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Abstract. Crossdocking is one of the supply chain strategies that can reduce costs of
transportation and inventory. Many studies on the problem of crossdocking have been
conducted with respect to various characteristics of crossdocks. In this paper, a queuing
model is proposed in order to optimize the number of outbound doors based on minimizing
the total costs, including the costs of adding a new outbound door and the expected waiting
time of customers. The total number of trucks arriving for service is constant. Trucks arrive
at outbound doors of the crossdock within a specified time window. Arrival times of trucks
follow a beta distribution, and customers are served based on First-In, First-Out policy
(FIFO). Since the total number of customers as well as the time of arrivals are finite, the
steady state distribution is inapplicable to the long run of the system. Instead, the total
expected waiting time is calculated based on conditional joint probabilities, order statistics
along with the Bayes theorem.

(© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

In traditional distribution systems, warehouses are
used to deliver goods from manufacturers to customers.
Products are first received and, then, stored. When a
customer requests an item, products are selected from
the warehouse and shipped to the customers’ destina-
tions. Unlike traditional warehouses, crossdocking is
an approach to eliminating storage and order picking
operations. It would reduce the supply chain cost [1].
Crossdocking reduces response time, inventory, and
transportation costs.
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For the first time, Walmart replaced the ware-
house with crossdocking. Products are delivered to a
crossdock from suppliers or manufacturers, and consol-
idated products are delivered to customers [2]. Based
on the crossdocking approach, there are two types of
trucks: inbounds and outbounds. Inbound trucks come
to the crossdock and unload the products. Products
and shipments are sorted based on their characteristics
and consolidated in the crossdock. Then, products are
moved to outbound doors by an internal transportation
facility. Finally, outbound trucks go to the crossdock
to load the combined products and deliver them to
customers.

Although the crossdocking approach reduces
warehousing cost, elimination of stock levels is un-
avoidable. When a product arrives at the shipping
dock, it is sometimes impossible to load onto the
outbound truck immediately. Therefore, the product
is stored in the temporary storage for less than 24 h,
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until the appropriate outbound truck comes into the
shipping dock. Some studies on crossdocking consider
temporary storage such as [3-9].

A crossdocking facility has a number of dock
doors, where trucks can load or unload goods. Van
Belle et al. [1] classified crossdocks by physical, op-
erational, and flow characteristics and described each
of them. They also reviewed studies on the deci-
sion problems solved by the crossdocking approach.
These problems are related to strategic, tactical, and
operational decision-making levels. Based on their
classification, layout design of a crossdock is one of
the problems that is categorized as a strategic decision
problem. The common shape of crossdocks is similar
to I, L, U, T, and Bartholdi and Gue [10] studied the
best shape of crossdocks. They concluded that the best
shape of a crossdock depends on the size of the facility
and pattern of freight flows inside. They considered
the average travel distance to approximate the total
travel cost across the dock and took it to estimate the
variable labor cost to move freight through the facility.

Hauser and Chung [11] studied the lane layout
optimization with the crossdocking to reduce the work-
load of team members in crossdocks. They believed
that layout optimization of a crossdock minimizes the
workload and can reduce a shorter overall lead-time. In
order to minimize handling and waiting times, Vis and
Roodbergen [12] proposed a new problem to design the
storage area for crossdocking and presented a dynamic
methodology. The methodology led to the selection
of control policies concerning both routing and storage
assignment.

Determining the total number of doors is the
first and most important physical characteristic of a
crossdock [13]. The number of outbound doors equals
that of destination in some of the existing crossdocks.
Facility setup cost depends on its size. The size of
a crossdock relates to the number of doors. In some
cases, due to the setup cost and size limitation of the
crossdock, the number of outbound doors is not equal
to that of destination. Lim et al. [14] considered the
number of trucks that exceeds the number of docks
available. They studied truck assignment problem with
time windows and capacity constraint in transshipment
network through crossdocks to minimize the total
shipping distances.

Increasing the number of doors increases the setup
cost of facility as well as imposes the labor costs. Labor
costs correspond to the loading or unloading process
and traveling of freight. To the best of our knowledge,
no studies that focus on determining the optimum
number of outbound doors, considering the mentioned
costs totally.

Various optimization problems are proposed for
crossdocks to improve their performances. These prob-
lems are related to strategic, tactical, and operational

decision-making levels. Some researches of crossdock-
ing optimization are focused on the scheduling of
trucks. Dock assignment to trucks is an important
decision-making task at crossdocks. Gelareh et al. [15]
studied the dock assignment problem of trucks with
an operational time constraint. They assumed that n
trucks arrive at the crossdock during the time window.

The crossdock scheduling problem focuses on
determining the assignment and order of service of
the incoming and outgoing trucks to the inbound and
outbound doors. Crossdock scheduling closely relates
to the classic machine scheduling. Boysen and Flied-
ner [16] introduced a classification of truck scheduling
problems and reviewed all papers with deterministic
arrival times of trucks. There are many studies on the
crossdock scheduling, assuming that trucks are ready
at start times such as [3-5].

