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Abstract. The purpose of this paper is to mitigate bullwhip e�ect (BWE) in a Supply
Chain (SC). Four main contributions are proposed. The �rst one is to reduce BWE through
considering its multiple causes (demand, pricing, ordering, and lead time) simultaneously.
The second one is to model demands, orders, and prices dynamically for reducing BWE.
Demand and prices have mutual e�ect on each other dynamically over time. In other words,
a time series model is used in a game theory method for �nding the optimal prices in an
SC. Moreover, the optimal prices are inserted into the time series model for forecasting
price sensitive demands and orders in an SC. The third one is to use demand of each entity
for forecasting its orders. This leads to drastic reduction in BWE and Mean Square Error
(MSE) of the model. The fourth contribution is to use optimal prices instead of forecasted
ones for demand forecasting and reducing BWE. Finally, a numerical experiment for the
auto-parts SC is developed. The results show that analysing joint demand, orders, lead
time, and pricing model by calculating the optimal values of prices and lead times leads to
signi�cant reduction in BWE.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

The competitive nature of business environment com-
pels each company to minimize its supply, manufactur-
ing, inventory, and distribution costs. Cost reduction
techniques are more required in case of cooperating
with other �rms in an SC. One of the main causes of
imposing extra costs to entities in an SC is demand
ampli�cation through the chain. This phenomenon
has been recognized by Forrester [1], and Lee et al. [2]
named it bullwhip e�ect (BWE) later. Such a destruc-
tive e�ect occurs when an end customer places an order,
and its order is ampli�ed as it moves through the chain.
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Dominguez et al. [3] studied the e�ect of Supply Chain
Network (SCN) con�guration and returns of goods on
BWE. They showed that returning goods increased
BWE in serial SCN more than divergent con�guration
did. Moreover, Dominguez et al. [4] investigated the
impacts of important factors of SCs, including the
number of nodes and echelons and the distribution
of links, on BWE. In order to measure BWE, two
di�erent methods were introduced by Cannella et al. [5]
including customer service level and process e�ciency.
Chat�eld et al. [6] introduced another type of BWE
in SCs, which was stock out ampli�cation rather than
demand ampli�cation. Cannella et al. [7] demonstrated
that both stock out and demand ampli�cation were
reduced in a coordinated SC.

In order to reduce demand ampli�cation or BWE,
its main causes should be investigated. Lee et al. [2,8]
introduced demand forecasting, order batching, price

uctuation, rationing and shortage gaming, and none-
zero lead time as the main causes of BWE. Ma et



R. Gamasaee and M.H. Fazel Zarandi/Scientia Iranica, Transactions E: Industrial Engineering 25 (2018) 1724{1749 1725

al. [9] investigated the e�ect of di�erent forecasting
techniques on BWE on product orders and inventory.
Ma et al. [10] studied the e�ect of information sharing
and demand forecasting on reducing BWE.

Several researchers have studied di�erent forecast-
ing methods for reducing that e�ect [11-24]. Recently,
Montanari et al. [25] presented a new probabilistic
demand forecasting and inventory control model for
mitigating BWE. Other researchers have concentrated
on order batching, such as Kelle and Milne [26], Lee
and Wu [27], Potter and Disney [28], and Sodhi and
Tang [29].

The other cause of BWE occurrence is pricing
decisions, which are very critical in SCs pro�tability.
For example, Wang et al. [30] investigated price fore-
casting impacts on BWE. Other pricing research has
been performed by �Ozelkan and Lim [31] and �Ozelkan
and Cakany�ld�r�m [32]. In spite of the fact that these
papers consider pricing decisions in BWE problems,
they have not studied the e�ect of pricing on creating
BWE. Instead, the e�ects of supplier's selling prices
on price ampli�cations in downstream �rms, such as
retailers, have been investigated. In other words,
the e�ects of pricing decisions on demand and order
ampli�cation (BWE) have not been analysed. Zhang
and Burke [33] considered pricing in BWE problems.
The main drawback of that paper was that selling
prices in an SC were forecasted. However, their exact
values were extractives from an optimization problem,
and this process is investigated in this paper.

The last causes of BWE generation, shortage
gaming, and lead time were investigated by Cachon
and Lariviere [34] and Agrawal et al. [35], respectively.
Thus, in order to reduce BWE, its main causes have
been studied in the literature, leading to production
and inventory cost reduction. Although many re-
searchers have focused on reducing BWE, there is no
work in the literature to consider its multiple causes
resulting in more reduction in this phenomenon. All
the above papers concentrated on one of the main
reasons of BWE. The only research in the literature
which considered two compound causes of this e�ect
was performed by Zhang and Burke [36]. However,
this work su�ered from the abovementioned drawback.
Therefore, there is a huge gap in the literature on BWE,
which is open to investigation. Analysing multiple
causes of BWE (demand, ordering policy, pricing, and
lead time) simultaneously is an important contribution
to decrease BWE signi�cantly.

In this paper, 4 main contributions are proposed.
The �rst one is to decrease BWE through studying
multiple causes of this phenomenon (demand, pric-
ing, ordering policy, and lead time) simultaneously.
This leads to more reduction in the destructive event
(BWE). In a three-echelon SC consisting of a retailer,
a distributor, and a manufacturer, pricing decisions are

dependent and made sequentially. Therefore, optimal
values of prices and lead times of the entities in an SC
are obtained by modelling a sequential (Stackelberg)
game theory problem. A retailer decides on prices
with respect to the distributor's selling prices, and the
distributor quotes prices based on the manufacturer's
selling prices.

The second contribution is to model demands,
orders, and prices dynamically for reducing bullwhip
e�ect. Demand and prices have reciprocal e�ect on
each other dynamically over time. In other words, a
time series model is used in the optimization problem,
which is solved by a game theory method for �nding
the optimal values of prices and lead times in the SC. In
the time series model, demands are calculated by auto-
regressive functions with an exogenous variable (ARX).
In addition, orders are modelled by moving average
functions with an exogenous variable (MAX). Then,
the optimal prices obtained from the game theory
problem are inserted into the time series model for
forecasting price sensitive demands and orders in the
SC. This reciprocal process, in which demands are used
to calculate prices and then, optimal prices are inserted
into demand functions, is done dynamically over time.

The third contribution is to use demand of each
entity in SCs for forecasting its ordering quantities.
However, in the literature, upstream order is forecasted
by using its immediate downstream order. The pro-
posed approach in this paper, in which demands of each
entity are used to forecast its ordering quantities, leads
to drastic reduction in BWE and MSE of the model.
The last contribution is to �nd optimal prices and
use them for demand forecasting and reducing BWE
instead of utilizing forecasted prices.

The rest of the paper is organized as follows.
Problem de�nition and modelling are discussed in
Section 2. BWE is measured and reduced in Section 3.
The model proposed in Section 3 is validated and
veri�ed in Section 4. Section 5 illustrates numerical
experiments. Finally, conclusions and future research
are presented in Section 6.

2. Problem de�nition and modelling

In this paper, a three-echelon SC including a retailer,
a distributor, and a manufacturer in an auto-parts SC
is studied. BWE leads to demand ampli�cation from
downstream to upstream echelons. Because of this am-
pli�cation, upstream �rms in an SC receive inaccurate
demand information, leading to excess production and
inventory costs. Therefore, there is an increasing need
to propose novel methods for measuring and reducing
the BWE problem. Studying the main causes of BWE
occurrence and trying to decrease them are signi�cant
steps for reducing BWE. Therefore, a novel model
covering multiple causes of BWE (demand-pricing-



1726 R. Gamasaee and M.H. Fazel Zarandi/Scientia Iranica, Transactions E: Industrial Engineering 25 (2018) 1724{1749

ordering-lead time) is presented. The new method is
an extended version of the model presented by �Ozelkan
and Cakanyildirim [32]. However, it recti�es 3 main
drawbacks of their method.

First, it investigates the e�ect of pricing decisions
on demand and order ampli�cation (BWE), and it
works on mechanisms to reduce this e�ect. However,
the model presented by �Ozelkan and Cakanyildirim [32]
neither studies the e�ect of prices on demand ampli�-
cation (BWE) nor presents mechanisms to reduce it.
Instead, it tries to show price ampli�cation in SCs.
Second, in that paper, joint demand-pricing-ordering-
lead time decisions are quanti�ed for measuring and
reducing BWE in SCs. However, only pricing decisions
are studied and other causes of BWE have not been
considered. Third, herein, due to the volatility of
demands, orders, and prices, they are dynamically
calculated over time. Moreover, demands and prices
have mutual e�ect on each other. Demands are used by
a time series model in the objective function of pricing
problems. Then, optimal prices are inserted into the
time series model for demand forecasting.

