table 13, we �nd treatment 3 as the
best by solely considering functional response. Hence,
it can be concluded that �nding treatment 8 as best by
both methods is because of other responses (i.e. y1, y2,
and y3).

6. Conclusion and future researches

We proposed a novel method for optimizing multi-
response problems with continuous functional re-

sponse(s) and considered two di�erent dispersion ef-
fects. The �rst dispersion e�ect was \In Domain
Variation (IDV)," which was related to the di�erence in
deviation of estimated function, and the second one was
\Between Replicates Variation (BRV)," which might
be considered when there were di�erent estimated
functions for each treatment because of replicates.
The �rst important step of the proposed method
was �nding an acceptable polynomial �tting model
for functional response in each treatment from the
observed values. Thus, if we could not �nd �tted
functions with acceptable estimating errors, the pro-
posed method might not be applicable. We found the
cross points between target function(s) and estimated
function(s) in each treatment. Thereafter, we proposed
the absolute integral value as the measure. In some
special problems, it was important to distinguish be-
tween positive and negative deviations from the target
function. Moreover, IDV might be considered in this
step. For analyzing such cases, WAAIV was proposed.
To aggregate uncorrelated AAIVs (or WAAIVs) in
one measure, we used desirability function. In the
problems with correlated functional responses, we em-
ployed Proportion Of Conformance (POC) proposed
by Chiao and Hamada [32] to transform correlated
AAIVs (or WAAIVs) into one measure. The BRV
might be considered in this step. Finally, we applied
GA to �nd the best levels for factors. Some illustrative
examples showed that our proposed continuous method
was e�cient in the problems with functional responses.
The application of the proposed method was illustrated
through a real case in pet food production extracted
from [16]. In this paper, we supposed that the e�ect
of nuisance factor was randomly distributed through
the randomization. Considering these factors in the
proposed method can be a direction for future research.
Moreover, we supposed that there was a polynomial
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relation between functional response and the signal
factor. A future study may be done to focus on other
types of estimated functions and use spline regression
to model the functional responses. In addition, investi-
gating the multi-response problems with correlational
structure between classic and functional responses can
be a fruitful area of research.
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