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Abstract. The production scheduling problem in hybrid 
ow shops is a complex
combinatorial optimization problem observed in many real-world applications. The
standard hybrid 
ow shop problem often involves unrealistic assumptions. In order to
address the realistic assumptions, four additional traits were added to the proposed
problem. These include the re-entrant line, setup times, position-dependent learning e�ects,
and consideration of maximum completion time together with total tardiness as an objective
function. Since the proposed problem is NP-hard, a meta-heuristic algorithm is proposed as
the solution procedure. The solution procedure is categorized as an a priori approach. To
show the e�ciency and e�ectiveness of the proposed algorithm, computational experiments
were carried out on various test problems. Computational results show that the proposed
algorithm can obtain an e�ective and appropriate solution quality for our investigated
problem.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

A production unit is characterized by a multi-stage
production 
ow shop with multiple parallel machines
per production stage, usually referred to as the 
exible

ow shop, multi-processor 
ow shop, or Hybrid Flow
Shop (HFS) environment. These environments have
the following characteristics in common:

1. The number of stages, g, is at least 2;
2. Each stage, t, has mt � 1 machines in parallel and

in, at least, one of the stages mt > 1;
3. All n jobs have the same production 
ow (i.e.,

stage 1, stage 2, ..., stage g).

Setup includes work to prepare the machine,
process, or bench for product parts or the cycle. One
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of the underlying assumptions in this paper is the con-
sideration of setup times in scheduling con�gurations.
The setup times are classi�ed into two types:

1. Sequence-Independent Setup Times (SIST);
2. Sequence-Dependent Setup Times (SDST).

In the former, the length of time required to do the
setup depends on the job just to be processed. In
the latter, the length of time required to do the
setup depends on both the prior and current jobs
to be processed. Allahverdi et al. [1] provided a
comprehensive review of scheduling research with setup
times (costs).

Another underlying assumption in this paper
is the consideration of re-entrant lines in scheduling
con�gurations. The assumption of classical HFS
scheduling problems that each job visits machines in
each stage only once is sometimes violated in practice.
A new type of manufacturing shop, the re-entrant
shop has recently attracted much attention. The Re-
entrant HFS (RHFS) means that there are n jobs to be
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processed on g stages, and every job must be processed
on stages in the order of stage 1, stage 2,... , stage
g for l times (l is the number of repetition of jobs on
the sequence of stages). Lin and Lee [2] provided a
comprehensive review of the literature on scheduling
problems involving re-entrant 
ows.

The learning e�ect has received considerable at-
tention in the context of scheduling problems until
recently. The learning e�ect in scheduling problems
was �rst investigated by Biskup [3]. In classical
scheduling, job processing and setup times are assumed
constant from the �rst until the last job to be pro-
cessed. This assumption might be unrealistic in many
situations, because the productivity of a production
facility (a machine, a plant, a worker, etc.) improves
continuously when executed in the same or almost the
same conditions. The learning e�ects are classi�ed into
two types:

1. Position-based learning;

2. The sum of processing time.

The �rst one assumes that the experience of the
processor is equal to the number of performed jobs. In
the second one, the experience provided by a job is not
unary, but equal to its normal processing time. The
underlying assumption in this paper is the position-
based learning e�ect. For further study on `learning
e�ect' literature in scheduling problem, refer to the
complete survey, which is presented by Biskup [4].

In many real-world applications, it is often nec-
essary to consider multiple criteria in scheduling prob-
lems. Therefore, the consideration of maximum com-
pletion time (makespan or Cmax) together with total
tardiness as an objective function in this study is
more realistic than the more common minimization of
makespan or total tardiness ( �T ) separately.

The problem is con�gured as a multi-objective
model. The �rst decision in a multi-objective space
concerns with how to combine the search and the
decision-making processes. This can be done in one
of the following three ways:

1. Search and then decision-making (a posteriori ap-
proach);

2. Decision-making and then search (a priori ap-
proach);

3. Interactive search and decision-making.

In this paper, a priori approach is used to �nd a
good quality schedule. In these methods, the solution
that best satis�es the decision-maker's preferences is
selected.

The HFS scheduling problem is a strongly NP-
hard problem. Gupta [5] showed that the two-stage
HFS with more than one machine at one stage is

NP-hard. Since this problem can be considered as
a speci�c case of the HFS, then it can be concluded
that our problem is also NP-hard. The exact methods
are unable to render feasible solutions even for small
instances of this problem in a reasonable computa-
tional time. Therefore, this inability justi�es the need
for employment of a variety of heuristics and meta-
heuristics to solve these problems to optimality or near
optimality. In this paper, a meta-heuristic algorithm is
proposed to solve the scheduling problem.

The remainder of the paper is organized as fol-
lows: Section 2 gives the literature review of multi-
objective HFS scheduling. Section 3 describes the
problem. Section 4 introduces the proposed algorithm.
Section 5 gives the computational results. Finally,
Section 6 is devoted to conclusion and future research.

2. Literature review

The literature review section summarizes papers on
the HFS problem with one or more additional features
mentioned between the years 2008 to 2016.

Jungwattanakit et al. [6] studied the 
exible

ow shop with several constraints to minimize a
convex sum of makespan and the number of tardy
jobs. They considered unrelated parallel machines
and sequence/machine dependent setup times, release
date, and due date as constraints in study. First,
the problem was formulated by a 0{1 Mixed Integer
Programming (MIP), and then Genetic Algorithm
(GA) was proposed to �nd the near-optimal schedule.
Behnamian et al. [7] developed a multi-phase method
to solve the problem of SDST HFS with the objective
of minimizing the makespan as well as the sum of
the earliness and tardiness of jobs. Naderi et al. [8]
considered the SDST HFS problem with transportation
times. They developed a Simulated Annealing (SA)
to minimize both total completion time and total
tardiness. Rashidi et al. [9] investigated the SDST
HFS problems with unrelated parallel machines and
blocking processor. They proposed the hybrid multi-
objective parallel GA, which divides the population
into some groups of di�erent weights, that transforms
the bi-criteria, makespan, and maximum tardiness into
a single objective.

Dugardin et al. [10] considered the multi-objective
RHFS scheduling problem. The scheduling objective
consists of two parts: the minimization of the cycle
time and the maximization of the utilization rate of
the bottleneck. This problem was solved by a multi-
objective GA using the Lorenz dominance relationship.
Cho et al. [11] focused on the minimization of makespan
and total tardiness in a RHFS. They proposed a local-
search-algorithm-based Pareto GA with the Minkowski
distance-based crossover operator to achieve a good
approximate Pareto solution.



S.M. Mousavi et al./Scientia Iranica, Transactions E: Industrial Engineering 25 (2018) 2233{2253 2235

Mousavi et al. [12] considered the SDST HFS
scheduling problem. In order to minimize the convex
combination of the makespan and total tardiness, they
proposed a meta-heuristic based on SA. In addition,
Mousavi et al. [13] developed a local search to solve the
above problem. Hakimzadeh Abyaneh and Zandieh [14]
considered the bi-objective SDST HFS problem with
limited bu�ers. The GA was proposed to minimize
makespan and total tardiness of jobs. Pargar and
Zandieh [15] investigated the SDST HFS problems with
learning e�ect of setup times. They proposed a meta-
heuristic approach called water 
ow-like algorithm to
minimize weighted sum of makespan and total tardi-
ness.

Sheikh [16] formulated a bi-objective 
exible 
ow
shop scheduling problem with limited time lag between
stages and due windows by a MIP model. A GA
procedure was designed to solve this model e�ciently.
Tadayon and Salmasi [17] investigated group schedul-
ing in the bi-objective 
exible 
ow shop scheduling
problem with release time and eligibility. A mathemat-
ical model and several meta-heuristic algorithms based
on the Particle Swarm Optimization (PSO) algorithm
were proposed to heuristically solve the research prob-
lem. Behnamian and Zandieh [18] developed a hybrid
algorithm of PSO, SA, and Variable Neighborhood
Search (VNS) to solve the SDST HFS scheduling
with position-dependent learning e�ects. Fadaei and
Zandieh [19] considered group scheduling in the prob-
lem of bi-objective HFS scheduling within the area of
sequence-dependent family setup times. They focused
on the following three multi-objective algorithms to
solve the mentioned problem: multi-objective GA, sub-
population GA-II, and Non-dominated Sorting GA-II
(NSGA-II).