Time window assumption of the arrival times of
trucks is more realistic, rather than the exact time [17].
Time windows for delivery and pickup services in
crossdocking are common constraints. Manufacturers
and customers impose time window constraints on
crossdocks [18]. There is vast literature available on
crossdocking optimization problems that consider time
window constraints [14,17-20].

Most of the studies have only considered deter-
ministic information about crossdocking; hence, they
do not consider any uncertainties. This simplify-
ing assumption is not applicable to the real world.
Walha et al. [21] reviewed the existing literature on
the crossdocking under uncertainty. They classified
research based on three types of uncertainties: external
uncertainty, internal uncertainty, and the combination
of both types. The factors coming from outside of the
crossdock area give rise to external uncertainties such
as truck arrival times, number of inbound trailers, and
the freight flow/content of truck.

Most of the crossdock scheduling problems as-
sume deterministic truck arrival times. This assump-
tion is unrealistic as truck arrivals are subject to uncer-
tainties due to traffic congestion, weather conditions,
etc. [22]. Konur and Golias [23] studied the scheduling
of inbound trucks at the inbound doors of a crossdock
facility under the uncertainty of truck arrival times
in order to minimize the total service time. They
considered that the arrival time of an inbound truck
is unknown, and the only available information is
about the lower and upper bounds of any inbound
truck’s arrival time. They used three approaches
to determining a scheduling strategy: deterministic,
pessimistic, and optimistic approaches.

Larbi et al. [24] studied the crossdock scheduling
problem in a single receiving crossdock and a single
shipping door crossdock under three situations of full,
partial, and no information on the freight flow and
arrival time of inbound trucks. Their objective was
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to find the best schedule for the transshipment opera-
tions, which minimized the total additional handling
and the truck replacement costs. The uncertainty
of arrival times of trucks is an important subject of
crossdocking problems that is an effect of optimization
problems. For further information, see the following
references [25-27].

Since almost all problems are solved in the liter-
ature within the assumption of certain parameters, it
is necessary to look at the problems with uncertain
parameters. The impact of uncertainty can raise a
new optimization problem that relates to queueing
systems. Since the outbound trucks randomly arrive
at a crossdock to load products within the time win-
dow, the classic scheduling of trucks is inapplicable.
Therefore, trucks should be loaded by the first-in, first-
out rule. According to the queuing system, trucks and
outbounds are as customers and servers.

Queueing problems at a service facility are com-
mon problems in the transportation and logistics indus-
try. The waiting time of trucks, in the queue, imposes
some costs on the supply chain system.

Outbound trucks arrive at a crossdock to be
loaded at random within a time window. They will
be served in a constant time. It is assumed that the
number of doors is the decision variable. There are two
possibilities for trucks when arriving at the outbound
door:

(I) At least one door is empty and trucks are able to
start loading;

(IT) All doors are busy and trucks have to wait for a
server to be idle to be served.

The distribution of the arrival time is beta or
uniform. Other distributions can be done in the same
way. The number of outbound trucks arriving for the
service is fixed in the given time window.

A fixed number of customers arrive at the system
in a fixed time window. These features make our
model different from an ordinary queuing model such
as M/M/1, M/G/1, and G/G/1. Actually, our model
is named a finite queuing model. Hence, no long run
distribution is applicable here.

Our queueing model is finite and different from
the ones that come from a finite population. Unlike
ordinary queuing model, the proposed queuing model
has a specified number of customers that come to the
system in a fixed window time.

The number of trucks is constant, and the arrival
time is within a fixed window time, obeying a uniform
or beta distribution. This queueing system is called
a finite queueing system. Therefore, the waiting time
cannot be calculated by the classic methods.

Some papers have studied the finite population
queueing systems. Louchard [28] studied the finite

population queueing system with non-Markovian prop-
erties and a general service time. In order to ob-
tain diffusion approximations, he considered particular
short time intervals; in addition, the processes could be
locally Markovian. This approximation is appropriate
for a large number of population.

Jain et al. [29] introduced the concert queueing
problem with the finite number of customers arriving
at a queueing system, and the service time starts and
finishes at a specified time window. They maintained
that the number of customers is random with a finite
mean, E(N), and the service times of customers are
identical independent distributions.

Honnappa et al. [30] proposed a queueing model
with ordered arrivals of a fixed, finite population,
which can be called A(i)/GI/1 queue. The arrival
times are order statistic, and a single server with
independent and identically distributed service times
serves the customers. They computed the waiting
time of a customer by an approximation method. In
addition, they developed fluid and diffusion limits for
the performance metrics of the queue.

Some of the papers have studied the optimization
of queueing system’s trucks. Chen et al. [31] analyzed
the terminal gate system with the non-stationary queu-
ing model and proposed an approximation to solve the
model. They also applied an optimization model to
reduce the truck queueing.

Although some of the real cases and the numbers
of population are finite, all of these studies consider a
queuing system that operates forever with an infinite
population of customers.