Figure 1 shows a three-echelon auto-parts SC
including a retailer, a distributor, and a manufacturer.
In order to solve the BWE problem, 5 main steps are
implemented. First, optimal lead time and pricing
values for each entity in the SC are calculated using a
sequential game theory approach. Second, the optimal
values are substituted in an auto-regressive exogenous
input (ARX) time series for forecasting demand of each
entity. Third, orders of each entity are forecasted using
its demands. Then, in order to validate the model, a
technique in which downstream orders have been ap-
plied for forecasting upstream orders is extracted from
literature and implemented. Next, mean and variance
of demands and orders are calculated for quantifying
BWE. Fourth, BWE is measured by means of the two
aforementioned ordering policies. The results of these
methods are compared to show which method is more
capable of reducing BWE (model validation).

Optimal values of selling prices and lead times are
used in a time series model for forecasting demands and
orders. However, autoregressive method has been used
to forecast prices in an SC in literature [33]. Therefore,

in the �fth step, two pricing approaches are compared
with each other for validating the model proposed in
this paper. MSE of order forecasting and variance
of orders are calculated for both pricing approaches.
Then, results are compared with each other to �nd
which method has less forecasting error and variance
of orders.

2.1. Optimal lead time-pricing decision for
retailer

First, manufacturer quotes its selling price. Then,
distributor determines its selling price based on man-
ufacturer's quoted price. Finally, the retailer makes
pricing decisions based on prices of previous echelons.
The model is capable of calculating optimal values
for lead times in each levels of an SC. Obtaining the
optimal solutions for prices and lead times requires to
design a sequential game theory model. In such a game,
each player in an SC decides on its prices based on
prices of other players. Table 1 indicates all parameters
and variables used in the new model.

Each player in an SC tries to maximize its own
pro�t as it is shown in Eq. (1a). Demand function is
de�ned as a dependent time series variable; however, it
was a single-valued variable in the model presented by
�Ozelkan and Cakanyildirim [32]. The demand function
depends on selling prices of each entity in SC, as well
as demand of previous periods. Therefore, it is an
ARX time series model, as it is shown in Eq. (1c).
Eq. (1b) shows the inventory capacity constraint. The
retailer's inventory level must be less than or equal
to the retailer's inventory capacity. However, when
the retailer receives market demand, the inventory
level decreases. Thus, Eq. (1b) demonstrates that the
retailer's inventory capacity minus the demand received
by retailer during lead time is greater than or equal to
the inventory level. Eq. (1d) indicates that the total
demand for retailers' goods should be nonnegative. In
addition, Eq. (1e) emphasizes the non-negativity of
retailer's and distributer's selling prices (pt and wt):

max �R(p) = (pt � wt)(qt;1(pt; qt�1;1)); (1a)

s.t. (�1 � qt;1(pt; qt�1;1))l1 � I1; (1b)

Figure 1. Structure of an auto-parts SC.
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Table 1. Parameters and variables of the lead time-pricing model.

Symbol De�nition

qt;1 Demand for retailer's goods in period t

r1 Constant number in retailer's demand function

pt Price of retailer's goods

qt�1;1 Demand for retailer's goods in period t� 1

�1 Retailer's inventory capacity

l1 Lead time of retailer

l�1 Optimal lead time of retailer

I1 Retailer's inventory level

p�t Optimal price of retailer's goods in period t

wt Price of distributor's goods

qt;2 Demand for distributor's goods in period t

qt�1;2 Demand for distributor's goods in period t� 1

r2 Constant number in distributor's demand function

w�t Optimal price of distributor's goods in period t

�2 Distributor's inventory capacity

l2 Lead time of distributor

l�2 Optimal lead time of distributor

I2 Distributor's inventory level

zt Price of manufacturer's goods

qt;3 Demand for manufacturer's products in period t

qt�1;3 Demand for manufacturer's products in period t� 1

r3 Constant number in manufacturer's demand function

z�t Optimal price of manufacturer's products in period t

�3 Manufacturer's production capacity

l3 Lead time of manufacturer

l�3 Optimal lead time of manufacturer

k = ln
�

1
1�s
�

\s" is a desired service level; \k" is used for simplicity

mt Variable production cost

K Capacity cost of manufacturer

v A constant coe�cient for calculating prices in the next period

qt;1 = r1p�act q1�a
t�1;1 0 < a; c < 1; (1c)

qt;1(pt; qt�1;1) � 0; (1d)

pt � wt � 0; (1e)

where a, and c are two positive numbers between zero
and one. Solving the above optimization problem leads
to the optimal values for retailer's lead time and selling
price at period t. The optimal lead time for retailer is
equal to l�1 = I1

�1�r1p�act q1�a
t�1

. Then, the retail price at

period t+ 1 is calculated by Eq. (2):

pt+1 = vpt; t = 1; 2; :::; T: (2)

In order to �nd optimal values of prices, the above op-
timization problem is solved by extending the method
presented by �Ozelkan and Cakanyildirim [32]. They
proved that if q0 < 0 and qq0

(q0)2 jp(w)=p� < 2 for
all p�, where p� denotes the critical point(s) of
�R(p), the optimal value of p� is equal to p� =n
pjd�R(p)

dp = q + (p� w)q0 = 0
o

(for more details of the
proof, please refer to [32]). Using that approach
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and extending it to an equation including time series
variable, the optimal value of retailer's selling price is
calculated by Eqs. (3) and (4).

In addition, the demand function used here di�ers
from the demand equation presented by �Ozelkan and
Cakanyildirim [32]. In this paper, the demand function
is ARX and depends on two variables (price and
demand for previous period):

p�t =
�
ptjd�R(pt)

dpt
=qt;1(pt; qt�1;1)+(pt�wt)q0t;1=0

�
;
(3)

p�t =
acwt
ac� 1

; (4)

where d�R(pt)
dpt is a �rst order condition with respect to

retailer's selling prices. The reaction function for the
retailer is calculated by Eq. (5):

pt(wt) = qt;1 + (pt � wt)q0t;1 = 0; (5)

where qt;1 = r1p�act q1�a
t�1;1 and q0t;1 = (�acr1q1�a

t�1;1)
(pac+1
t )

.

2.2. Optimal lead time-pricing decision for
distributor

In order to determine the optimal lead time-pricing
decisions for distributor, two steps are considered as
stated by �Ozelkan and Cakanyildirim [32]. First,
distributor calculates the retailer's reaction function
presented by Eq. (5) and based on that, decides on
selling prices. Then, the retailer determines its selling
prices to end customers based on distributor's quoted
prices. Eq. (6) shows distributor's demand function
depending on retailer's pricing reaction function and
demands received by the distributor at period t� 1:

qt;2 = qt;2(pt(wt); qt�1;2) = r2(pt(wt))�acq1�a
t�1;2: (6)

The distributor's goal is to maximize its pro�t through
Eq. (7a). Eq. (7b) shows capacity constraint for the
distributor's inventory. The non-negativity constraint
for demand function is shown by Eq. (7c). In addition,
Eq. (7d) indicates that distributor's and manufac-
turer's selling prices are non-negative:

max � = (wt � zt)(qt;2(pt(wt); qt�1;2)); (7a)

s.t. (�2 � qt;2(pt(wt); qt�1;2))l2 � I2; (7b)

qt;2(pt(wt); qt�1;2) � 0; (7c)

wt � zt � 0: (7d)

Lemma 1. The optimal price for distributor's goods
(w�t ) is independent of demand for previous period
(q1�a
t�1;2), and is given by the following equation:

w�t =
aczt
ac� 1

: (8)

Proof. See Appendix A.
The next decision for distributor is to determine

the optimal lead time between receiving retailer's
orders and delivering them. The optimal lead time for
distributor is obtained by solving Eq. (7b) as follows:

l�2 =
I2

�2 � r2q1�a
t�1;2( acwtac�1 )�ac : (9)

2.3. Optimal lead time-pricing decision for
manufacturer

Manufacturer calculates the distributor's reaction func-
tion presented by Eq. (10) and decides on selling prices
based on that. Eq. (11) shows manufacturer's demand
function. The manufacturer's goal is to maximize
its pro�t using Eq. (12a). The pro�t function for
manufacturer di�ers from retailer's and distributor's
objective functions. Manufacturer's costs include ca-
pacity costs (K�3) as well as variable production costs
(mt). The manufacturer's inventory is subject to a
capacity constraint presented by Eq. (12b). The non-
negativity constraint for demand function is shown
in Eq. (12c). In addition, Eq. (12d) indicates that
selling prices of distributor and manufacturer as well
as variable production costs should be non-negative:

wt(zt) = qt;2 + (wt � zt)q0t;2 = 0; (10)

qt;3 =qt;3(pt(wt(zt)); qt�1;3)=r3(pt(wt(zt))�acq1�a
t�1;3;

(11)

max � = (zt �mt)(qt;3(pt(wt(zt)); qt�1;3))�K�3;
(12a)

s.t. (�3 � qt;3(pt(wt(zt)); qt�1;3))l3 � k; (12b)

qt;3(pt(wt(zt)); qt�1;3 � 0; (12c)

wt � zt � mt � 0: (12d)

Lemma 2. The optimal price for manufacturer's
products (z�t ) is independent of demand for previous
period (q1�a

t�1;3), and is given by the following equation.

z�t =
(acmt)
(ac� 1)

: (13)

Proof. It is similar to Lemma 1 and, for brevity, is not
included here.