Jolai et al. [20] investigated the bi-objective prob-
lem of no-wait two-stage 
exible 
ow shop scheduling.
The makespan together with the maximum tardiness of
jobs was considered as the objective function in their
study. Three bi-objective optimization methods were
based on SA developed to solve scheduling problem.
Luo et al. [21] studied a bi-objective HFS scheduling
problem with uniform parallel machines from a new
aspect of energy e�ciency. In order to solve this
problem, an ACO meta-heuristic was applied to op-
timize both makespan and electric power cost with
the presence of time-of-use electricity prices. Tran
and Ng [22] addressed the multi-objective 
exible 
ow
shop scheduling problem with limited intermediate
bu�ers. A hybrid water 
ow algorithm was proposed
to minimize the completion time of jobs and the total
tardiness time of jobs. Su et al. [23] proposed a
distributed co-evolutionary algorithm to minimize the
makespan and total tardiness of jobs in multi-objective
HFS scheduling problems.

Attar et al. [24] investigated a new multi-objective

hybrid 
exible 
ow shop problem with several useful
constraints. They considered the limited waiting times
between every two successive operations, unrelated
parallel machines at least one stage, sequence/machine
dependent setup times, and due dates of jobs as
constraints in study. They proposed multi-objective
PSO and strength Pareto evolutionary algorithm II to
minimize the total weighted tardiness and maximum
the completion times. Wang and Liu [25] considered
a bi-objective HFS problem with two stages. They
considered the SDST and preventive maintenance at
the �rst stage machine as constraints in study. A multi-
objective Tabu Search (TS) method was proposed to
solve this integrated problem. Ying et al. [26] proposed
an iterated Pareto greedy algorithm to solve a RHFS
with the bi-objective of minimizing makespan and
total tardiness. Mousavi and Zandieh [27] proposed
a procedure based on hybrid, the simulated annealing,
genetic algorithm, and local search, so-called HSA-GA-
LS, to handle the problem of SDST HFS scheduling
with the objective of minimizing the makespan and
total tardiness of jobs approximately.

To the best of our knowledge, as just reviewed,
bi-objective RHFS with SDST and learning e�ect
problem have never been investigated in the scheduling
problems in the literature up to now. Consequently,
the scheduling models have not been developed with
respect to the problem. To describe the problem
in detail, a MIP model is presented. Up to now,
requests, comments, and viewpoints of the decision-
makers are not included before the solution process
in the scheduling problems in the literature. Con-
sequently, a method based on an a priori approach
has never been introduced as able to tackle scheduling
problems within a reasonable time. To solve the
problem, a meta-heuristic algorithm based on an a
priori approach is proposed.

3. Problem description

To describe the problem in more detail, a 0-1 MIP
model is presented. The indices, input parameters,
decision variables, learning e�ect model, and the math-
ematical model are detailed as follows.

3.1. Indices
Indices, which are used to model our problem, are listed
below:
t Index for processing stage, t =

1; 2; 3; � � � ; g
i; j Indices for jobs, i; j = 1; 2; 3; � � � ; n
k Index for machines at stage t,

k = 1; 2; 3; � � � ;mt

r Index for position job on machine,
r = 1; 2; 3; � � � ; n
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l Index for cycles performed by a job,
l = 1; 2; 3; � � � ; L

3.2. Input parameters
n Number of jobs to be scheduled
g Number of serial stages
mt Number of identical machines at stage

t
L Number of repetition of jobs on the

sequence of stages
dj Due date job j

P tjl Actual processing time for job j at
stage t of layer l

Stijl Actual setup time between job j and
job i at stage t of layer l while job j is
scheduled immediately after job i

St0jl Actual setup time job j at stage t of
layer l when job j is assigned to a
machine at the �rst position

LR Learning Rate
atjl Learning index for job j at stage t of

layer l (negative parameter)

3.3. Decision variables
Ctjl Completion time of job j at stage t of

layer l
Cmax Maximum completion time or

makespan
Tj Tardiness of job j
�T Total tardiness
Xt
ijkrl 1 if job j scheduled immediately after

job i on machine k in position r at
stage t of layer l and 0 otherwise

Xt
0jk1l 1 if job j scheduled at the �rst position

on machine k at stage t of layer l and
0 otherwise

Xt
i0kntkll

1 if job i scheduled at the last position
on machine k at stage t of layer l and
0 otherwise

St0j1l Actual setup time job j at stage t of
layer l when job j is assigned to a
machine at the �rst position

ntkl Number of jobs assigned to machine k
at stage t of layer l (

Pmt
k=1 n

t
kl = n; t =

1; 2; � � � ; g; l = 1; 2; � � � ; L)

3.4. Learning e�ect model
The e�ect of learning on scheduling may arise in a
company with similar jobs. Similar jobs may function
on one machine or on parallel and identical machines
for a number of customers. Generally, by processing

one job after the other, the skills of the workers con-
tinuously improve, e.g., the ability to perform setups
faster, to deal with the operations of the machines,
or to handle raw materials, components or similar
operations of the jobs at a greater pace. In this
paper, scheduling problem is investigated with learning
considerations, using the learning curve introduced by
Biskup [3]. Now, assume that the production facility
improves continuously, and that the processing time of
a given job decreases as a function of its position in
the sequence. As in Biskup [3], herein, it is assumed
that the processing time of job j at stage t of layer l, if
scheduled in position r, is given by Eq. (1):

P tjrl = P tjl � (rtjl)
(atjl); 8 i; j; t; r; l; (1)

where �1 � atjl � 0 is a constant learning index, given
as the logarithm to base 2 of the Learning Rate (LR).
In this paper, it is assumed that all machines and jobs
in each stage and layer have the same learning rate
(atjl = a). Similarly, the setup time of job i to job j, if
scheduled in position r at stage t of layer l, is given by
Eq. (2):

Stijrl = Stijl � (rtjl)
(atjl); 8 i; j; t; r; l: (2)

Therefore, decision variables related to the learning
e�ect model are as follows:
rtjl Position job j at stage t of layer l

P tjrl The processing time for job j in
position r at stage t of layer l

Stijrl The setup time of job i to job j,
scheduled in position r at stage t of
layer l

3.5. Mathematical formulation
The problem can now be formulated as follows:

Minimize fZ1 = Cmax; Z2 = �Tg: (3)

Subject to:

mtX
k=1

nX
r=1

nX
j=0;i6=j

Xt
ijkrl = 1; 8 t; i; l; (4)

mtX
k=1

nX
r=1

nX
i=0;i6=j

Xt
ijkrl = 1; 8 t; j; l; (5)

nX
j=1

Xt
0jk1l = 1; 8 t; k; l;

or

0@mtX
k=1

nX
j=1

Xt
0jk1l = mt; 8 t; l

1A ; (6)
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nX
i=1

Xt
i0kntkll

= 1; 8 t; k; l;

or

0@mtX
k=1

nX
i=1

Xt
i0kntkll

= mt; 8 t; l
1A ; (7)

Xt
jjkrl = 0; 8 t; k; j; r; l; (8)

nX
i=0;i6=j

Xt
ijk(r�1)l �

nX
i=1;i6=j

Xt
jikrl � 0;

8 t; k; j; r � 2; l; (9)

nX
i=0

nX
j=1;i6=j

Xt
ijk(r�1)l �

nX
i=0

nX
j=1;i 6=j

Xt
ijkrl � 0;

8 t; k; r � 2; l; (10)

Xt
ijkrl 2 f0; 1g; 8 t; k; r; i; j; l; i = 0; j = 0;

(11)

Stijrl = Stijl � (rtjl)
(atjl); 8 i; j; t; r; l; (12)

P tjrl = P tjl � (rtjl)
(atjl); 8 i; j; t; r; l; (13)

Ctjl � Ctil � Stijrl + P tjrl +

0@mtX
k=1

Xt
ijkrl � 1

1AM

8 t; i; j; r � 2; l; i 6= j (14)

Ctjl � 0; 8 t; j; l; (15)

Ctjl � Ct�1
jl �

mtX
k=1

nX
i=1

StijrlX
t
ijkrl +

mtX
k=1

St0jrlX
t
0jkrl

+ P tjrl; 8 t; r; j; l; i 6= j;
(16)

Cmax � CgjL; 8 j; (17)

Tj � CgjL � dj ; 8 j; (18)

Tj � 0; 8 j; (19)

�T =
nX
j=1

Tj ; (20)

Xt
ijk1l = 0; 8 i � 1; j; k; t; l; i 6= j; (21)

Xt
0jkrl = 0; 8 r � 2; j; k; t; l; (22)

Xt
i0krl = 0; 8 r < ntkl; i; k; t; l; (23)

nX
i=0

nX
j=1

Xt
ijkrl = ntkl; 8 k; l; t; (24)

mtX
k=1

ntkl = n; 8 t; l: (25)