Motaghedi-Larijani and Aminnayeri [32] studied
the queuing model with one server and a fixed number
of customers to optimize the length of time window.
Our research is concerned with computing the waiting
time of outbound trucks in the crossdock to optimize
the number of outbound doors. Studies of finite
queuing systems focus on the diffusion approximation
method. Unlike the mentioned papers, the joint
conditional order statistics are used herein to com-
pute the expected waiting time of customers with the
proposed exact method as in [32]. Herein, a finite
queueing system with multi-servers is developed and
the expected waiting time of customers is computed.

The notations in [32] are extended to present this
finite queueing model as (n, B, L)/ D /m where n stands
for the number of customers, B stands for a beta
distribution of arrivals, I stands for the length of arrival
time window, D is the constant service time, and m is
the number of servers. To the best of our knowledge,
this paper is the first research in crossdocks with a
finite queueing model, computing the expected waiting
time of trucks and optimizing the number of outbound
doors for multiple servers. The rest of this paper is
organized as follows: In Section 2, the problem of the
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finite queueing model in a crossdock is detailed. The
calculation method of the expected waiting time of [32]
is developed in Section 3. Experimental results are
shown in the next section. Conclusion and discussion
appear in the last section.

2. The problem description

This study is motivated with a realistic problem related
to a supply chain with a crossdock. A distribution
center with a fixed number of trucks should deliver
products to retailers in the crossdock. These trucks
have to arrive within a fixed time window in early
morning of every day. However, these trucks arrive at
random during the time window [0, L]. It is assumed
that there is a temporary storage in front of the
outbound doors. At first, the products are unloaded
through the outbound doors; then, they are stored
in the temporary storage. Therefore, the shipping
products are ready to be delivered to customers. A
fixed number of outbound trucks, n, arriving at random
time, x;, 7 =1,--- ,n, with a beta distribution on [0, ]
are to be loaded. The proposed crossdock model is
shown in Figure 1

The service time of each truck is a constant time
d. Outbound doors are considered as servers. There
are two possibilities for truck ¢ = 1,--- ,n arriving at
the facility. Either at least one server is idle or it will
wait on the queue to receive service. The arrival times
of trucks are independent random variables with a beta
distribution on [0,!]. Because uniform distribution is a
special case of the beta distribution, in order to simplify
the calculation, the uniform distribution is used. Let
r1,T2, - ,T, ben independent random variables with
uniform distribution on [0, ] within:

0<x<0L.

Let t1,t9,-+ ,t, be the order statistics of Xj's, j =
1,--- ,n. The problem is to minimize costs of waiting
times and service facility simultaneously. The decision
variable is m, as the number of outbound doors. The

Outbound truck % % .

/

@ o L’/f Temporary storage
@ - Queue
@«@, @J

Figure 1. The proposed crossdock model.

joint conditional probability of order statistics is used
to calculate the expected waiting time.

A fixed number of customers arrive at the system
in a fixed time window. These features make the
model become non-stationary, and the steady state
probabilities cannot be calculated. Development of a
queueing model for outbound trucks in the crossdock
along with the calculation of the expected waiting times
and optimization of the number of outbound trucks as
servers will be our contributions.

Characteristics of the proposed model:

e The service time, d, is fixed;

e The total number of customers, n, to be served is
fixed;

e The arrival time, Xj's, j = 1,--- ,n, is a random
variable with the uniform distribution on [0, L], in
which L is fixed;

e The policy of the queue is First-In, First-Out
(FIFO);

e The service process continues until all customers
receive the service;

e The number of outbound doors, m, is the decision
variable considered as servers.

The notation of queueing model is defined as follows:

t; The arrival time of the ith customer
being the order statistics of Xj's,j =
1,---,m;

e The leaving time of the ¢th customer;

W, The random waiting time of the ith
customer;

E(W;) The expected value of waiting time of

the 4th customer in the queue.

If at least one server is idle at the arrival time, ¢;, of
the ¢th customer, then:

Otherwise e; satisfies Eq. (2):

€ =€i—m + d. (2)

3. The calculation method

The challenge of the proposed model is that the model
has no steady state. Therefore, probability distribution
of the model, such as the distribution of W;, is not
in hand. Based on the conditional joint probabilities
of order statistics along with the Bayes theorem, the
expected waiting time of customers in the queue is
calculated. At the arrival time of a customer, two
situations may occur: Either at least one server is idle
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or it will wait in the queue to get service. We will assert
and prove two propositions and use them to calculate
the expected waiting time, E(W)).

All customers will be served according to FIFO
policy. Let n be the number of customers that have to
arrive during a time window [0, L]. Let ¢1,t5,--- ,t, be
the order arrival times of customers. It is clear that:

0<t; <ty < <tp1 <t, <L.

Because m servers are ready at the start of time
window, the first m customers should not wait in the
queue. Due to the fixed service time, d, based on the
order of entry, customers are divided into m categories.
Let r be j modulom, r =0,1,--- ;m—1---. Based on
this category, we have m separate problems. Hence, the
jth customer waits until the end of (j —m)th customer
service. For better understanding, consider a problem
with 3 servers and 20 customers; based on the order of
entry, the categories of customers are:

r=1, [1,4,7,10,13,16,19],
r=2,  [2,5,8,11,14,17,20],
r=0, [3,6,9,12,15,18].