Solving Eq. (12b) leads to �nding the optimal
value of lead time as follows:

l�3 =
k

�3 � r3( a2c2zt
(ac�1)2 )�acq1�a

t�1;3
: (14)
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2.4. Demand model for retailer
Retailer's demand is forecasted by an ARX time series.
In order to reach this goal, natural logarithm of
retailer's demand function is taken as follows:

ln(qt;1)=�ac ln(p�t )+(1�a) ln(qt�1;1)+ln(r1)+"t; (15)

where "t is a white noise process with zero mean and
variance of �2

" and p�t is the optimal value for retailer's
price obtained from Eq. (12). The MAX process for
demand forecasting is shown by the following equation:

ln(qt;1) =� �
'� 1

ln(p�t )� �
'� 1

+ "t + '"t�1

+ '2"t�2 + '3"t�3 + ::: ; (16)

where � = �ac, ' = 1� a, and � = ln(r1).
Eqs. (17) and (18) show the expected value and

variance of retailer's selling price. Using Eqs. (17) and
(18), the expected value and variance of retailer's de-
mand are calculated by Eqs. (19) and (20), respectively:

E[ln(p�t )] = �p; (17)

Var[ln(p�t )] = �2
p; (18)

E[ln(qt;1)] =
�

�
1� '

�
E[ln(p�t )] +

�
�

1� '
�

=
�

�
1� '

�
�p +

�
�

1� '
�
; (19)

Var[ln(qt;1)] =
�2

(1� ')2 Var[ln(p�t )] +
�

�2
"

1� '2

�
=

�2

(1� ')2�
2
p +

�
�2
"

1� '2

�
: (20)

2.5. The retailer's ordering policy
In order to determine the retailer's ordering quantity,
the extended and revised version of the Order-Up-To
(OUT) level presented by Hosoda and Disney [15] is
proposed here. Eqs. (21) and (22) indicate the OUT
level:

Ot;1 = qt;1 + (St;1 � St�1;1); (21)

St;1 = q̂l1t;1 + s�̂l1 : (22)

According to Hosoda and Disney [15], �̂l1 is an esti-
mated value of the standard deviation of the forecast
error considering the retailer's lead-time. Ot;1 denotes
retailer's order issued at the end of period t, s is a
desired service level, and St;1 is the OUT level at period
t. Eq. (23) shows the conditional expected value of the
total demand over lead time l1(q̂l1t;1):

q̂l1t;1 = E
�Xl1

i=1
qt+i;1

���� �t�
=
r1p�t+1q

'
t;1[1� (r2

1v�p2�
t+1q

'
t;1)l1 ]

1� r2
1v�p2�

t+1q
'
t;1

= 
l1r1p�t+1q
'
t;1; (23)

where:


l1 =
1� (r2

1v�p2�
t+1q

'
t;1)l1

1� r2
1v�p2�

t+1q
'
t;1

; and

�t = fqt; qt�1; qt�2; :::g
is the set of the demands. In order to calculate
q̂l1t;1, this assumption is taken: pt+i+1 = vpt+i, i =
1; 2; :::; l1. The proof for obtaining Eq. (23) is presented
in Appendix B1.

Using Eqs. (21)-(23) leads to obtaining retailer's
orders as follows:

Ot;1 = qt;1 + 
l1r1p�t+1q
'
t;1 � 
l1r1p�t q

'
t�1;1: (24)

In order to measure BWE, variances of orders and
demands for each stage need to be calculated. First,
the equivalent value for q't�1;1 is obtained by Eq. (25).
Then, the retailer's order is calculated by substituting
Eq. (25) in Eq. (24), which is shown in Eq. (26). Next,
natural logarithm of Eq. (26) is taken as it is indicated
in Eq. (27). Finally, variance of retailer's order is
calculated by Eqs. (28)-(30):

q't�1;1 =
qt;1
r1p�t

; (25)

Ot;1 = qt;1 + 
l1r1p�t+1q
'
t;1 � 
l1qt;1; (26)

ln(Ot;1)=ln(qt;1)+ln(1+
l1r1p�t+1q
'�1
t;1 �
l1)+"t;1;

(27)

Var[ln(Ot;1)] =Var[ln(qt;1)] + Var[ln(1

+
l1r1p�t+1q
'�1
t;1 �
l1 ]+2 cov (ln(qt;1);

ln(1 + 
l1r1p�t+1q
'�1
t;1 � 
l1);

(28)

Var[ln(Ot;1)] =
�

�2

(1� ')2�
2
p +

�
�2
"

1� '2

��
+ Var[ln(1 + 
l1r1p�t+1q

'�1
t;1 � 
l1)]

+ 2E[ln(qt;1) ln(1 + 
l1r1p�t+1q
'�1
t;1

� 
l1)]� 2E[ln(qt;1)]E[ln(1

+ 
l1r1p�t+1q
'�1
t;1 � 
l1)]; (29)
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Var[ln(Ot;1)] =
�

�2

(1� ')2�
2
p +

�
�2
"

1� '2

��
+ Var[ln(1 + 
l1r1p�t+1q

'�1
t;1 � 
l1)]

+ 2E[ln(qt;1) ln(1 + 
l1r1p�t+1q
'�1
t;1

� 
l1)]�2
��

�
1� '

�
�p+

�
�

1� '
��

E[ln(1 + 
l1r1p�t+1q
'�1
t;1 � 
l1)]: (30)

Theorem 1. The retailer's order quantity at period
t+ 1 is forecasted by the ARX time series ln(Ot+1;1) =
ln(r1) + � ln(v) + � ln(pt) + ln(Ot;1) + "t+1;1.

Proof. See Appendix B2.

Theorem 2. The MAX time series model of retailer's
order is ln(Ot+1;1) = 2 ln(r1) + � ln(v) + 2� ln(pt) +
' ln(qt�1;1) + "t + ln(1 + 
l1r1p�t+1q

'�1
t;1 �
l1) + "t;1 +

"t+1;1.

Proof. See Appendix C.

Theorem 3. The MAX time series for predicting
order quantities at period t+ 1 including error terms is
ln(Ot+1;1) = ln(r1) + � ln(v) + � ln(pt) + "t+1;1 + ln(1 +

l1r1p�t+1q

'�1
t;1 � 
l1) + "t;1 � �

'�1 ln(pt)� �
'�1 + "t +

'"t�1 + '2"t�2 + '3"t�3 + ::: .

Proof. See Appendix D.

2.6. Demand model for distributor
In this subsection, a model for forecasting distributor's
demand is proposed. Using the optimal values for
distributor's selling prices from Subsection 2.2, distrib-
utor's demand function is calculated as follows:
qt;2 = r2w��a2c2

t q1�a2
t�1;2; t = 1; 2; :::; T; (31)

where w�t are the optimal selling prices for distributor's
goods, qt;2 indicates distributor's demand time series
for the current period, and qt�1;2 shows its demand for
the previous period. r2 is a constant coe�cient. In
order to forecast distributor's demand for the current
period, natural logarithm of Eq. (31) is taken. Eq. (32)
shows an ARX time series for distributor's demand
forecasting:

ln(qt;2)=�2 ln(w�t )+'2 ln(qt�1;2)+ln(r2)+"t;2; (32)

where �2 = �a2c2, '2 = 1 � a2, and "t;2 is a white
noise process of distributor's demand forecasting with
zero mean and variance of �2

"2 .
After forecasting distributor's demand, its ex-

pected value and variance should be calculated for
measuring BWE in Section 3.

Lemma 3. The expected value of distributor's de-
mand is:�

�2

1� '2

�
�w +

�
�2

1� '2

�
;

and its variance is:

�2
2

(1� '2)2�
2
w +

�
�2
"2

1� '2
2

�
:

where, �2
w and �w are variance and mean of selling

prices for distributor's goods, respectively.