Eq. (3) describes the objective function. Constraint
sets (4) and (5) ensure that only one job is assigned
to each sequence position at each stage and layer.
Constraint sets (6) and (7) ensure that only one job will
be assigned to the �rst and last positions, respectively,
on each machine at each stage and layer. Constraint
sets (6) and (7) (in parenthesis) show that mt machines
are scheduled at each stage and layer. Constraint
set (8) assures that, after the job has been �nished
at any stage, it cannot be reprocessed at the same
stage. Constraint set (9) is a 
ow balance constraint,
guaranteeing that jobs are performed in a well-de�ned
sequence, and ensuring that each job has a predecessor
and a successor on the machine where the job is
processed. That is, if job j is processed directly
after job i on machine k in position r � 1 at stage
t of layer l, job i0, which is the successor of the job
j, should be processed in position r on machine k
at stage t of layer l. Constraint set (10) ensures
that the position on each machine should be �lled
in sequence. Constraint set (9) is complementary to
Constraint (10). Constraint set (11) speci�es decision
variables Xt

ijkrl as binary variables. Constraint set
(12) modi�es setup time between job j and job i in
position r at stage t of layer l with respect to learning
e�ect. Constraint set (13) modi�es processing time for
job j in position r at stage t of layer l with respect
to learning e�ect. Constraint set (14) is a set of
disjunctive constraints. It states that if jobs i and
j are scheduled on the same machine at a particular
stage with job i scheduled before job j, then job i must
complete the processing before job j can begin. This
constraint set forces job j to follow job i by at least
the processing time of job j plus the setup time from i
to j if job j is immediately scheduled after job i. The
value of M is set to a very large constant. Constraint
set (15) ensures that the completion time of every
job at each stage and layer is a non-negative value.
Constraint set (16) speci�es the conjunctive precedence
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constraints for the jobs, stating that a job cannot start
its processing at stage t before it is �nished at stage
t� 1. Constraint set (17) links the makespan decision
variable (Cmax = maxfCgj ; j = 1; � � � ; ng). Constraint
sets (18) and (19) determine the correct value of the
tardiness (Tj). Constraint set (18) determines the
correct value of the lateness, and constraint set (19)
speci�es only the positive lateness as the tardiness
(Tj = maxfCgj � dj ; 0g). Constraint set (20) links the
total tardiness decision variable. Constraint sets (17)
and (20) represent two criteria of the objective function
complementary with other constraints. Constraint sets
(21) to (23) provide limits on the decision variables
(the unde�ned variables' values become equal to 0).
Constraint sets (24) and (25) calculate the number of
jobs assigned to each machine.

4. The proposed algorithm

In this paper, VNS based on an a priori approach,
namely VNS-PA, is proposed for solving this bi-
objective optimization problem. The proposed algo-
rithm is categorized as a local search-based algorithm
armed with systematic neighborhood search structures.

In a nutshell, VNS algorithm starts from an initial
solution and manipulates it through a two-nested loop.
The outer loop works as a refresher reiterating the inner
loop, while the inner loop carries out the major search.
The inner loop iterates as long as it keeps improving
the solutions. Once an inner loop is completed, the
outer loop reiterates until the termination condition is
met.

The solution procedure is categorized as an a
priori approach. In the case of a priori methods,
the decision-maker must specify her or his preferences,
hopes, and opinions before the solution process. There-
fore, a decision-maker along with his or her preference
structure is required. For this reason, several provisions
are designed to express the views of decision-makers.
In the following subsection, the provisions in detail are
described.

4.1. The designed provisions
In many studies, the aim is to �nd a good quality sched-
ule for their proposed problem that minimizes a convex
combination of objective functions (i.e., makespan and
total tardiness). Therefore, for a solution, x, the total
objective function is represented as follows:

Total objective function = minimizing f(x);

f(x) = �1 � f1(x) + �2 � f2(x);

f1(x) = makespan; f2(x) = total tardiness;

�1 + �2 = 1; (26)

where �1, �2 � 0 values are the weighting coe�cients
representing the relative importance of makespan and
the total tardiness. The idea behind � values is to
balance both objectives.

According to a priori approach, the preferences
for each objective are set by the decision-makers; then,
one solution satisfying these preferences has to be
found. It must be said that all requests, comments, and
viewpoints of the decision-makers are not included in
the total objective function (Eq. (26)). Instead of this
function, a new objective function must be designed
in terms of requests, comments, and viewpoints of the
decision-makers. For this reason, several provisions are
designed to express the views of decision-makers. Then,
a new objective function is designed according to these
provisions. The provisions designed in this paper are
now described as follows:

1. The �rst provision: The decision-makers require
schedules with respect to the trade-o� between
various objectives. Figure 1 presents the acceptable
trade-o� between the objectives by angle (�). The
angle of the ith neighborhood solution (xi), called
�xi , is computed as given in Eq. (27), and the
�rst provision is designed as given in Eq. (28).
According to the �rst provision, �xi at the interval
of 35 to 55 (45�10) degrees is proper and condition
is satis�ed:

�xi =

8>>>>><>>>>>:
arctan

�� f2(xi)
f2

��
f1(xi)
f1

�� 8 i if f2 > 0

arctan
�� 1+f2(xi)

1+f2

��
f1(xi)
f1

� � 8 i if f2 = 0
(27)

If 35 � �xi � 55; 8 i;
Then Xi

1 = 1; Else Xi
1 = 0; (28)

where f1(xi) and f2(xi) are the makespan and
total tardiness of the ith neighborhood solution,

Figure 1. A range of angle as an acceptable trade-o�
between the two objectives.
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respectively. It is noted that several neighborhood
solutions derived from the current solution (x0)
are generated. f1 and f2 are the lowest observed
makespan and total tardiness values, respectively,
which can be updated after each iteration. To
prevail over the trap of dealing with di�erent
measurement sizes of objective values, the value
of each objective function should be normalized
by dividing the actual objectives' values into the
minimum objectives. In this respect, one is added
to the denominator and numerator when f2 is equal
to 0 (f2 = 0);

2. The second provision: The hope of decision-makers
is to �nd schedules close to the ideal point (0,
0). For this reason, the obtained solutions should
converge towards the ideal point. Figure 2 presents
the convergence of the ideal point by distance (ed).
The distance between the ideal point and the ith
neighborhood solution, called edxi , is computed
as given in Eq. (29), and the second provision is
designed as given in Eq. (30). According to the
second provision, if edxi has lower value of distance
between the ideal point and current solution (edx0),
then the condition for the corresponding solution
is satis�ed. Parameter de�nitions are presented as
before.

edxi =

8>>>>>>>>><>>>>>>>>>:

r�
f1(xi)
f1

�2
+
�
f2(xi)
f2

�2 8 i;
if f2 > 0r�
f1(xi)
f1

�2
+
�

1+f2(xi)
1+f2

�2 8 i;
if f2 = 0

(29)

If edxi � edx0 ; 8 i;
Then Xi

2 = 1; Else Xi
2 = 0: (30)

3. The third provision: Suppose that there is a basic
solution. The decision-makers are interested in
accepting new solutions, compared to basic solu-
tion, only if they provide a better value, or at
least one objective, i.e., f1(x) or f2(x). For a

Figure 2. A hypothetical example of distance.

bi-objective problem, this criterion is de�ned as
given in Eq. (31). This criterion is one of the
simplest acceptance criteria de�ned with decision-
makers' comments. Similar to the mentioned cri-
terion, the third provision is designed as given in
Eq. (32). According to the third provision, if at
least one objective of ith neighborhood solution
(f1(xi) or f2(xi)) has lower value of the current
solution (f1(x0) or f2(x0)), then the condition for
the corresponding solution is satis�ed:

f1(xi) < f1(x0); or f2(xi) < f2(x0); 8 i;
(31)

If f1(xi)<f1(x0); or f2(xi)<f2(x0); 8 i;
Then Xi

3 = 1; Else Xi
3 = 0: (32)

4. The fourth provision: Researchers use Relative
Percentage Deviation (RPD) as a common perfor-
mance measure. This criterion is shown in Eq. (33):

RPD =
Algsol �minsol

minsol
; (33)

where Algsol denotes the objective function value
obtained for a given algorithm, minsol indicates
the best obtained value for objective function. It
is clear that lower values of RPD are preferable.
For a bi-objective problem, the RPD of the ith
neighborhood solution, called RPDxi , is computed
as given in Eq. (34). Based on the mentioned
criterion, the fourth provision is designed as given
in Eq. (35). According to the fourth provision,
if RPDxi has lower value of the current solution
(RPDx0), then the condition for the corresponding
solution is satis�ed. Parameter de�nitions are
presented as before:

RPDxi =

8>>>>>><>>>>>>:
f1(xi)�f1

f1
+ f2(xi)�f2

f2
8 i;