Fach category has the same module for m. For
example, the 13th customer waits until the end of the
10th customer service time.

Let us consider a 2 x n probability matrix P..
The jth component of the first row of P. shows the
probability that at least one server in the system is
idle at the arrival of the jth customer, j = 1,---n
The jth component of the second row of P, shows the
probability that the system is busy at the arrival of
the jth customer, j = 1,---n. Hence, by calculating
the first row, the entries of the second row could be
calculated by Eq. (3) as shown in Box I.

It is obvious that for the queuing system with m
servers, the event that results in e; = ¢;4d is equivalent

Suppose that A; is the event in which there is no
customer in the system at the arrival time of the jth
customer. Therefore, A;- would be the event in which
there is at least one customer in the system at the

arrival time of the jth customer. In other words, P(A4,)
means that:
P(Aj) = P(ej =t + d). (5)

Proposition 1: If the system has m servers, then
the jth component of the first row of matrix P, is
calculated by:

P(Lj)=1 j<m,
Pe(1,j) = P(e; =t; +d)
:Pe(l,] — m)P(t]‘,m +d< tj)

T

+Z

j—m(i—1)—=z
P ) 3 STV T P A<t
X (tm(zl)‘ln ( m ) d—t]>

H P.(2,m(h—1)+2z)
=141

P.(1,m(i—1)+ z)

j>m,
(6)

where r = (j(mod m)), and z = m if r = 0; otherwise,

Z=T.

Proof: The proposition is proved based on the men-
tioned categorization. It is obvious that there is no
waiting time for the jth customer, 1 < j < m. For the
jth customer, m + 1 < j < 2m, the expected waiting
time of the jth customer can be computed using the
following conditional probability formula:

P(Aj) = P(A;0Aj_m) + P(A; N A, (7)

to the event in which e;_,, < t;. Therefore: P(A;) =P(Aj—m)P(A;|Aj—m)
Plej =tj+d) = Plej_m <1;). (4) + P(A) ) P44 ). (8)
Plej =ejom +d) =1—Ple; =t; + d), (3)
P - 1 -1 P(em+1 = tm+1 + d) P(em+2 = tm+2 + d) P(em+m = tm+m + d)
ce=lo0 ... 0 P(6’m+1:€1+d) P(em+2:€2 -‘rd) P(€m+m:€m+d)

Ple, =t +d)
P(en = €n—m + d)

Box I
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We know that:
P(A,_,)=0, j<m. (9)
Therefore, the right hand side of Eq. (9) is:
Ple; =t; +d) = P(ej_m =tj_m +d)
Plej =t;+dlej_m =tj—m +d), (10)
P(e; =t; +d) = P(ej_m =tj—m +d)
Plej_m < tjlej—m =tj—n +d)
=P(ej m =t; m +d)P(tj m+d<t;)
=P.(1,j —m)P(t;—m +d < t;). (11)
Therefore, for the jth component of Eq. (6), the proof
is complete. In order to compute the jth component
j > 2m, the following conditional probability is used
to extract a recursive relationship:

P(A;) =P(Aj_n)P(Aj|Aj—m)

+ P(A

Jj—m

)P (A;145_,,), (12)
Ple; =tj+d) = P(ej_m =tj—m +d)

Plej =t +dlej_p =tj—m +d)

+ P(ej—m =€j_om +d)

Plej =t +dlej_m = €j_am + d),
P(e; =t; +d)=P.(1,j —m)

Plej_m < tjlejom =tj—m +d)

+ Pe(2,j —m)

Plej_m < tjlej_m = €j_am +d)

=P. (1,5 —m)P(tj_m +d < t;)

+ P.(2,5 —m)P(ej_am +d < t)). (13)

The conditional probability is repeated to compute
P(ej,Qm +d< tj)Z

P(ejfzm +d S tj)
=P(ej_om +d < tj,€j_0m = €j_3m +d)

+ Plejom +d < tj, e om =tj_om +d), (14)

P(ej_om +d <tj) = P(ej_om = €j_zm +d)
P(ej_om +d < tjlej_om =€j_3m +d)
+ P(ejom =tj_2m +d)
P(ej_om +d < tjlej_om =tj—om +d)
= P(ej_am = €j_3m + d)P(ej_zm +2d < t;)

+P(€j,2m:tj72m + d)P(tj,2m—|—2d < tj). (15)
The right hand side of Eq. (17) is inserted into Eq. (12)
as follows:
Plej =tj+d) = P(1,j —m)P(t; m +d < t)

+ P.(2,7 —m)(P(ej_am = €j_3m + d)

Plej_sm +2d <t;)+ Plej_am = tj—om +d)

P(tjam +2d < t5)), (16)
Ple; =t;+d)=P.(1,5 —m)P(tj_pm +d < t;)

+ P.(2,j —m)(Pe(2,7 — 2m)P(ej_3m + 2d < t;)

+ P.(1,§ = 2m)P(tj_om + 2d < t)). (17)

For the jth customer, 1 < j —3m < m, the proposition
is proved. For the jth customer for which j > 4m, the
mentioned conditional probability is repeated in order
to compute P(ej_s3,, + 2d < t;). These computations
are repeated as far as j — ¢m < m. The proposition is
proved.