Proof. See Appendix E.

2.7. The distributor's ordering policy
A new method for calculating the distributor's or-
dering quantity is proposed. Using this method,
each entity in an SC orders based on the demand it
receives. However, in literature, upstream orders were
calculated using downstream order. Subsection 2.7.1
describes the method proposed in this paper, whereas
Subsection 2.7.2 elaborates the technique used in the
literature.

2.7.1. The proposed method for forecasting the
distributor's ordering quantity

In order to determine the distributor's ordering quan-
tity, we propose the extended and revised version of
the Order-Up-To (OUT) level presented by Hosoda
and Disney [15]. Eqs. (33) and (34) indicate the
distributor's OUT level calculated using the demand
it receives:

Ot;2 = qt;2 + (St;2 � St�1;2); (33)

St;2 = q̂l2t;2 + s2�̂l2 : (34)

According to Hosoda and Disney [15], �̂l2 is an esti-
mated value of the standard deviation of the forecast
error considering the distributor's lead-time. Ot;2
denotes distributor's order issued at the end of period t.
s2 is a desired service level of distributor and St;2 is the
OUT level at period t. Eq. (35) shows the conditional
expected value of the total demand over lead time, l2:

q̂l2t;2 = E
�Xl2

i=1
qt+i

���� �t;2�
=
r2(w�t+1)�2q'2

t;2[1� (r2
2v
0�2w�2�2t+1 q

'2
t;2)l2 ]

1� r2
2v
0�2w�2�2t+1 q

'2
t;2

= 
l2r2(w�t+1)�2q'2
t;2; (35)

where 
l2 = 1�(r2
2v
0�2w�2�2t+1 q

'2
t;2)l2

1�r2
2v
0�2w�2�2t+1 q

'2
t;2

and �t;2 = fqt;2; qt�1;2;

qt�2;2; :::g.
Set:



R. Gamasaee and M.H. Fazel Zarandi/Scientia Iranica, Transactions E: Industrial Engineering 25 (2018) 1724{1749 1731

w�t+i+1 = v0w�t+i

(
v0 6= 1 if i = 0; 1
v0 = 1 if i > 1

for calculating q̂l2t;2. Eq. (36) indicates distributor's
order calculated by its received demand using equations
(33)-(35).

Ot;2 = qt;2 + (
l2r2(w�t+1)�2q'2
t;2 � 
l2r2w��2t q'2

t�1;2):
(36)

Theorem 4. The variance of distributor's ordering
quantity with the proposed method is:

Var[ln(Ot;2)] =
�

�2
2

(1� '2)2�
2
w +

�
�2
"2

1� '2
2

��
+ Var[ln(1 + 
l2r2(w�t+1)�2q'2�1

t;2 � 
l2)]

+ 2E[ln(qt;2) ln(1 + 
l2r2(w�t+1)�2q'2�1
t;2

�
l2)]�2
��

�2

1�'2

�
�w+

�
�2

1� '2

��
E[ln(1 + 
l2r2(w�t+1)�2q'2�1

t;2 � 
l2)]:

Proof. See Appendix F.

2.7.2. The distributor's ordering quantity calculated
by retailer's order

In order to determine the distributor's ordering quan-
tity, the extended and revised version of Order-Up-
To (OUT) level presented by Hosoda and Disney [15]
is proposed here. Eqs. (37) and (38) indicate the
distributor's OUT level calculated with retailer's order.

O0t;2 = Ot;1 + (St;2 � St�1;2); (37)

St;2 = Ôl2t;1 + s2�̂l2 : (38)

According to Hosoda and Disney [15], �̂l2 is an esti-
mated value of the standard deviation of the forecast
error considering the manufacturer's lead-time. O0t;2
denotes distributor's order issued at the end of period
t, which is calculated using retailer's order, and s2 is a
desired service level of distributor. Moreover, St;2 is the
OUT level at period t and Ôl2t;1 shows the conditional
expected value of the total order over lead time l2,
which is calculated by the following equation:

Ôl2t;1 =E(
Xl2

i=1
Ot+i;1j
t)

=
r1v

0�p�tOt;1(1� r1v2�p�t )l2

1� r1v02�p�t
= rl2r1v

0�p�tOt;1;
(39)

where rl2 = 1�r1v02�p�t )l2
1�r1v02�p�t , Ot+1;1 = r1v

0�p�tOt;1,
and 
t = fOt;1; Ot�1;1; Ot�2;1; :::g are the set of the

observed orders placed by the retailer. Now, in order
to quantify BWE, variances of orders and demands for
each stage should be calculated. The proof of Eq. (39)
is given in Appendix G1.

Theorem 5. The variance of distributor's ordering
quantity, which is calculated by orders received from
retailer, is:�

Var[ln(1 + 
l1r1p�t+1q
'�1
t;1 � 
l1)]

+
�

�2

(1� ')2�
2
p

�
+ Var[ln(1 +rl2r1v

0�p�t �rl2)]

+
2�

1� 'Cov(ln(1 + 
l1r1p�t+1q
'�1
t;1 � 
l1); ln(pt))

+2Cov(ln(1 + 
l1r1p�t+1q
'�1
t;1 � 
l1); ln(1

+rl2r1v
0�p�t �rl2)) +

2�
1� 'Cov(ln(pt); ln(1

+rl2r1v
0�p�t �rl2)) + �2

"2 + �2
"1 +

�
�2
"

1� '2

��
:

Proof. See Appendix G2.

Theorem 6. The distributor's order quantity calcu-
lated by retailer's order at period t + 1 is O0t+1;2 =
r2v

0�2w��2t O0t;2.

Proof. See Appendix H.

Lemma 4. The MAX time series for predicting order
quantities at period t+ 1 is:

ln(O0t+1;2) = ln(r2) + �2 ln(v0) + �2 ln(w�t )

+ "t+1;2 + ln(1 + 
l2r2w��2t+1q
'2�1
t;2 � 
l2)

+ "t;2 � �2

'2 � 1
ln(w�t )� �2

'2 � 1
+ "t

+ '2"t�1 + '2
2"t�2 + '3

2"t�3 + ::: :

Proof. It is similar to Theorem 3 and is not mentioned
here for brevity.

2.8. Demand model for manufacturer
Eq. (40) shows an ARX time series for manufacturer's
demand forecasting:

ln(qt;3)=�3 ln(z�t )+'3 ln(qt�1;3)+ln(r3)+"t;3; (40)

where z�t is the optimal selling price for manufacturer's
product. qt;3 and qt�1;3 indicate manufacturer's de-
mands for periods t and t� 1, respectively. r3 denotes



1732 R. Gamasaee and M.H. Fazel Zarandi/Scientia Iranica, Transactions E: Industrial Engineering 25 (2018) 1724{1749

a constant coe�cient and "t;3 is a white noise process
of manufacturer's demand forecasting with zero mean
and variance of �2

"3 .

Lemma 5. The expected value of manufacturer's
demand is

�
�3

1�'3

�
�z + ( �3

1�'3
), and its variance is

�2
3

(1�'3)2�2
z +

�
�2
"3

1�'2
3

�
, where �2

z and �z are variance

and mean of selling prices for manufacturer's products,
respectively.

Proof. It is similar to Lemma 3 and is not presented
here for brevity.

2.9. The manufacturer's ordering policy
While ordering quantity is calculated using down-
stream order in the literature, we propose a new
method, which applies demands received by each entity
to calculate its orders. Subsection 2.9.1 describes
the new method, and Subsection 2.9.2 elaborates the
method used in the literature.

2.9.1. Manufacturer's ordering quantity calculated by
its received demand

In order to determine the manufacturer's ordering
quantity, the new version of OUT policy presented by
Hosoda and Disney [15] is proposed in this paper. The
method proposed here uses the demand received by
manufacturer from distributor to place an order. How-
ever, the model presented by Hosoda and Disney [15]
uses distributor's order for forecasting manufacturer's
order. Eqs. (41) and (42) indicate the manufacturer's
OUT level calculated by its received demand:

Ot;3 = qt;3 + (St;3 � St�1;3); (41)

St;3 = q̂l3t;3 + k3�̂l3 ; (42)

where Ot;3 denotes manufacturer's order issued at the
end of period t and s3 is a desired service level of
manufacturer. St;3 is the OUT level at period t and
q̂l3t;3 shows the conditional expected value of the total
demand over lead time l3 as follows:

q̂l3t;3 = E
�Xl3

i=1
qt+ij�t;3

�
=
r3(z�t+1)�3q'3

t;3(1� (r'3
3 v00�3(z�t+1)�3'3q'3

t;3)l3)
1� r'3

3 v00�3(z�t+1)�3'3q'3
t;3

= 
l3r3(z�t+1)�3q'3
t;3; (43)

where 
l3 = 1�(r'3
3 v
00�3 (z�t+1)�3'3q'3

t;3)l3

1�r'3
3 v00�3 (z�t+1)�3'3q'3

t;3
and �t;3 =

fqt;3; qt�1;3; qt�2;3; :::g is the set of the observed de-
mands. For calculating q̂l3t;3, it is assumed that:

z�t+i+1 = v00z�t+i;
(
v00 6= 1 if i = 0; 1
v00 = 1 if i > 1

:

Eq. (44) indicates manufacturer's order, and it is
obtained by using Eqs. (41)-(43).