If f2 > 0

f1(xi)�f1
f1

+ f2(xi)�f2
1+f2

8 i;
If f2 = 0

(34)

If RPDxi < RPDx0 ; 8 i;
Then Xi

4 = 1; Else Xi
4 = 0: (35)

5. The �fth provision: One of the other views of
decision-makers is to minimize a convex combina-
tion of objective functions. For a bi-objective prob-
lem, a convex combination of the ith neighborhood
solution, called f(xi), is computed in Eq. (36).
Based on the mentioned function, the �fth provision
is designed as given in Eq. (37). According to
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the �fth provision, if f(xi) has lower value of the
current solution (f(x0)), then condition for the
corresponding solution is satis�ed:

f(xi) = (�� f1(xi) + (1� �)� f2(xi));

8 i; (36)

If f(xi) < f(x0); 8 i;
Then Xi

5 = 1; Else Xi
5 = 0: (37)

Note that the objectives are not normalized. Con-
sequently, this criterion is sensitive to increasing
and decreasing in the objective function with a
larger value. The application of this criterion
is important when objective values of the new
solutions are close to the current solution. In
the following, an example is provided to clarify.
Suppose that the current solution is (10, 1500),
and new solutions, x1 and x2, are (9, 1505) and
(11, 1495), respectively. According to the third
provision, both new solutions are acceptable. If � is
set equal to 0.5, then objective functions (f(x)) are
calculated as follows: f(x0) = 755, f(x1) = 757,
and f(x2) = 753. According to the �fth provision,
only x2 is acceptable;

6. The sixth provision: Similar to the �fth provision,
the sixth provision is designed. Instead of actual
values, the normalized objectives have been used
in the provision. The normalized objectives are
computed as given in Eq. (38):

f 01(x) =
f1

f1(x)
;

f 02(x) =

8><>:
f2

f2(x) if f2 > 0

1+f2
1+f2(x) if f2 = 0 or f2(x) = 0

9>=>; :
(38)

The one is added to the denominator and numerator
when the total tardiness or minimum total tardiness
is equal to 0.

The total objective function of the ith neigh-
borhood solution, called f 0(xi), is computed as
given in Eq. (39). Based on the mentioned function,
the sixth provision is designed as given in Eq. (40).
According to the sixth provision, if f 0(xi) has lower
value of the current solution (f 0(x0)), then the
condition for the corresponding solution is satis�ed:

f 0(xi) = (�� f 01(xi) + (1� �)� f 02(xi))�1; (39)

If f 0(xi) < f 0(x0) 8 i;
Then Xi

6 = 1 Else Xi
6 = 0: (40)

7. The seventh provision: The total deviation of
each new solution of the current solution, called
Deviationxi is computed as given in Eq. (41). The
result of this deviation can be positive or negative.
Two cases represent a negative value as follows:

(a) Both objectives are worse;
(b) One of the objectives is better and the other is

worse;

however, the negative deviation will dominate the
positive deviation. Two cases represent a positive
value as follows:

(a) Both objectives are better;
(b) One of objectives is better and the other is

worse;

however, the positive deviation will dominate the
negative deviation. Consequently, the positive
results are more suitable. In fact, decision-makers
are interested in achieving new solutions with the
positive values of the total deviation. Based on
the mentioned criterion, the seventh provision is
designed as given in Eq. (42). According to the
seventh provision, if Deviationxi has a positive
value, then the condition for the corresponding
solution is satis�ed:

Deviationxi =
f1(x0)�f1(xi)

f1(x0)
+
f2(x0)� f2(xi)

(1 + f2(x0))
;

8i; (41)

If deviationxi > 0; 8 i;

Then Xi
7 = 1; Else Xi

7 = 0: (42)

Now, the di�erence between the third and seventh
provisions is described. In the third provision,
decision-makers accept new solutions only if they
provide a better value, even at least one objective.
In the seventh provision, �rst, at least one of
objectives provide a better value. Then, the pos-
itive deviation dominates the negative deviation.
In the progress, the di�erence between the fourth
and seventh provisions is described. In the fourth
provision, old and new solutions are measured to
a minimum value separately. In the seventh provi-
sion, old and new solutions are measured directly
together;

8. The proposed objective function: Based on the seven
provisions described, a new objective function is
de�ned in terms of requests, comments, and view-
points of the decision-makers as follows (Eq. (43)):
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Total objective function = maximizing Z;

Zi = Xi
1 +Xi

2 +Xi
3 +Xi

4 +Xi
5 +Xi

6 +Xi
7;

8 i;
s.t.:

Xi
j =

8><>:1 If jth condition of neighborhood
solution ith is satis�ed

0 Otherwise

j = 1; 2; � � � ; 7: (43)

Some interesting points are presented as follows:

- First, the objective function is converted from
the minimizing into the maximizing;

- Second, seven additional traits are added to the
objective function;

- Third, decision-makers express the features
added to the objective function;

- Fourth, the objective function will serve as a
\template" to/from which the assumptions and
constraints will be added or removed to describe
di�erent objective function variants.

4.2. The proposed algorithm pseudo code
The pseudo code of the VNS-PA algorithm applied in
this paper is now presented as follows.

Initialization

� Encoding: Integer coding is used in this research
for the representation of a solution. In this kind
of representation, a single row array of the size
equal to the number of the jobs to be scheduled is
formed. The value of the �rst element of the array
shows which job is scheduled �rst. The second
value shows the job scheduled, and so on. For an
example, a solution is generated according integer
coding as [3 1 4 2 5] for a problem with �ve jobs
(n = 5);

� Input parameters: Maximum number of itera-
tion of inner loop (max it); the weighting coe�-
cients (� 2 f0:25; 0:5; 0:75g);

� Draw an initial solution, x0: The initial
solution is generated in a random way from the
search space;

� Evaluate f1(x0) and f2(x0): f1(x0) is the
makespan; f2(x0) is the total tardiness of initial
solution;

� Set: q = 1, archive (q) = fx0g, f1 = f1(x0), and
f2 = f2(x0).

For it=1: max it, %maximum number of iteration inner
loop is max it

NSS = 1
While NSS < 4

Follow Steps 1 to 3, respectively.

Step 1: Generate neighborhood solutions:

If NSS = 1, perform the swap move on x0 and
generate n solutions;
If NSS = 2, perform the shift move on x0 and
generate n solutions;
If NSS = 3, perform the inversion move on x0 and
generate n solutions;
Evaluate f1(xi) and f2(xi) as new solutions in the
neighborhood of x0;
Update f1 and f2 as f1 = minff1; f1(xi)i =
1; 2; � � � ; ng, f2 = minff2; f2(xi)i = 1; 2; � � � ; ng.

Step 2: Consider provisions and calculate Z for each
neighborhood solution.

Consider conditions (Eqs. (28), (30), (32), (35),
(37), (40), and (42)) for each neighborhood solution:

If 35 � �xi � 55; 8 i;
Then Xi

1 = 1; Else Xi
1 = 0;

If edxi � edx0 ; 8 i;
Then Xi

2 = 1; Else Xi
2 = 0;

If

8><>:f1(xi) < f1(x0)
or
f2(xi) < f2(x0)

8 i;

Then Xi
3 = 1; Else Xi

3 = 0

If RPDxi < RPDx0 ; 8 i;
Then Xi

4 = 1; Else Xi
4 = 0;

If f(xi) < f(x0); 8 i;
Then Xi

5 = 1; Else Xi
5 = 0;

If f 0(xi) < f 0(x0); 8 i;
Then Xi

6 = 1; Else Xi
6 = 0;

If Deviation xi > 0; 8 i;
Then Xi

7 = 1; Else Xi
7 = 0:
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Calculate objective function Z (Eq. (43)) for each
neighborhood solution:

Zi = Xi
1 +Xi

2 +Xi
3 +Xi

4 +Xi
5 +Xi

6 +Xi
7;

8 i;
s.t.:

Xi
j

j=1;2;��� ;7
=

8>>>>>><>>>>>>:
1 If jth condition of

neighborhood solution ith
is satis�ed

0 Otherwise

Step 3: Decision-making
If 9k that Zk = max(Zi;8 i) � 4 (accept
57.1% of the cited conditions), Then

x0 = the corresponding solution with
maximal number of provisions
(or x0  xk)

q = q + 1;
Archive (q) = fxkg
NSS = NSS

Else
NSS = NSS + 1;

End If
End While

End For

Select one of the archived solutions according to provi-
sions.

5. Computational experiments

This section contains the method for generating data
sets, runs these data sets by the proposed algorithm,
full enumeration algorithm, and algorithm in the lit-
erature, and expresses the results of the validation of
the proposed model, the proposed algorithm; then, the
results of the e�ciency of the proposed algorithm are
presented.