To calculate P(t; + (j — i)d < t;), a joint order
statistic distribution of arrival time of customers ¢ and
7 is used, i.e.:

n!

ftot) =g —i— =g
[F(t) = F(t)) 77 1= F(t)" ™
faf(E;) 5 >4, (18)
n! t; it
) =G =G = D=7 |1
tj_ﬁjfifl _Q n—j l 2
i-i i (@)
j>i, (19)

where f(t) = + and F(t) = £. Therefore:

P(ti+(j—i)d <t;) = F(ti t))dtdt,.

(20)

—

t,j+(j—i)dgt]'
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This matrix will be used to calculate the expected
waiting time in the queue. If the servers are busy at the
arrival time of the jth customer, the waiting time of the
jth customer is w; = e; — (t; +d). In order to calculate
the expected waiting time of the jth customer, there
are k possibilities in which k is:

+1. (21)

The possibility one is that ¢; < e, and the possibility
,1<i<kis em(i—2)+z <tj < em@i—1)42- For the jth
customer, the possibility one means that e; = ¢, + kd;
hence, the expected waiting time of this possibility is:

E(w]) :E(tz +kd—t]‘ —d) (22)
Likewise, for possibility ¢, the expected waiting time of
the jth customer is:

Wj = tm(i-1)+z T (j — (m(im_ D+ Z)) d—tj, (23)
B =R

Therefore, the waiting time of possibility &k is zero
and E(w;) = 0. To calculate the probability of each
possibility, Proposition 2 is used.

Proposition 2: Let M;; be the event in which the
exiting time of the jth customer is:

j=—(m@GE—-1)+z)

€ = tm(i—1)42 + ( ) d+d,

or:
j—m(—-1)+=z2
wj:tm(i1)+z+( ( (m ) ))d—t]‘,

and then:

P(Mlj) = Pe(l,m(i - ].) + Z)

k
X ( p(tm(h—l)-l—z S tm(i—l)—l—z + (h - Z)d)>

h=i+1
Vi<k. (25)
Proof: Based on our definition, we have:
Mij =Ami—1)+2 N Aniyrz N DAL G 9y
N Al (k1) 42> (26)

and:

P(Mij) =P(Am(i—1)+= N ALy N
N A e—2)+2 N An(e—1)42): (27)

where j is:
j=mk—1)+ z. (28)

In order to compute P(M;;), the Bayes’ theorem should
be applied. By using this theorem, we have:

P(Mij) =P(AL (1)1 Amii-1e= N ALy
NN AL (2)t2)
X P(A (k—2) 42 [ Am(i=1)+2 0 AL )4
N NAL G3)42)
X oo X P(AL G e AmGi-1)42)
1<i<k.

X P(Am(ifl)ﬁ»z) (29)

In other words, we can write:

P(AL 1yl AmG- 142N Ay N NAL (o)1)

= P(em(k—1)+z = em(k—?)-l—z + d|em(i—l)+z
= tm(i71)+z + dv €m(i)+2

:em(i—1)+z +d7 e 7€m(k—2)+z :em(k—3)+z+d)'
(30)

By inserting the conditional term, Eq. (30) is trans-
formed into:

P(AL (k1) Ami=1) 42N A )12 N NAL (Z2)12)

- P(em(k,le - tm(ifl)ﬁ»z + (]C - Z)d + d) (31)

For each number ¢ < x < k, the conditional terms of
Eq. (29) is:

P(AL ety A1)+ NVAL )10 NAL o)1)
= P(em($,1)+; = t7n(i71)+z + (l‘ - Z)d + d) (32)

The right hand side of Eq. (31) can be written as
follows:

P(em(x,1)+z = tm(ifl){»z + (37 - Z)d + d)
= P(tm(z_1)+z < bn(i—1)4+z T (z —i)d). (33)

The probability of each event AM;; for the multiple
servers is shown in Table 1.
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Table 1. Computing the expected value of waiting time of the jth customer in queue for multi servers (; = mk + z).

Number

Expected value

Events The probability of event of waiting
of events . .
time in queue
) k )
1 .+ =d P(My;)=P.(1,2)x <HP(tm(h_1)+z gtz+(h—1)d)> E(t. + =2d — ty)
h=2
ey, PO = P(m2) o
9 trps 1 mH2) g k E(th,»g_*‘md_t')
” X (H P(tm-1)1e < tmts + (B — 2)05)> ” !
h=3
P(Mp_1;)=P.(1,m(k—-2)+ z
k-1 tm(k—2)4= +d (Mi-1.5) (1, m( )+2) E(tyr—2)y4. +d —tj)
XP(tmh—1)12 < tm(k—2)42 + d)
k-1
K fm(k—1)+z P(]\/fﬂ) =1- Z P(Aw”) 0
i=1
tj

(3-4)d

L t;
Figure 2. Integration integral if (j —i)d < L

Now, the expected waiting time of the customer

gt is calculated for multi-server queueing model ac-
cording to probability P(M;;) from Table 1. Now,
waiting time of the customer j” is as follows:

k—1

E(w;) =) (PMgm(i=1)+2);) E(tmi=1)+-
=1
+ (k= 9)d = to(k—1)+=)),
j=m(k—1)+z. (34)

The right hand side of Eq. (34) is calculated by the
joint density function of order statistics. There are two
possibilities, (a) and (b), to compute the joint density
functions of order statistics ¢; and ¢;:

(a) (j—d)d <l
(b) (j—di)d> L.