Ot;3 = qt;3 + (
l3r3(z�t+1)�3q'3
t;3 � 
l3qt;3): (44)

Theorem 7. The variance of manufacturer's order
using the proposed method is:�

�2
3

(1� '3)2�
2
z +

�
�2
"3

1� '2
3

��
+ Var[ln(1

+
l3r3(z�t+1)�3q'3�1
t;3 � 
l3)] + 2E[ln(qt;3 ln(1

+
l3r3(z�t+1)�3q�3�1
t;3 � 
l3)]� 2

��
�3

1� '3

�
�z

+
�

�3
1�'3

��
E[ln(1+
l3r3(z�t+1)�3q'3�1

t;3 � 
l3)]:

Proof. See Appendix I.

2.9.2. The manufacturer's ordering quantity
calculated by distributor's order

In order to determine the manufacturer's ordering
quantity, the revised version of OUT level presented
by Hosoda and Disney [15] is used. Eqs. (45) and (46)
indicate the manufacturer's OUT level calculated with
distributor's order:

Ot;3 = Ot;2 + (St;3 � St�1;3); (45)

St;3 = Ôl2t;2 + k3�̂l3 ; (46)

where Ot;3 denotes manufacturer's order issued at the
end of period t and s3 is a desired service level of
manufacturer. St;3 denotes the OUT level at period
t and Ôl3t;1 shows the conditional expected value of the
total order over lead time l3 calculated by the following
equation:

Ôl3t;2 = E
�Xl3

i=1
Ot+i;2

����#t�
=
r2v

00�w��t Ot;2[1� (r2v
002�w��t )l3 ]

1� r2v002�w��t

= �l3r2v
00�w��t Ot;2; (47)

where �l3 = 1�(r2v
002�w��t )l3

1�r2v002�w��t , Ot+1;2 = r2v
00�w��t Ot;2,

and #t = fOt;2; Ot�1;2; Ot�2;2; :::g is the set of the
observed orders placed by the distributor.
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Theorem 8. The variance of manufacturer's order,
which is calculated by distributor's order, is:

Var[ln(1 + �l3r2v
00�w��t ��l3)] + Var[ln(1

+
l1r1(p�t+1)�q'�1
t;1 � 
l1)] +

�
�2

(1� ')2�
2
p

�
+Var[ln(1 +rl2r1v��p��t �rl2)] + 2Cov(ln(1

+�l3r2v
00�w��t ��l3); ln(1 + 
l1r1(p�t+1)�q'�1

t;1

�
l1)) + 2Cov(ln(1 + �l3r2v
00�w��t ��l3); ln(1

+rl2r1v
00�p��t �rl2)) + 2Cov(ln(1

+
l1r1(p�t+1)�q'�1
t;1 � 
l1); ln(1 +rl2r1v

00�p��t

�rl2)) +
2�

1� 'Cov(ln(p�t ); ln(1 + �l3r2v
00�w��t

��l3))+
2�

1� 'Cov(ln(p�t ); ln(1+
l1r1(p�t+1)�q'�1
t;1

�
l1)) +
2�

1� 'Cov(ln(p�t ); ln(1 +rl2r1v
00�p��t

�rl2)) + �2
"3 + �2

"2 + �2
"1 +

�
�2
"

1� '2

�
:

Proof. See Appendix J.

3. Measuring and reducing BWE

In this section, BWE is quanti�ed using orders and
demands of each entity in the SC calculated in the
previous sections. Two methods are utilized for mea-
suring BWE. In the �rst method, orders of downstream
echelons are used to forecast upstream orders as shown
in Eqs. (48)-(50). In contrast to the �rst method,
the second one utilizes demand of each echelon for
forecasting its own ordering quantity through Eqs. (51)
and (52). For example, distributor's demand is used

to forecast its relevant ordering quantity. Comparing
Eq. (49) with Eq. (52) shows that BWE is signi�cantly
reduced by the second method, which uses distributor's
demand for forecasting distributor's order. Moreover,
comparing Eq. (50) with Eq. (53) demonstrates that
BWE is mitigated in manufacturer echelon if the
second method is used. Therefore, if order quantity
of each entity in an SC is forecasted by its demand,
BWE will be reduced signi�cantly in comparison with
the cases in which downstream orders are used for
forecasting upstream orders.

4. Validation and veri�cation

In order to validate the model, MSE of demand
forecasting and variance of orders calculated by the
proposed method are compared with those calculated
by the technique presented by Zhang and Burke [33].

Theorem 9. If the optimal values of prices are
calculated using the proposed method, the forecasting
error (MSE) will be less than that in the case in
which prices are forecasted as studied by Zhang and
Burke [33].

Proof. See Appendix K.

Theorem 10. The proposed method in this paper, in
which optimal prices are used for forecasting demands
and orders in SCs, reduces BWE signi�cantly.

Proof. See Appendix L. Eqs. (48)-(53) represent the
bullwhip e�ect metrics in each echelon of the SC (Eq.
(48) is shown in Box I):

B2 =
Var[ln(Ot;2)]
Var[ln(qt;1)]

= [Var[ln(1 + 
l1r1p�t+1q
'�1
t;1

� 
l1)]+
�

�2

(1� ')2�
2
p

�
+ Var[ln(1 +rl2r1v�p�t

�rl2)] +
2�

1� 'Cov(ln(1 + 
l1r1p�t+1q
'�1
t;1

B1 =
Var[ln(Ot;1)]
Var[ln(qt;1)]

=

h
�2

(1�')2�2
p+
�

�2
"

1�'2

�i
+Var[ln(1+
l1r1p�t+1q

'�1
t;1 �
l1)]+2E[ln(qt;1) ln(1+
l1r1p�t+1q

'�1
t;1 �
l1)]

�2
h�

�
1�'
�
�p+( �

1�' )
i
E[ln(1+
l1r1p�t+1q

'�1
t;1 �
l1)]

�2

(1�')2�2
p+
�

�2
"

1�'2

� : (48)

Box I
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� 
l1); ln(pt)) + 2Cov(ln(1 + 
l1r1p�t+1q
'�1
t;1

� 
l1); ln(1 +rl2r1v�p�t �rl2))

+
2�

1� 'Cov(ln(pt); ln(1 +rl2r1v�p�t �rl2))

+ �2
"2 + �2

"1 +
�

�2
"

1� '2

��
=
�

�2

(1� ')2�
2
p

+
�

�2
"

1� '2

��
; (49)

B3 =
Var[ln(Ot;3)]
Var[ln(qt;1)]

= [Var[ln(1 + �l3r2v�w�t ��l3)]

+ Var[ln(1 + 
l1r1p�t+1q
'�1
t;1 � 
l1)]

+
�

�2

(1� ')2�
2
p

�
+Var[ln(1 +rl2r1v�p�t �rl2)]

+ 2Cov(ln(1 + �l3r2v�w�t ��l3); ln(1

+
l1r1p�t+1q
'�1
t;1 �
l1))+ 2Cov(ln(1

+�l3r2v�w�t ��l3); ln(1 +rl2r1v�p�t �rl2))

+ 2Cov(ln(1 + 
l1r1p�t+1q
'�1
t;1 �
l1); ln(1

+rl2r1v�p�t�rl2)) +
2�

1� 'Cov(ln(pt); ln(1

+ �l3r2v�w�t ��l3)) +
2�

1� 'Cov(ln(pt); ln(1

+ 
l1r1p�t+1q
'�1
t;1 �
l1))+

2�
1�'Cov(ln(pt); ln(1

+rl2r1v�p�t �rl2)) + �2
"3 + �2

"2 + �2
"1

+
�

�2
"

1� '2

��
=
�

�2

(1�')2�
2
p+
�

�2
"

1�'2

��
; (50)

Eqs. (51) to (53) are shown in Box II.