5.1. Test problems
The data required for a problem consist of the num-
ber of re-entrants, jobs, machines per stage, stages,
processing times, due dates, setup times, and learning
indices. The designing range of the levels of each
factor is illustrated, as shown in Table 1. The number
of machines, processing times, and setup times are
randomly generated from a discrete uniform distribu-
tion, as described in Table 1. This table includes 4
categories of problems: (1) special small, (2) small,
(3) medium, and (4) large problems. Special small
problems are designed to assess the validity of the
proposed algorithm. The speci�c name is given to these
problems because they cover small problems of single
machine, parallel machine, 
ow shop, and two-stage
HFS. To demonstrate the e�ectiveness of the proposed
VNS-PA compared to algorithm in the literature, the
experiments are conducted on three sizes of problems:
small, medium, and large. The twenty-four problems
are produced for the special small problems. Ten
problems are produced for the small, medium, and
large problems. Learning indices {0.152 and {0.514 are
selected with respect to the learning curve of 90% and
70%, respectively. In general, all problems are tested
with regard to the level of learning indices. To generate
due dates of all n jobs, the following steps are proposed:

- Compute the total processing time of each job on all
g stages:

Pj =
LX
l=1

gX
t=1

P tjl; 8 j 2 n: (44)

- Compute average setup time for all possible subse-
quent jobs and sum it for all g stages:

Sj =
LX
l=1

gX
t=1

0BB@
nP
k=1

Stkjl

n

1CCA ; 8 j 2 n: (45)

Table 1. Factors and their levels.

Factor
Levels

Special small Small Medium Large

Number of jobs (n) 5; 7; and10 10; 15; and 20 25; 30; and 35 40; 50; and 60

Number of stages (g) 1; and 2 5; 7; and 10 10; 12; and 15 15; 17; and 20

Number of re-entrants (L) 1; and 2 1; and 2 2; and 3 3; and 4

Number of machines (mt) 1; and 3 Uniform (1, 3) Uniform (1, 6) Uniform (1, 9)

Processing times (P ) Uniform (10, 20) Uniform (10, 20) Uniform (10, 40) Uniform (10, 100)

Setup times (S) Uniform (3, 6) Uniform (3, 6) Uniform (5, 10) Uniform (11, 22)



S.M. Mousavi et al./Scientia Iranica, Transactions E: Industrial Engineering 25 (2018) 2233{2253 2243

- Determine a due date for each job:

dj=(Pj+Sj)�
0BB@max

�
mt
t2g

�
g

1CCA�(1+random�3);

8 j 2 n; (46)

where random is a random number from a uniform
distribution over range (0, 1).

5.2. The validation of proposed model
To demonstrate the validation of the proposed model,
the experiments were conducted on �ve special small
problems. Each example is solved by the full enu-
meration algorithm and LINGO software. Solving a
problem with enumeration algorithm includes trying
all the possibilities that exist with manual calculations.
Details of the special small-sized problems and results
are shown in Table 2. Because the process of the
solution is time consuming, the runtime was limited
to two hours.

It is obvious from the table that the optimal solu-
tion has been obtained for the �rst problem. This result
demonstrates the ability of the proposed approach to
model the problem and �nd an optimal solution. Due
to time constraints, a gap between the optimal solution
and obtained solution exists for other problems. The
results show that error increases signi�cantly when the
dimensions are slightly larger. Thus, meta-heuristic
methods must be used to solve problems.

5.3. The validation of the proposed algorithm
To demonstrate the validation of the proposed VNS-
PA, the experiments were conducted on special small
problems. The full enumeration algorithm is used to
�nd the optimal solution to every problem. Details
of special small-sized problems and results are shown
in Table 3. According to the table, the �rst column
indicates the abbreviation codes of each test problem,
the second and third columns describe the details
of problems (number of jobs � number of stages �
number of re-entrants, and number of machines per
stage), the fourth describes learning indices, the �fth
describes the best value of objectives for the proposed

objective function, and the last column describes the
average CPU time (second unit).

It is noticeable that the maximum number of
iteration of inner loop, called max it, is the only
parameter of the proposed algorithm and set max it =
10. Based on the results given in Table 3, the following
observations can be drawn.

Due to the proposed objective function, the pro-
posed algorithm is able to �nd the optimal schedule
in 93.75% of the cases. This result indicates that the
proposed algorithm has very high reliability (excellent
performance) to solve the problems. The proposed
algorithm is able to solve the problems in the length
of the interval from 0.2340 to 2.9484 seconds. The
full enumeration algorithm has spent the interval from
0.0780 to 2713.5281 seconds. This result indicates
that the proposed algorithm has a signi�cant speed in
solving the problem. The proposed algorithm is able to
�nd the optimal schedule in 58.33% of the cases faster
than the full enumeration algorithm.

5.4. Numerical result
To demonstrate the e�ciency of the proposed VNS-
PA, the Simulated Annealing (SA) algorithm proposed
by Mousavi et al. [12] is used. It is noticeable that
all of algorithms are implemented in MATLAB 2009a,
which is a special mathematical computation language
and run on a PC with 2.30 GHz Intel Core and
4 GB of RAM memory. To show the e�ciency and
e�ectiveness of the proposed algorithm in comparison
with a SA, computational experiments were carried
out on various test problems (i.e., small, medium, and
large). The three replications of each problem size have
been performed since there are some random conditions
when applying the algorithm.

Tables 4 to 6 show the results of the implementa-
tion of algorithms on various problems. In addition, the
�rst column indicates the abbreviation codes of each
test problem, the second and third columns describe
the weights of sets f0:25; 0:5; and 0:75g and learning
indices of sets f�0:152 and�0:514g, the fourth column
describes the best combination of objectives for each
algorithm, the �fth column describes the value of
the proposed objective function (Eq. (42)) for each
algorithm, compared to their solutions in the fourth

Table 2. Details of special small-sized problems and results of LINGO.

Test
problem

Details of problems at Optimal solution
(f1(x); f2(x))

LINGO results
(f1(x); f2(x))

Gap %
n� g � L mt

1 10� 1� 1 1 {0.152 (151.2996, 351.0591) Optimal solution 0
2 10� 2� 1 1, 1 {0.152 (171.3400, 474.0023) (185.1399, 573.1197) 17.50
3 10� 2� 1 3, 3 {0.152 (78.3015, 0) (88.7881, 38.9454) 63.13
4 10� 2� 2 3, 3 {0.152 (139.3810, 46.0765) (159.2371, 192.8482) 89.85
5 10� 2� 3 3, 3 {0.152 (242.6945, 516.8420) No solution In�nite
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Table 3. Details of special small-sized problems and results of algorithms.

Test
problem

n� g � L mt at

Best combination
(f1(x); f2(x))

CPU time
(second)

Full
enumeration

algorithm
VNS-PA

Full
enumeration

algorithm
VNS-PA

TSS1 5� 1� 1 1 {0.152 (69.6370, 34.5699) (69.6370, 34.5699) 0.0936 0.2340
{0.514 (54.8004, 5.1013) (54.8004, 5.1013)

TSS2 7� 1� 1 1 {0.152 (94.9153, 113.8748) (94.9153, 113.8748) 1.3572 0.3120
{0.514 (63.0024, 31.9535) (63.0024, 31.9535)

TSS3 10� 1� 1 1 {0.152 (151.2996, 351.0591) (151.2996, 351.0591) 1051.8679 0.3900
{0.514 (90.7567, 108.1328) (90.7567, 108.1328)

TSS4 5� 1� 2 1 {0.152 (169.4504, 157.2585) (169.4504, 157.2585) 0.0936 0.2340
{0.514 (124.8355, 26.0678) (124.8355, 26.0678)

TSS5 7� 1� 2 1 {0.152 (211.8133, 444.9392) (211.8133, 444.9392) 1.7784 0.4680
{0.514 (140.0740, 151.4606) (140.0740, 151.4606)

TSS6 10� 1� 2 1 {0.152 (312.2389,1396.4222) (311.4924,1399.5332) 1450.0448 0.4992
{0.514 (190.6457, 531.0124) (190.6457, 531.0124)

TSS7 5� 1� 1 3 {0.152 (30.6000, 57.4089) (30.6000, 57.4089) 0.0780 0.6084
{0.514 (27.5042, 51.2183) (27.5042, 51.2183)

TSS8 7� 1� 1 3 {0.152 (40.0856, 58.8299) (40.0856, 58.8299) 1.4664 2.0124
{0.514 (34.4744, 39.8322) (34.4744, 39.8322)

TSS9 10� 1� 1 3 {0.152 (57.0319, 205.4145) (57.0319, 205.4145) 1154.5790 0.9360
{0.514 (49.7259, 135.9363) (49.7259, 135.9363)

TSS10 5� 1� 2 3 {0.152 (69.1001, 130.9594) (69.1001, 130.9594) 0.1092 0.8736
{0.514 (61.3108, 110.7873) (61.3108, 110.7873)

TSS11 7� 1� 2 3 {0.152 (82.8091, 222.2887) (82.8091, 222.2887) 2.0748 2.9484
{0.514 (68.6763, 169.9968) (68.6763, 169.9968)

TSS12 10� 1� 2 3 {0.152 (119.0647, 653.7478) (120.3475, 651.8989) 1654.4686 1.7004
{0.514 (96.9553, 479.2494) (96.9553, 479.2494)

TSS13 5� 2� 1 1,1 {0.152 (104.4372, 87.9622) (104.4372, 87.9622) 0.0936 0.4056
{0.514 (76.4417, 26.4530) (76.4417, 26.4530)

TSS14 7� 2� 1 1,1 {0.152 (123.8755, 172.4553) (123.8755, 172.4553) 1.8720 0.4524
{0.514 (83.6435, 42.2256) (83.6435, 42.2256)
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Table 3. Details of special small-sized problems and results of algorithms (continued).