The intervals of integration used to calculate each of
possibilities (a) and (b) are shown in Figures 2 and 3,
respectively.

In order to compute the expected value of E(t; +
(j —i)d —t;), the integration intervals should be taken
into account. Two conditions to compute this integral
are as follows:

(5-i)d

L T

Figure 3. Integration integral if (j —¢)d > L.

E(ti + (j —i)d — t;)

(j—i)d t;

/ /t+ (j—i)d—t;) f(ts, t;)dt;dt,

0
/ / (ti+(—i)d—t;) f (L, t;)dtsdt
(j—i)d t;—(j—1i)d
if (j—i)d<L, (35)

BE(ti + (j —i)d — t;)

L
=//m+u—m#wﬁm@mwm
0 0

it (j—i)d> L. (36)

4. Numerical results

Some test problems are used to show the application of
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the model in reality. Each problem is characterized by
three features: the number of customers, the number
of servers, and length of the arrival time window for
customers. The features of the test problems are:

- Number of customers: 10, 15, 20, 25, 30, 35, 40, 50,
60;

- Number of servers: 1, 2, 3,4, 5,6,7,8,9;

- Length of time window: 5, 6, 8, 10.

We consider 0.5 unit of time on the fixed service time
for all of the test problems. The expected waiting time
of customers for different examples is calculated and
shown in Tables 2 to 5.

For a better understanding, steps required to solve
the problem of (n,U, L)/D/3 with 20 customers and 5
units of time window will be shown.

At first, P, matrix should be calculated by Propo-
sition 1:

Table 2. The expected value of average waiting time of customers with 0.5 hours of service time and length of time

windows of 5 hours.

No. of Number of servers

customer 1 2 3 4 5 6 7 8 9
10 0.1532 0.0092 0.0004 — — — — — —
15 1.0323 0.0335 0.0036  0.0003 — — — — —
20 2.3748  0.0982 0.0125 0.0016  0.0001 — — — —
25 3.6436 0.4259 0.0316 0.0056  0.0008 — — — —
30 4.89 1.09 0.0763 0.0138  0.0027 — — — —
35 6.126 1.7568 0.2553 0.0297 0.0067 0.0013 — — —
40 7.365 2.391 0.6672 0.0641 0.0143 0.0035 0.0007 — —
50 — — — 0.4633 0.0561 0.0145 0.0041 0.0010 —
60 — — — — — 0.0504 0.0145 0.0045 0.0013

Table 3. The expected value of average waiting time of customers with 0.5 hours of service time and length of time

windows of 6 hours.

No. of Number of servers

customer 1 2 3 4 5 6 7 8
10 0.0931 0.0053 0.0002 — — — — —
15 — 0.0194 0.0016 — — — — —
20 — 0.0490 0.0061 0.0006 — — — —
25 — — 0.0153  0.0022 — — — —
30 — — 0.0325 0.0058 0.0008 — — —
35 — — 0.0670 0.0124 0.0023 — — —
40 — — — 0.0239 0.0053 0.0010 — —
50 — — — — 0.0186 0.0048 0.0011 —
60 — — — — 0.0578 0.0150 0.0043 0.0011

Table 4. The expected value of average waiting time of customers with 0.5 hours of service time and length of time

windows of 8 hours.

No. of Number of servers

customer 1 2 3 4 5 6 7
10 0.0509 0.0021 — — — — —
15 0.1295 0.0082  0.0004 — — — —
20 — 0.0201  0.0018 — — — —
25 — 0.0406 0.0049 0.0004 — — —
30 — 0.0780 0.0104 0.0013 — — —
35 — — 0.0194 0.0031 0.0004 — —
40 — — 0.0337 0.0061  0.0009 — —
50 — — 0.1051 0.0181 0.0038 0.0007 —
60 — — — 0.0461 0.0108 0.0025 0.0005
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Table 5. The expected value of average waiting time of customers with 0.5 hours of service time and length of time

windows of 10 hours.

No. of Number of servers

customer 1 2 3 4 5 6
10 0.0336  0.0009 — — — -
15 0.0756  0.0042 0.0001 — — -
20 0.1594 0.0104 0.0006 — — -
25 — 0.0206 0.0019 0.0001 — -
30 — 0.0363 0.0043 0.0004 — -
35 — 0.0611 0.0081 0.0009 — -
40 — 0.1048 0.0139 0.0020 0.0002 -
50 — — 0.0344 0.0063 0.0010 -
60 — — 0.0825 0.0152 0.0031 0.0005

Table 6. The expected waiting time of customers with 0.5 hours of service time for 20 customers, 3 servers, and length of

time windows of 5 hours.