5. Numerical experiments

In order to validate the proposed methods, a data
set from auto-parts industry is used to analyse the
contributions of this paper, namely, (I) using optimal
prices instead of forecasted ones for demand and
order forecasting; (II) investigating the e�ect of joint
demand-order-pricing-lead time decisions on reducing
BWE; (III) calculating order quantities for each ech-
elon in an SC through its relevant demand instead

of using downstream orders for measuring upstream
orders.

This section is organized as follows. In Subsec-
tion 5.1, the e�ect of joint demand-order-lead time and
optimal prices on reducing BWE is investigated using
data set of an auto-parts SC. After calculating BWE
metric with forecasted prices, the results are compared
with the case in which BWE is calculated with the
optimal prices. Subsection 5.2 compares the proposed
method, in which demand of each entity is used to
forecast its order quantity, with the method in which
upstream orders are predicted by downstream orders.

5.1. Joint demand-pricing-lead time model for
reducing BWE in auto-parts industry

In this subsection, the proposed joint demand-pricing-
lead time method is used to reduce BWE. Then, the
method is compared with the model in which prices
are forecasted. In order to show the e�ect of joint
demand-pricing-lead time decisions on reducing BWE,
we use a data set of an auto-parts manufacturing
company. Figure 2 shows the demand functions of
retailer, distributor, and manufacturer.

For calculating joint demand-pricing-lead time
model, retailer's optimal selling price is used to forecast
its demand using Eq. (15). A statistical test called
coe�cient test is applied by EViews software to de-
termine ARX structure of Eq. (15). Table 2 shows
the coe�cient test for retailer's demand. In Table 2,
AR(10) shows 10th order auto-regressive variable of
natural logarithm of retailer's demand, ln (qt�10;1).
The �rst to 9th order AR variables (AR(1), AR(2),...,
AR(9)) have been examined with coe�cient test. Since
the corresponding p-values for the �rst to 9th order AR
variables are higher than 0.025, variables are rejected
and AR(10), whose p-value is lower than 0.025, is ac-
cepted. P -value is the probability of obtaining a result
equal to or more than what is observed. The coe�cient
of AR(10) is extracted from Table 2. Moreover, the
expected value and variance of retailer's demand are
calculated through Eqs. (19) and (20). In the next
step, retailer's order quantity is calculated through
Eq. (27). Table 3 shows coe�cient test for retailer's
order quantity. In Table 3, OMEGA is a representative
of [ln(1 + 
l1r1p�t+1q

'�1
t;1 � 
l1)] in Eq. (35).

After identifying ARX coe�cients, demands of
retailer, distributor, and manufacturer are forecasted
and compared with the actual ones for period t.
Figure 3(a) shows the actual and forecasted demands
for retailer, distributor, and manufacturer. The �gure
illustrates that there is a trivial di�erence between
actual and forecasted demands. This fact shows that
the method proposed in this paper has high capability
of demand forecasting with low error. Figure 3(b)
depicts demands of entities calculated with optimal
prices (the proposed method in this paper) as well
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B1 =
Var[ln(Ot;1)]
Var[ln(qt;1)]

=

h
�2

(1�')2�2
p +

�
�2
"

1�'2

�i
+ Var[ln(1 + 
l1r1p�t+1q

'�1
t;1 � 
l1)] + 2E[ln(qt;1) ln(1 + 
l1r1p�t+1q

'�1
t;1 � 
l1)]

�2
h�

�
1�'

�
�p + ( �

1�' )
i
E[ln(1 + 
l1r1p�t+1q

'�1
t;1 � 
l1)]

�2

(1�')2�2
p +

�
�2
"

1�'2

� ;
(51)

B2 =
Var[ln(Ot;2)]
Var[ln(qt;1)]

=

�
�2
2

(1�'2)2�2
w+
�

�2
"2

1�'2
2

��
+Var[ln(1+
l2r2w�2t+1q

'2�1
t;2 �
l2)]+2E[ln(qt;2) ln(1+
l2r2w�2t+1q

'2�1
t;2 �
l2)]

�2
h�

�2
1�'2

�
�w + ( �2

1�'2
)
i
E[ln(1 + 
l2r2w�2t+1q

'2�1
t;2 � 
l2)]

�2

(1�')2�2
p +

�
�2
"

1�'2

� ;
(52)

B3 =
Var[ln(Ot;3)]
Var[ln(qt;1)]

=

�
�2
3

(1�'3)2�2
z +

�
�2
"3

1�'2
3

��
+Var[ln(1+
l3r3z�3t+1q

'3�1
t;3 �
l3)]+2E[ln(qt;3) ln(1+
l3r3z�3t+1q

'3�1
t;3 �
l3)]

�2
h�

�3
1�'3

�
�z +

�
�3

1�'3

�i
E[ln(1 + 
l3r3z�3t+1q

'3�1
t;3 � 
l3)]

�2

(1�')2�2
p +

�
�2
"

1�'2
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Box II

Figure 2. (a) Retailer's demand calculated using Eq. (1c). (b) Distributor's demand calculated using Eq. (6). (c)
Manufacturer's demand calculated using Eq. (11).

as the forecasted ones (the method presented in the
literature) in an auto-parts SC. Figure 3(b) demon-
strates that demand ampli�cation from retailer to man-
ufacturer is signi�cantly reduced by applying optimal
prices rather than forecasted ones. As it is illustrated
in the �gure, demands of retailer, distributor, and
manufacturer calculated with optimal prices are very
close to each other in comparison with the demands

obtained by the forecasted prices. Figure 3(a) and (b)
show that demands forecasted using optimal prices are
better estimations of actual demands than the demands
obtained by forecasted prices are.

Figure 3(c) shows demands and orders of entities
in the SC calculated by the optimal prices. Figure 3(d)
indicates that BWE exists in the SC because order
of each entity is ampli�ed as it moves through the
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Table 2. Coe�cient test for retailer's demand.

Variable Coe�cient Std. error t-statistic p-values
ln(r1) 4.546337 0.102659 44.28589 0.0000
p�t {0.005083 0.002148 {2.365807 0.0187

AR(10) 1.005144 0.002769 363.0504 0.0000
R-squared 0.997943 Mean dependent var 4.686812

Adjusted R-squared 0.997928 S.D. dependent var 0.007760
S.E. of regression 0.000353 Akaike info criterion {13.04874

Sum of squared residual 3.57E-05 Schwarz criterion {13.01068
Log likelihood 1888.542 Hannan-Quinn criterion {13.03348

Durbin-Watson statistics 0.161957

Table 3. Coe�cient test for retailer's order.

Variable Coe�cient Std. error t-statistic p-values
ln(qt;1) 1.000002 3.10E-06 322602.8 0.0000

OMEGA 0.998380 0.002814 354.7612 0.0000
R-squared 1.000000 Mean dependent var 4.691569

Adjusted R-squared 1.000000 S.D. dependent var 0.008035
S.E. of regression 3.71E-07 Akaike info criterion {26.76835

Sum of squared residual 4.11E-11 Schwarz criterion {26.74366
Log likelihood 4017.252 Hannan-Quinn criterion {26.75847

Durbin-Watson statistics 3.003381

Figure 3. (a) Actual and forecasted demands of retailer, distributor, and manufacturer. (b) Demands of retailer,
distributor, and manufacturer calculated by optimal and forecasted prices. (c) Demands and orders of retailer, distributor,
and manufacturer calculated by the optimal prices. (d) Demands and orders of retailer, distributor, and manufacturer
calculated by the forecasted prices.
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Table 4. BWE metrics, variance of orders, and demands for each entity in SC.

Row Criteria Retailer Distributor Manufacturer

1 BWE metric with optimal prices 1.000404 1.000517 1.000454

2 BWE metric with forecasted prices 1.05297769 3.55964187 6.335687873

3 Variance of demands with optimal prices 6:45431� 10�5 6:50565� 10�5 6:64263� 10�5

4 Variance of demands with forecasted prices 0.000875031 0.001846765 0.00329832

5 Variance of orders with optimal prices 6:45692� 10�5 6:50901� 10�5 6:64565� 10�5

6 Variance of orders with forecasted prices 0.000921388 0.006573823 0.020897128

Table 5. BWE metrics, variance of orders calculated by both methods, and variance of demands.