Test
problem

n� g � L mt at

Best combination
(f1(x); f2(x))

CPU time
(second)

Full
enumeration

algorithm
VNS-PA

Full
enumeration

algorithm
VNS-PA

TSS15 10� 2� 1 1,1 {0.152 (171.3400, 474.0023) (171.3400, 474.0023) 1458.6249 0.6240
{0.514 (108.4170, 195.3698) (108.4170, 195.3698)

TSS16 5� 2� 2 1,1 {0.152 (188.2462, 311.5455) (188.2462, 311.5455) 0.1248 0.4056
{0.514 (143.8270, 143.7925) (143.8270, 143.7925)

TSS17 7� 2� 2 1,1 {0.152 (236.0987, 824.1130) (236.0987, 824.1130) 2.6988 0.6240
{0.514 (162.6190, 442.2210) (162.6190, 442.2210)

TSS18 10� 2� 2 1,1 {0.152 (318.1379,1363.3069) (317.5031,1370.3175) 2238.1931 0.9360
{0.514 (199.6826, 496.1035) (199.6826, 496.1035)

TSS19 5� 2� 1 3,3 {0.152 (54.3001, 0) (54.3001, 0) 0.1092 1.1544
{0.514 (50.6050, 0) (50.6050, 0)

TSS20 7� 2� 1 3,3 {0.152 (61.6001, 15.6742) (61.6001, 15.6742) 2.0592 1.2948
{0.514 (54.7058, 3.5283) (54.7058, 3.5283)

TSS21 10� 2� 1 3,3 {0.152 (78.3015, 0) (78.3015, 0) 1687.0104 1.2168
{0.514 (64.7782, 0) (64.7782, 0)

TSS22 5� 2� 2 3,3 {0.152 (92.4000, 8.9120) (92.4000, 8.9120) 0.1248 2.8860
{0.514 (89.2045, 8.9120) (89.2045, 8.9120)

TSS23 7� 2� 2 3,3 {0.152 (110.4704, 20.1540) (110.4704, 20.1540) 3.0576 1.5132
{0.514 (92.3819, 20.1540) (92.3819, 20.1540)

TSS24 10� 2� 2 3,3 {0.152 (139.3810, 46.0765) (139.3810, 46.0765) 2713.5281 1.5132
{0.514 (114.0321, 10.2775) (114.0321, 10.2775)

column, and the last column describes the average CPU
time (second unit). The last two columns in these
tables are applied to compare the results.

Time cost is an important factor when comparing
di�erent algorithms. According to a report in the last
column of Tables 4 to 6, the proposed algorithm is
able to solve the small, medium, and large problems
in the length of the interval [2.132, 14.0816], [37.4037,
204.8969], and [399.9735, 2740.6281] seconds, respec-
tively. The SA algorithm has spent the interval
from 7.1396 to 105.2512, 476.0864 to 2107.0976, and
5372.7861 to 33238.1788 seconds for small, medium,
and large problems, respectively. This result indicates
that the proposed algorithm in comparison with other

algorithm has a signi�cant speed in solving the prob-
lem. In addition, Figures 3 to 5 plot the computational
times of the two algorithms for small, medium, and
large problems, respectively. It can be seen that the
computational times or the running times of VNS-PA
are considerably less than SA.

In order to evaluate the �nal solutions' quality of
each algorithm, column `Z value' in Tables 4 to 6 is
used. In fact, this column is the value of the proposed
objective function (Eq. (42)). It is known that a new
objective function is designed in terms of requests,
comments, and viewpoints of the decision-makers. As
noted, the seven additional traits are added to the
proposed objective function. Consequently, the value
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Table 4. Results of VNS-PA and SA for small-sized problems.

Test
problem

� at
Best combination

(f1(x); f2(x))
Z value CPU time

(second)
VNS-PA SA VNS-PA SA VNS-PA SA

TS1

0.25
{0.152 199.2667, 10.7680 199.2667, 10.7680 6 6

2.8886 7.1396

{0.514 143.0179, 6.5738 142.6272, 6.5738 2 7

0.50
{0.152 199.4227, 10.7680 199.2667, 10.7680 2 7

{0.514 142.7290, 6.5738 142.9777, 6.5738 7 2

0.75
{0.152 199.2667, 10.7680 199.2667, 10.7680 6 6

{0.514 142.6915, 6.5738 142.7923, 6.5738 7 2

TS2

0.25
{0.152 243.2911, 481.2525 250.0320, 595.0765 7 1

5.2598 22.9009

{0.514 143.8616, 81.1516 147.1509, 81.1516 7 2

0.50
{0.152 243.9654, 487.2905 247.9816, 584.7125 7 1

{0.514 144.9413, 79.9595 148.4950, 93.6028 7 1

0.75
{0.152 242.8082, 479.3601 244.7873, 593.3016 7 1

{0.514 147.0222, 85.2628 149.7693, 110.9439 7 1

TS3

0.25
{0.152 332.0071, 654.2614 341.5906, 884.1664 7 1

7.9742 54.9825

{0.514 177.2424, 31.8050 186.6698, 31.8050 7 2

0.50
{0.152 329.9454, 720.3330 341.0588, 963.2479 7 1

{0.514 179.1097, 31.8050 184.8838, 31.8050 7 2

0.75
{0.152 332.6917, 709.4153 333.4096, 979.7004 7 1

{0.514 179.2923, 31.8050 187.3393, 35.1831 7 1

TS4

0.25
{0.152 362.6511, 669.0805 366.2466, 700.6363 7 1

4.2354 13.2289

{0.514 235.3487, 244.6433 237.1159, 251.1650 7 1

0.50
{0.152 362.6511, 669.0805 363.6052, 680.2699 7 1

{0.514 234.0973, 241.5954 237.1569, 261.8670 7 1

0.75
{0.152 362.6511, 669.0805 363.7631, 689.3951 7 1

{0.514 234.0973, 241.5954 238.3404, 256.7414 7 1

TS5

0.25
{0.152 503.5382, 1917.2486 510.9941, 2092.8972 7 1

7.3034 44.9906

{0.514 295.1834, 375.1026 298.6744, 446.1804 7 1

0.50
{0.152 500.6247, 1959.2683 510.6997, 2120.0523 7 1

{0.514 294.9953, 379.0427 296.5968, 466.1450 7 1

0.75
{0.152 501.6289, 1935.5674 509.2380, 2082.9364 7 1

{0.514 296.9217, 373.6401 300.8927, 475.7459 7 1

TS6

0.25
{0.152 580.4476, 3694.0145 594.6841, 3940.5997 7 1

14.0816 105.2512

{0.514 309.8356, 592.1808 311.6760, 733.5276 7 1

0.50
{0.152 580.7073, 3659.8599 598.9998, 3921.3354 7 1

{0.514 310.8194, 657.7603 319.2303, 771.8630 7 1

0.75
{0.152 582.6820, 3671.9397 590.5845, 3872.5499 7 1

{0.514 311.6901, 633.1478 324.2570, 783.3545 7 1
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Table 4. Results of VNS-PA and SA for small-sized problems (continued).