7 1 2 3 4 5 6 7 8 9 10
W; 0 0 0 0.017 0.017 0.017 0.014 0.014 0.014 0.014
7 11 12 13 14 15 16 17 18 19 20
W; 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014
p [t 1 1 06769 06769 0.6769 0.20
c~lo 0 0 03231 03231 0.3231 0.18
0.16
0.718 0.718 0.718 0.7203 Eon
0.282 0.282 0.282 0.2797 9 01
0.7203 0.7203 0.7205 0.7205 £ o0
0.2797 0.2797 0.2795 0.2795 L oo
g 0.06 — 1 server
0.7205 0.7205 0.7205 0.7205 = 004 —— 2 servers
0.2795 0.2795 0.2795 0.2795 0.09. 3 servers
0.00 l =

0.7204 0.7204
0.2796 0.2796| -

The first row of this matrix shows the probability that,
at least, one server in the system is idle at the arrival
of the jth customer, j = 1,---20. For example, the
probability that the 7th customer has no waiting time
is 0.718. By using this matrix and Proposition 2, the
expected waiting time of each customer is calculated
and shown in Table 6.

Figures 4 to 6 show the expected waiting time
of each customer based on its arrival order for some
examples. The effect of number of servers on the
expected waiting time can be seen easily.

In order to analyze sensitivity of the model to
the number of customers, the expected waiting time of
customer for 3 servers and 8-unit length of time window
is calculated for various number of customers. These

1

2

T

3 4 5 6 7 8 9 10

Order of customers

Figure 4. The expected waiting time of each customer
based on its arrival order for 10 customers and 5-unit

length of time window problem.

sensitivity analyses are shown in Figure 7. Figure 7 has
the exponential curve.

4.1. Beta distribution arrivals

In order to compare the expected waiting times of
customers based on arrival distribution, a beta dis-
tribution is considered for arrivals. Beta distribution
is one of the distributions applicable to the proposed
model. The probability density function of the beta
distribution for 0 <t < L is:

_ Tla+p) 1
- T()T(B) Latrt

ft;a, B) "ML -t~ (37)
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Figure 5. The expected waiting time of each customer
based on its arrival order for 40 customers and 5-unit
length of time window problem.
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Figure 6. The expected waiting time of each customer
based on its arrival order for 60 customers and 5-unit
length of time window problem.
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Figure 7. The customer sensitivity analyses of expected
waiting time for 3 servers and 8-unit length of time
window problem.

In this problem, a limited time window for arrivals is
encouraged. If arrivals follow a normal distribution, a
truncated normal distribution should be used. Due to
simplicity, a beta distribution with parameters a = 2
and 8 = 2 can be used instead of the truncated normal.

Probability function of Beta(2,2)

f(=)

Figure 8. The Probability function of Beta(2,2).

The probability density function of this distribution is:

6
f(t:2,2)= ﬁt(L —1). (38)
The beta distribution with parameter a = 2, 8 = 2,
and L = 6 is shown in Figure 8.
The formula for the cumulative distribution func-
tion of this distribution is defined as follows:

_ t*(3L —2t)
=0

Based on beta distribution, the joint order statistic dis-
tributions of arrival times of the i'” and j** customers
are:

f(tivtj) =

F(t) 0<t<L, af=2 (39

n!
(=D —i—1D)n—j)!

[#2(3L—2t)]1" " 6

T] ﬁti([/ —t;)

r j—1—1

2(3L —2t;)  2(3L—2t)]" 6 .
3 - 3 ﬁ j( - j)

[ e2eL-2a)]"

| LOL—2) e ])] j >,

I (40)

!
Fltits) = = 36

(1 =D =i = Dl(n —j)L"
[12(3L — 2t)]' ™" t(L — 1,)
[2(3L — 2t;) — 2(3L — 2t:)] " 45(L — 1)

[P —£26BL-2t)]"" > (41)

The proposed method is used to calculate the expected
waiting time of customers based on beta distribution
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for arrival times. Two problems with 2 servers, 6
lengths of time window, and 15 and 20 customers are
solved.

Based on Figures 9 and 10, the expected waiting
time of customers in the uniform case will not exceed
0.026 and 0.056 units of time for 15 and 20 customers’
problems, respectively. For both problems in the
uniform case, the expected waiting time will tend
towards constant values 0.022 and 0.054 for 15 and 20
customers’ problems, respectively, until time window
is up. However, in the beta case, the expected waiting
times reach 0.071 and 0.279 units of time for 15 and
20 customers’ problems, respectively. This is obvious
because the service time is fixed and uniform arrival is
managed better. This dictates to the management of
the facility that makes the service by appointment.