Retailer Distributor Manufacturer

BWE metric using orders calculated by downstream orders 1.000404 1.079685662 1.05694084

BWE metric using orders calculated by demands 1.000404 1.000517073 1.00045357

Variance of demands 6:45431� 10�5 6:50565� 10�5 6:64263� 10�5

Variance of orders calculated by downstream orders 6:45692� 10�5 7:02406� 10�5 7:0209� 10�5

Variance of orders calculated by demands 6:45692� 10�5 6:50901� 10�5 6:64565� 10�5

chain. The di�erence between demand and order of
each entity represents the existence of BWE in the SC.
Figure 3(d) depicts demands and orders measured by
the forecasted prices. In Figure 3(d), the di�erences
between demands and orders of entities in the SC
illustrate the existence of BWE. However, comparing
Figure 3(c) with Figure 3(d) indicates that orders are
more ampli�ed when calculated with the forecasted
prices than when calculated with the optimal prices.
Therefore, BWE is signi�cantly reduced by using
optimal prices in demand and order calculation rather
than by using forecasted ones.

Table 4 shows BWE metric and variances of
demands and orders for each entity measured by
optimal prices as well as by forecasted ones. Table 4
indicates that the BWE metric calculated with the
proposed method, using the optimal prices, is lower
than the BWE metric measured by the forecasted
prices. The �rst row of Table 4 shows that BWE
metrics for retailer, distributor, and manufacturer are
close to each other and approximately equal to 1. Thus,
BWE is signi�cantly reduced and it can be claimed that
BWE is almost eliminated by the method presented in
this paper.

The second row of Table 4 shows that the BWE
metric measured by forecasted prices is very high.
Comparing row 3 with row 4 of Table 4 shows that vari-
ances of demands are signi�cantly reduced by applying
the proposed method using optimal prices. Moreover,
when demand is calculated by optimal prices, demand
ampli�cation is lower than when it is measured by
forecasted prices. Comparing rows 5 and 6 of Table 4
shows that variances of orders are signi�cantly reduced

and orders are not ampli�ed signi�cantly by applying
the proposed method using the optimal prices.

5.2. The e�ect of ordering policies on BWE
As it was discussed in Subsection 5.1, statistical tests
are applied to �nd the best time series for forecasting
orders. Those tests are not included here for brevity.
Figure 4(a) shows orders of each entity in the SC
calculated by two methods: (I) Orders of each entity
are calculated using its received demands; (II) Orders
are measured using downstream orders. Retailer's
orders for both methods are the same, because retailer
is the �rst echelon, and there is no downstream echelon
after it. Therefore, its order is calculated by its own
demand. Comparing solid lines with diamonded-solid
ones shows that orders of each echelon quanti�ed by
its received demand are ampli�ed less than orders
calculated with downstream orders. In other words,
the proposed method, in which order of each entity
in the SC is calculated through its received demand,
signi�cantly reduces BWE.

Figure 4(b) depicts demands and orders of each
echelon in the SC calculated by downstream orders.
Figure 4(b) shows that orders are signi�cantly am-
pli�ed and BWE is a large value when orders are
calculated by downstream orders. Figure 4(c) illus-
trates demands of each echelon in the SC and orders
calculated by the received demands. Figure 4(c) shows
that orders that have been calculated by the received
demands are not ampli�ed signi�cantly. Thus, BWE
is reduced signi�cantly when orders are calculated by
demands.

Table 5 shows that the BWE metric quanti�ed
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Figure 4. (a) Orders for each echelon in the SC
calculated by its received demands as well as its
downstream orders. (b) Demands and orders for each
echelon in the SC calculated by downstream orders. (c)
Demands and orders for each echelon in SC calculated by
the received demands.

with the method proposed in this paper is lower
than the metric measured using the orders that are
calculated by demands. Comparing the 5th row of
Table 5 with the 6th one indicates that the variance of

orders calculated by downstream orders is more than
the variance of orders measured by demands.

6. Implications

This works demonstrates that 3 factors can signi�-
cantly reduce BWE in SCs. The �rst one is joint
demand, pricing, ordering, and lead time decisions.
This occurs due to the fact that eliminating the causes
of BWE generation will lead to its reduction. If
multiple causes of BWE are analysed simultaneously,
it decreases more signi�cantly. Demand forecasting is
one of those causes. From downstream to upstream
echelons of the SC, demand forecasting errors are ac-
cumulated and added to the next echelon of the chain,
leading to demand ampli�cation (BWE) and inaccurate
demand information. These inaccuracies will increase
the variance of orders through the SC. If variance
of orders increases in the SC, 
uctuations occur in
production system, which lead to either generating
huge inventories or shortage of products and loss of
customers. Both of them impose extravagant costs to
the entities in the SC.

Thus, providing more accurate demand forecast-
ing helps production managers to provide smoother
production plan with the least 
uctuations, leading
to reduction in inventory and shortage costs. In this
paper, the results of demand forecasting with ARX
model showed that variance of orders and BWE were
reduced signi�cantly, which would lead to further cost
reductions in an SC and production planning without
high 
uctuations. Inaccurate or improper ordering
policies, pricing, and lead time decisions also lead
to more ordering variance through the SC, which
consequently increase costs of each entity. The results
of presenting the new methods for ordering policy, lead
time, and pricing decisions demonstrated that variance
of orders and BWE were reduced using the proposed
methods.

The second factor is to use optimal prices instead
of the forecasted ones. As it was proved mathemat-
ically and shown by numerical experiments, optimal
prices reduce MSE of demand forecasting and, con-
sequently, reduce BWE. The third factor is adopting
an appropriate ordering policy. In this paper, it was
mathematically and numerically proved that using de-
mand of each entity for calculating its order quantities
would signi�cantly reduce BWE in comparison with
the method in which downstream orders were used.
It is worthwhile to mention that there is a di�erence
between the demand received by the distributor (or the
manufacturer) and its downstream order in practice.

Practically, in an SC, the manufacturer requires
to have distributor's demand in advance in order to
be able to produce adequate products. Assume that
the manufacturer decides to provide the raw material
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to produce next week's products. In the current week,
the manufacturer does not have market demand for the
next week. Thus, the manufacturer uses the forecasted
demand of the distributor, which is predicted by
demand planning department. Manufacturer will place
its order for providing the required raw material based
on the forecasted demand of the distributor. Then,
at the end of forecasting period, the distributor places
its actual order and manufacturer will receive actual
demand of the distributor. Thus, the distributor's
order di�ers from the demand that the manufacturer
receives from demand forecasting department. This
occurs due to the fact that actual demand of distributor
is not available in the planning period (current week);
hence, its forecasted demand is used. This paper
showed that using demand of each entity for calculating
its order quantities would reduce BWE signi�cantly in
comparison with the method in which downstream or-
ders were used. This is due to the fact that downstream
orders accumulate forecasting errors; however, using
demand of each entity only includes forecast errors of
one stage.

Production managers can use the proposed tech-
niques for reducing costs of SC and making production
plan smoother with less 
uctuations in inventory and
ordering. In addition to managers and practitioners,
academic communications also bene�t from this study.
They can use the proposed method accompanied by
investigating the e�ect of shortage gaming on BWE.

7. Conclusions and future research

This paper investigated the impact of joint demand,
orders, lead time, and pricing decisions on reducing
BWE. In order to mitigate it, 4 major contributions
were proposed. The �rst contribution was considering
multiple causes of BWE (demand, orders, lead time,
and pricing) simultaneously for reducing it. The
second one was to model demands, orders, and prices
dynamically. Demand and prices have mutual e�ect on
each other over time. Therefore, a time series model
was applied in a game theory method for �nding the
optimal values of prices in an SC. Then, optimal prices
were inserted in the time series model for demand
forecasting. The third contribution was proposing a
new policy to �nd order quantities for each entity in
the SC. The new method used demand of each entity
to calculate its order quantities. In order to validate the
new ordering policy, it was compared with the method
in the literature, which used downstream orders for
forecasting upstream orders.

It was proved that using demand of each entity
for calculating its order quantities would reduce BWE
signi�cantly in comparison with the method in which
downstream orders were used. The fourth contribution
was to �nd optimal prices and use them for demand

forecasting and reducing BWE. It was proved that the
proposed method, which used optimal prices to forecast
demands, had low forecasting error in comparison with
the technique that forecasted prices. Furthermore, it
was proved that using optimal prices for forecasting
demands and orders in SCs would reduce BWE signif-
icantly.