Test
problem

� at
Best combination

(f1(x); f2(x))
Z value CPU time

(second)
VNS-PA SA VNS-PA SA VNS-PA SA

TS7

0.25 {0.152 260.8505, 558.8386 266.7315, 586.6777 7 1

2.1320 9.3835

{0.514 195.1480, 271.7062 197.4958, 283.3652 7 1

0.50 {0.152 260.2963, 565.4782 263.4751, 566.8055 7 1
{0.514 195.1480, 271.7062 198.6328, 280.9816 7 1

0.75 {0.152 262.0414, 576.1022 264.9741, 579.2656 7 1
{0.514 195.1480, 271.7062 197.7790, 278.6770 7 1

TS8

0.25 {0.152 313.6088, 1227.4819 322.4067, 1291.0516 7 1

3.9572 31.6916

{0.514 215.9601, 610.3063 219.8523, 663.4933 7 1

0.50 {0.152 312.5072, 1222.1546 319.5033, 1314.4263 7 1
{0.514 217.8121, 607.9701 221.4377, 673.6174 7 1

0.75 -0.152 314.6037, 1230.6496 313.3079, 1254.5750 7 2
-0.514 216.9739 609.4153 219.6262, 654.8639 7 1

TS9

0.25 {0.152 362.7951, 1944.6142 383.3242, 2185.8094 7 1

6.9108 74.0407

{0.514 230.5568, 701.5093 234.1352, 890.3517 7 1

0.50 {0.152 363.7038, 1904.5234 379.1131, 2215.1135 7 1
{0.514 230.4182, 700.7386 243.1906, 1044.9879 7 1

0.75 {0.152 362.5541, 1887.7657 385.0345, 2275.0357 7 1
{0.514 229.5163, 706.7088 233.2515, 948.3872 7 1

TS10

0.25 {0.152 424.3251, 504.9937 427.0749, 522.4043 7 1

3.4346 17.4851

{0.514 326.8493, 212.4347 328.2723, 212.4347 7 2

0.50 {0.152 424.3251, 504.9937 418.7096, 536.8717 7 2
{0.514 327.5276, 212.6590 327.5500, 224.3122 7 1

0.75 {0.152 424.1367, 513.3294 425.3997, 511.6717 4 5
{0.514 326.8493, 212.4347 327.5500, 224.3122 7 1

Figure 3. The computational times of VNS-PA and SA
for small-sized problems.

of the proposed objective function demonstrates the
number of provisions satis�ed. It is obvious from this
column that the proposed algorithm produces solutions
more acceptable than others to the decision-maker in
most cases.

Figure 4. The computational times of VNS-PA and SA
for medium-sized problems.

A graphical representation is provided to demon-
strate output results of the VNS-PA and SA (Figure 6).
This �gure shows the obtained solutions of VNS-
PA and SA algorithms over twenty runs for TM8
problem. It is observed in this �gure that the obtained
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Table 5. Results of VNS-PA and SA for medium-sized problems.

Test
problem

� at
Best combination

(f1(x); f2(x))
Z value CPU time

(second)
VNS-PA SA VNS-PA SA VNS-PA SA

TM1

0.25
{0.152 1358.0072, 3408.2470 1392.3175, 481.9847 7 1

87.8207 476.0864

{0.514 710.7291, 501.9413 713.8106, 631.1734 7 1

0.50
{0.152 1349.8365, 3508.6732 1362.9074, 4649.9621 7 1

{0.514 697.8702, 426.6741 707.7943, 543.0072 7 1

0.75
{0.152 1346.9045, 3455.4110 1434.2429, 4270.7684 7 1

{0.514 699.9794, 469.6221 728.7012, 569.8631 7 1

TM2

0.25
{0.152 1587.5586, 9912.9650 1640.0403, 11376.7544 7 1

117.6221 850.3614

{0.514 774.8318, 668.1974 792.7250, 836.9903 7 1

0.50
{0.152 1583.9364, 9938.3027 1603.5932, 11021.8430 7 1

{0.514 768.0317, 662.0809 783.4835, 974.5351 7 1

0.75
{0.152 1581.4487, 9819.7511 1602.7701, 11238.9363 7 1

{0.514 763.4621, 636.2393 782.8800, 963.8487 7 1

TM3

0.25
{0.152 1722.3264, 13691.9690 1761.4714, 15302.3643 7 1

116.4781 1375.3333

{0.514 820.5522, 718.4882 823.5066, 1110.0868 7 1

0.50
{0.152 1706.7040, 14002.9992 1762.8476, 15906.2309 7 1

{0.514 801.1297, 722.5415 809.7602, 1183.7418 7 1

0.75
{0.152 1719.8725, 13576.8224 1737.8602, 15816.1517 7 1

{0.514 783.5111, 694.4817 827.36237, 1129.0669 7 1

TM4

0.25
{0.152 1937.5971, 8154.9848 1968.6501, 9273.4001 7 1

106.3900 716.3851

{0.514 1032.5873, 273.7329 1046.2364, 312.6222 6 0

0.50
{0.152 1954.6837, 7906.0740 1982.2601, 9396.6521 7 1

{0.514 1027.0291, 298.2926 1042.9893, 335.9817 7 1

0.75
{0.152 1955.8740, 7955.7180 1987.5603, 9347.4207 7 1

{0.514 1014.2753, 300.3054 1034.9589, 340.0318 7 1

TM5

0.25
{0.152 2171.8973, 6938.9349 2204.3881, 8577.7483 7 1

141.5215 1270.6281

{0.514 1043.3988, 220.3711 1056.2580, 289.8670 7 1

0.50
{0.152 2165.8051, 7271.1548 2198.4409, 8270.3331 7 1

{0.514 1024.2842, 237.0994 1061.0080, 321.4008 7 1

0.75
{0.152 2173.9788, 7475.9645 2204.3881, 8577.74837 7 1

{0.514 1056.6051, 270.4899 1055.0798, 316.3902 7 2

TM6

0.25
{0.152 2448.8390, 23631.9113 2445.2614, 25464.7873 7 2

204.8969 2107.0976

{0.514 1107.9278, 1388.5805 1133.5322, 1718.9054 7 1

0.50
{0.152 2407.8444, 23519.0797 2461.6720, 25849.3456 7 1

-0.514 1082.7561, 1285.7236 1127.3429, 747.7833 7 1

0.75
-0.152 2412.1321, 23692.2439 2457.4201, 25693.1264 7 1

{0.514 1089.9052, 1343.1999 1139.7435, 1678.2789 7 1
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Table 5. Results of VNS-PA and SA for medium-sized problems (continued).

Test
problem

� at
Best combination

(f1(x); f2(x))
Z value CPU time

(second)
VNS-PA SA VNS-PA SA VNS-PA SA

TM7

0.25 {0.152 1510.5763, 5235.1305 1543.1791, 6681.8272 7 1

37.4037 544.2458

{0.514 926.7607, 1092.6267 947.4376, 1296.5893 7 1

0.50 {0.152 1510.9277, 5398.6588 1534.4259, 6399.7784 7 1
{0.514 935.4230, 1133.4456 937.1943, 1446.3046 7 1

0.75 {0.152 1503.1919, 5293.9026 1543.0130, 6749.0115 7 1
{0.514 935.0112, 1112.1764 978.6252, 1331.9636 7 1

TM8

0.25 {0.152 1650.2158, 9894.0778 1687.5328, 11584.0113 7 1

73.9600 960.4357

{0.514 940.1271, 1413.0879 953.0611, 2186.4549 7 1

0.50 {0.152 1639.7358, 10091.1065 1705.8712, 11672.9533 7 1
{0.514 952.4433, 1412.7473 987.2651, 2345.4782 7 1

0.75 {0.152 1643.3910, 9874.9129 1686.6839, 11686.5147 7 1
{0.514 953.7051, 1540.7814 947.1948, 2000.8256 7 2

TM9

0.25 {0.152 1764.9555, 12256.6683 1828.3645, 14726.4105 7 1

87.3475 1592.3125

{0.514 942.2798, 228.4465 963.0248, 510.0353 7 1

0.50 {0.152 1762.2872, 13013.2504 1829.1604, 14726.9819 7 1
{0.514 953.4593, 280.4752 934.6274, 426.4481 7 2

0.75 {0.152 1774.8750, 12595.7547 1802.9873, 14916.5601 7 1
{0.514 934.2507, 270.4154 943.95911, 341.4312 7 1

TM10

0.25 {0.152 2162.4255, 8277.5059 2212.8799, 9453.2599 7 1

70.6346 803.4519

{0.514 1271.5181, 1217.9128 1289.9953, 1516.7192 7 1

0.50 {0.152 2142.3687, 8348.9381 2220.2212, 9744.1022 7 1
{0.514 1273.4044, 1034.0347 1287.3140, 1485.9365 7 1

0.75 {0.152 2147.2849, 8014.8205 2170.8716, 9417.6667 7 1
{0.514 1273.6014, 1062.6905 1278.8012, 1555.42840 7 1

Figure 5. The computational times of VNS-PA and SA
for large-sized problems.

solutions of SA algorithm have a trade-o� between
various objectives (�rst provision); however. other
features (provisions 2 to 7) are not satis�ed. This �gure

Figure 6. The generated combinations of VNS-PA and
SA for TM8 problem.

illustrates and con�rms the conclusion derived from the
numerical results based on the performance criterion.