0.08

0.07 ﬁ‘x
0.06

Expected waiting time of customers

== Beta(2,2) distribution
== Uniform distribution

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Order of customers
Figure 9. The comparison between uniform and beta
arrival distributions for the expected waiting time of each
customer based on its arrival order for 15 customers and
6-unit length time and 2 servers’ problem.

0.30

== Beta(2,2) distribution
== Uniform distribution

0.25

0.20

0.10

0.05

Expected waiting time of customers

0.00

13 5 7 9 11 13 15 17 19
Order of customers

Figure 10. The comparison between uniform and beta

arrival distributions for the expected waiting time of each

customer based on its arrival order for 20 customers and

6-unit length time and 2 servers’ problem.

4.2. Cost optimization

Both the cost of waiting time of customers arriving at
the outbound door of the crossdock and the operation
and setup costs of the crossdock are significant. These
kinds of costs are considered to determine the number
of outbound doors and servers. Cost is incurred due
to the waiting time of the customers, the fixed costs of
an outbound door, and the operation costs of a server.
Since the length of time window for service is fixed, it is
assumed that the operation cost is fixed. The number
of outbound doors is optimized considering all costs.
Decreasing the waiting time of customers increases the
operation and setup costs, and vice versa. Let us define
the following notations:

Cy The cost of waiting time of one
customer arriving at the outbound
door for the unit of time;

C, The total operation and setup costs for
one door;
Wy The average expected waiting time of

customers in the queue.

There is only one decision variable, the number of
outbound doors, namely m.

The objective function includes two parts: wait-
ing time costs and fixed costs.

The waiting time cost function is descending, and
the setup and operation costs of objective functions are
ascending in terms of the number of servers. Both costs
are approximated using the real case:

C\ = 350,
C, = 130.

Figures 11 and 12 show the cost function of the problem

1800
1600 ‘
1400
L, 1200 o
)
5 1000 \ \v\/
5
2
800 2
= \
5 \
© 600
400 =@ Total costs
== Waiting time costs
Fixed costs
200
0 H‘_ +]

Number of outbound doors
Figure 11. The objective function for the problem with

50 customers, 0.5 unit service time, and 5-unit length of
time window.
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Table 7. Optimum number of doors m with different number of customers and different lengths of time window L.

No. of L=5 L=6 L=38 L =10
customer m* F* m* m* F* m” F*

10 2 293.12 2 279.08 2 267.56 1 250.96

15 3 409.44 2 364.76 2 304.28 2 282.68

20 3 480 3 433.92 3 402.96 2 334.88

25 4 570.4 3 527.7 3 434.1 3 407.1

30 4 669.04 4 582.64 3 502.32 3 436.44

35 5 734.42 4 676.24 4 559.06 3 492.06

40 6 830.4 5 726.32 4 607.84 4 548.8

50 7 983.8 6 866.4 5 718.4 4 633.4

60 8 1137.2 7 1002.88 6 834 5 716.96
2000 and a fixed service time. The expected waiting time of
1800 == Total costs customers was calculated, and the number of outbound

e=fll= Waiting time cost of trucks L. .. .
1600 PFixed costs doors was optimized based on the minimization of the
expected waiting time of customers along with the
1400 minimum setup and operation costs of the crossdock.
é 1200 In fact, the queueing system in this study is a finite
< queue with a finite number of customers that should
= 1000 . . .

b be served. Since the proposed queueing system is not
,E 800 similar to the classic models, classic methods cannot
600 be used to compute the expected waiting time of cus-
tomers. Hence, joint conditional distribution of orders
400 statistics was used to calculate the average expected
200 waiting time. Herein, 126 problems with different

6 7 8 9 10

Number of outbound doors

Figure 12. The objective function for the problem with
50 customers, 0.5 unit service time, and 5-unit length of
time window.

with 50 and 60 customers, 0.5 unit service time, and
5-unit length of time window.

It is observed that the total costs of both problems
are of the same amount. The total objective function
is convex. Therefore, the minimum function can be
found easily. The optimum number of doors with the
specified parameter is 7 and 8 for 50 and 60 customers,
respectively. Table 7 shows the optimum answer for
different number of customers and lengths of time
window with the number of optimum outbound doors,
and F™* is the amount of optimum total costs.

5. Conclusion and discussion

Crossdocking is a significant subject in supply chain
that has earned the spotlight today. Now, this study
proposed a new queueing model for the outbound door
of a crossdock in a supply chain. The crossdock has m
outbound doors with n trucks arriving within a speci-
fied time window, according to a uniform distribution

number of customers, 10-60, different lengths of time
window, 5-10, different number of outbound doors, 1-
9, were solved for the expected waiting time of all
customers. Then, the number of servers was optimized
based on minimizing the total cost of expected waiting
time and setup costs. The application of this study
can focus on fruit and vegetable centers of the Iranian
cities and distribution companies. Notations in [32]
can be extended for such queues by (n,B,L)/D/m
as the finite queueing model. The same analysis was
conducted because the number of customers and the
length of time window were finite, service time was
fixed, and arrivals were measured according to any
known distribution. Calculating the expected waiting
time of customers by the proposed method is the main
contribution of the paper.
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