In order to visualize the performance of the two
algorithms, the archived solutions from one run of each
algorithm are selected to provide a graphical represen-
tation of the medium-sized problem (Figures 7 and 8).
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Table 6. Results of VNS-PA and SA for large-sized problems.

Test
problem

� at
Best combination

(f1(x); f2(x))
Z value CPU time

(second)
VNS-PA SA VNS-PA SA VNS-PA SA

TL1

0.25
{0.152 4164.8108, 888.9346 4150.5326, 9707.1060 7 2

399.9735 5815.6158

{0.514 2856.2347,1818.2137 2980.6173, 2696.4287 7 1

0.50
{0.152 4172.8403,7263.6107 4140.6249, 10448.5277 7 2

{0.514 2851.1937,1701.7166 2907.6958, 2238.3060 7 1

0.75
{0.152 4122.6411,7589.2029 4217.6346, 9886.9807 7 1

{0.514 2928.5115,1998.1715 2969.8944, 2597.4563 7 1

TL2

0.25
{0.152 4924.4161, 17103.1165 5004.6500, 21814.2270 7 1

541.0842 12918.0241

{0.514 3047.7099, 2757.4055 3188.7915, 4334.6762 7 1

0.50
{0.152 4844.7794, 17346.8093 4995.0974, 22155.2641 7 1

{0.514 3158.1293, 3193.2478 3208.1847, 4551.9991 7 1

0.75
{0.152 4921.2941, 17406.0465 4972.8046, 21791.4472 7 1

{0.514 3102.3326, 3190.4566 3207.5754, 4061.7834 7 1

TL3

0.25
{0.152 5385.8624,42011.7753 5414.6467,50347.1421 7 1

977.5698 24252.7370

{0.514 3034.6765,4181.8869 3124.8720, 6168.7497 7 1

0.50
{0.152 5319.1827,41937.1809 5377.7320,51036.0832 7 1

{0.514 3037.3411,4772.6762 3125.0102,6967.6517 7 1

0.75
{0.152 5328.2457,43404.9209 5319.8241,48411.2397 7 2

{0.514 3059.7908,4528.1794 3081.9344,5357.8333 7 1

TL4

0.25
{0.152 5238.0803, 5178.5804 5316.8773, 6127.8794 7 1

494.8195 7765.0485

{0.514 3976.6742, 1855.2834 4018.2125, 2511.7471 7 1

0.50
{0.152 5194.1544, 5089.7478 5261.0029, 7422.4110 7 1

{0.514 3919.0030, 1499.9295 4079.9497, 2698.6888 7 1

0.75
{0.152 5173.9558, 5233.0017 5334.2117, 6677.6926 7 1

{0.514 3970.9994, 1765.2185 4082.4257, 2377.5890 7 1

TL5

0.25
{0.152 6184.4666, 27404.6983 6141.7311, 31493.5056 7 2

650.3225 16836.2180

{0.514 3870.8087, 5512.8676 4026.8506, 6756.6762 7 1

0.50
{0.152 6101.3901, 28724.4902 6143.6248, 31619.7075 7 1

{0.514 3877.0002, 5345.2717 4026.8506, 6756.6762 7 1

0.75
{0.152 6117.5492, 26892.2582 6161.3233, 32119.4781 7 1

{0.514 3856.9911, 5917.8244 4030.7581, 6761.5855 7 1

TL6

0.25
{0.152 6766.6240, 43597.5278 6888.2484,54867.6239 7 1

1143.9994 33238.1788

{0.514 3900.2427, 5025.0192 4045.9839,7483.6438 7 1

0.50
{0.152 6709.1413, 44029.4327 6904.8833,54139.0280 7 1

{0.514 3958.8094, 5488.0653 4045.9839,7483.6438 7 1

0.75
{0.152 6718.5627, 44178.5029 6822.2832,54204.3280 7 1

{0.514 3921.3526, 5248.3671 4024.8998,7083.6322 7 1
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Table 6. Results of VNS-PA and SA for large-sized problems (continued).

Test
problem

� at
Best combination

(f1(x); f2(x))
Z value CPU time

(second)
VNS-PA SA VNS-PA SA VNS-PA SA

TL7

0.25 {0.152 6246.4658, 45464.4212 6446.4307, 53745.4553 7 1

1364.8942 6464.4941

{0.514 3406.0145, 8823.4279 3554.3961, 11925.3353 7 1

0.50 {0.152 6237.0777, 45944.7375 6392.7104, 54142.9377 7 1
{0.514 3396.0878, 8714.8155 3542.5495, 11865.5127 7 1

0.75 {0.152 6249.8465, 46375.5315 6461.7802, 54677.5356 7 1
{0.514 3350.7780, 8626.9597 3593.1496, 11313.1816 7 1

TL8

0.25 {0.152 7799.8223,102904.7309 8053.6935,111465.6123 7 1

2078.8277 10958.0197

{0.514 3504.3149, 10464.9499 3584.2051,13289.3836 7 1

0.50 {0.152 7768.6782,103675.1357 7985.6674,112430.6504 7 1
{0.514 3453.8425, 10735.9776 3598.5267,13416.4172 7 1

0.75 {0.152 7808.7714,105051.7819 7896.8719,110282.3235 7 1
{0.514 3438.1813,10881.6987 3509.7262,12156.9936 7 1

TL9

0.25 {0.152 8608.6794,140797.9846 8737.4097,150944.8927 7 1

2740.6281 20061.9885

{0.514 3614.3819, 4511.8407 3643.3332,5593.0288 7 1

0.50 {0.152 8717.7292,144991.9183 8788.1980,150679.6168 7 1
{0.514 3593.1215, 3818.4760 3643.3332, 5593.0288 7 1

0.75 {0.152 8615.7452,143325.4396 8826.6965,154839.6608 7 1
{0.514 3582.6382, 4139.2756 3703.5108, 5861.5393 7 1

TL10

0.25 {0.152 8502.1664, 60745.7984 8709.4954, 67947.5738 7 1

2219.3429 6614.1875

{0.514 4444.4086, 4366.3965 4499.0049, 5103.3440 7 1

0.50 {0.152 8529.3879, 62572.9611 8726.9028, 67608.7707 7 1
{0.514 4424.8976, 4036.2299 4618.7833,6002.6988 7 1

0.75 {0.152 8501.4271, 58917.8473 8665.4233, 68698.1919 7 1
{0.514 4407.0757, 4226.1895 4585.5883, 5683.9189 7 1

Figure 7. The makespan of archived solutions of TM2
problem.

Figures 7 and 8 represent makespan and the total
tardiness graphs, respectively. It must be said that the
VNS-PA and SA procedures begin with an identical
initial solution. It is observed in these �gures that the
accepted solutions of VNS-PA algorithm are situated

Figure 8. The total tardiness of the archived solutions of
TM2 problem.

below the values obtained by the SA algorithm. As
can be seen, the proposed algorithm is capable of
providing better solutions than SA in terms of quality.
Consequently, VNS-PA is more e�ective in minimizing
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the makespan and total tardiness for the RHFS with
setup times and learning e�ect than the SA proposed
by Mousavi et al. [12].

6. Conclusion and further researches

This paper considers the problem of scheduling jobs in
a hybrid 
ow shop with the objectives of minimizing
both the makespan and total tardiness, where the
re-entrant line, setup times and position-dependent
learning e�ects are considered. To describe the prob-
lem, �rst, a 0-1 MIP model was presented; then,
the meta-heuristic method was applied to solve this
problem, which belongs to NP-hard class. The solution
procedure was categorized as an a priori approach.
To the best of our knowledge, the approach used to
solve the proposed problem has never been investigated
in the scheduling problems. To demonstrate the
validity of the proposed algorithm, the experiments
were conducted on special small-sized problems. To
show the e�ciency and e�ectiveness of the proposed
algorithm, computational experiments were carried out
on various test problems. Computational results show
that the proposed algorithm has very high reliability
(excellent performance) and a signi�cant speed to solve
the problems. This research can be extended to several
directions. First, it can be extended to the scheduling
jobs with other system constraints, which have not
been included in this paper. Second, the mentioned
problem can be solved by some other meta-heuristic
approaches. Finally, algorithm for other criteria, such
as the 
ow time, mean waiting time, and the maximum
lateness, can be developed carefully.
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