Then, the proposed model was validated using
a data set of an auto-parts SC. First, the e�ect of
the proposed joint demand, orders, lead-time, and
pricing model on BWE was investigated. In order
to reach that goal, the e�ect of optimal prices on
BWE was compared with the impact of the forecasted
prices on BWE. Statistical tests were used to �nd
the most appropriate time series for demand and
order forecasting. The results showed that BWE and
variance of orders/demands were signi�cantly reduced
when optimal prices were used. Second, the proposed
ordering policy, which used the received demands of
each entity to �nd its order quantities, was examined
by a data set of an auto-parts SC. The results were
compared with the method in which orders of each
entity were obtained by downstream orders. This
comparison indicated that BWE and variance of orders
were signi�cantly reduced when orders of each entity
were calculated by its received demands. It can be
claimed that BWE was almost removed from the SC
using the proposed method. In addition, this paper
provides a fundamental structure for future research.
That is, analysing the impact of compound causes of
BWE, including shortage gaming, on reducing it.
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Appendix A

The method presented by �Ozelkan and Cakany-
ildirim [32] is extended here. In order to �nd the
optimal values of prices, concavity of the objective
function should be investigated. Thus, the second order
condition should be negative:

d2(�(pt(wt)))
d2(pt(wt))

= 2q02t;1(pt(wt); qt�1;2)

�qt;1(pt(wt); qt�1;2)q00t;1(pt(wt); qt�1;2) < 0

! qt;1(pt(wt); qt�1;2)q00t;1(pt(wt); qt�1;2)
q02t;1(pt(wt); qt�1;2)

< 2

! 1
a2c2(acwt)ac

< 2:

Therefore, the optimal value for wt must satisfy the
inequality 1

a2c2(acwt)ac < 2 leading to the concave pro�t
function. Assume that the second order condition
is satis�ed; thus, the �rst order condition should be
investigated to �nd the optimal values of wt. The
optimal price for distributor's goods is obtained by
solving:

w�t =fwtjqt;1(pt(wt); qt�1;2)

+ (wt � zt)d(qt;1(pt(wt); qt�1;2)
dwt

= 0g;
where:

d(qt;1(pt(wt); qt�1;2)
dwt

=
�(a2c2r2q1�a

t�1;2)
(ac�1)(acwt)=(ac�1)ac+1 ;

and:
qt;2 = qt;1(pt(wt); qt�1;2) = r2q1�a

t�1;2(p�t (wt))�ac

= r2q1�a
t�1;2(

acwt
ac� 1

)�ac:

After solving the above equations, wt is obtained
as:

w�t =fr2q1�a
t�1;2(

acwt
ac� 1

)�ac

+ (wt � zt) �(a2c2r2q1�a
t�1;2)

(ac� 1) � acwt
(ac�1)ac+1

= 0g;
and:

wt =
aczt
ac� 1

:

Selling price is a positive number (wt > 0); therefore
(ac�1) should be positive. This shows that ac is greater

than one. Hence, the inequality 1
a2c2(acwt)ac < 2 and

the second order condition are satis�ed. As a result, the
optimal price for distributor's goods (w�t ) is w�t = aczt

ac�1 .

Appendix B1

AS in the method presented by Hosoda and Disney [15],
E(
Pl1
i=1 qt+i;1j�t) is equal to the sum of the �rst l1

terms of a geometric progression. In that geometric
progression, terms are demands over lead time. Thus,
using the formulation for calculating sum of the �rst
l1 terms of a geometric progression, having qt+1;1 as
the �rst term, its progression ratio is r2

1v�p2�
t+1q

'
t;1. The

proof is given as follows:

qt+1;1 = r1p�1t+1q
'1
t;1; (B1.1)

qt+2;1 =r1p�2t+2q
'2
t+1;1 = r1v�2p�2t+1q

'2
t+1;1

=r1v�2p�2t+1r
'2
1 p�1'2

t+1 q
'1'2
t;1 ; (B1.2)

qt+3;1 =r1p�3t+3q
'3
t+2;1 = r1v�3v�3p�3t+1r

'3
1 v�2'3

p�2'3
t+1 r

'2'3
1 p�1'2'3

t+1 q'1'2'3
t;1 ; (B1.3)

...

Let �1 = �2 = �3 = �4 = ::: = � and '1 = ', '2 = 2,
and '1'2 = 2', '1'2'3 = 3', '1'2'3'4 = 4'; ::: .
Let pt+i+1 = vpt+i, i = 1; 2; :::; l1, then we have:

qt+1;1 = r1p�t+1q
'
t;1; (B1.4)

qt+2;1 = r1v�p�t+1r
2
1p

2�
t+1q

2'
t;1 = r3

1v
�p3�
t+1q

2'
t;1; (B1.5)

qt+3;1 = r1v�p�t+1r1v�p2�
t+1r

3
1p

2�
t+1q

3'
t;1 = r5

1v
2�p5�

t+1q
3'
t;1;

(B1.6)

q̂l1t;1 =E
�Xl1

i=1
qt+i;1j�t

�
=
r1p�t+1q

'
t;1[1� (r2

1v�p2�
t+1q

'
t;1)l1 ]

1� r2
1v�p2�

t+1q
'
t;1

=
l1r1p�t+1q
'
t;1; (B1.7)

where 
l1 = 1�(r2
1v
�p2�
t+1q

'
t;1)l1

1�r2
1v�p

2�
t+1q

'
t;1

, and �t = fqt; qt�1;
qt�2; :::g is the set of the demands.

Appendix B2

By applying Eq. (26) and setting the equivalent value
for qt;1, the following equation is obtained:

Ot;1 = r1p�t q
'
t�1;1 + 
l1(r1p�t+1q

'
t;1 � r1p�t q

'
t�1;1):

(B2.1)
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Then, in order to �nd retailer's order at period t + 1,
we extend Eq. (B2.1) to t+ 1 as follows:

Ot+1;1 = r1p�t+1q
'
t;1+
l1r1p�t+2q

'
t+1;1�
l1r1p�t+1q

'
t;1:

(B2.2)

Then, the equivalent value for qt;1 is substituted in
Eq. (B2.2), resulting in the following equation:

Ot+1;1 =r1p�t+1(r1p�t q
'
t�1;1)'+ 
l1r1p�t+2(r1p�t+1q

'
t;1)'

� 
l1r1p�t+1(r1p�t q
'
t�1;1)': (B2.3)

Eq. (B2.4) is obtained by substituting p�t = v�p�t�1 and
qt;1 = r1p�t q

'
t�1;1 in Eq. (B2.3):

Ot+1;1 =r1v�p�t(r1p�t q
'
t�1;1)'+
l1(r1v2�p�t(r1p�t+1q

'
t;1)'

� r1v�p�t (r1p�t q
'
t�1;1)'); (B2.4)

where v is a constant number indicating how much
information about price is transferred from the present
period to the next period. Having ' � 1, Eq. (B2.4) is
converted to the following equation.

Ot+1;1 =r1v�p�t r1p�t q
'
t�1;1 + 
l1(r1v2�p�t r1p�t+1q"

'
t;1

� r1v�p�t r1p�t q
'
t�1;1): (B2.5)

Because � is a very small quantity, we suppose that
v2� � v�; thus, Eq. (B2.6) is obtained. Finally,
(Eq. B2.7) shows the retailer's ordering quantity at
period t+ 1:

Ot+1;1 =r1v�p�t [r1p�t q
'
t�1;1 + 
l1(r1p�t+1q

'
t;1

� r1p�t q
'
t�1;1)]; (B2.6)

Ot+1;1 = r1v�p�tOt;1: (B2.7)

The ARX time series model is used to forecast retailer's
order at period t + 1. This process is necessary for
measuring and reducing BWE. Eq. (B2.8) shows ARX
model for forecasting retailer's order at period t + 1.
This equation is obtained by taking natural logarithm
of Eq. (B2.7):

ln(Ot+1;1) = ln(r1) + � ln(v) + � ln(pt) + ln(Ot;1)

+ "t+1;1; (B2.8)

where "t+1;1 is a white noise process at period t + 1
with zero mean and variance of �2

"1 .

Appendix C

Eq. (C.1) shows the time series equation for retailer's
ordering quantity at period t, and Eq. (C.3) is obtained
by substituting Eq. (C.2) in Eq. (C.1):

ln(Ot;1)=ln(qt;1)+ln(1+
l1r1p�t+1q
'�1
t;1 �
l1)+"t;1;

(C.1)

ln(qt;1) = � ln(pt) + ' ln(qt�1;1) + ln(r1) + "t; (C.2)

ln(Ot;1) =� ln(pt) + ' ln(qt�1;1) + ln(r1) + "t

+ ln(1+
l1r1p�t+1q
'�1
t;1 �
l1)+"t;1: (C.3)

Eq. (C.2) is used to extract the equivalent time series
for retailer's order at period t + 1. This time series is
substituted in Eq. (C.1), and Eq. (C.3) is generated.
Eq. (C.3) is substituted in Eq. (B2.8) and Eq. (C.4)
is created, which shows the MAX time series model
for retailer's order at period t + 1. The proof is now
completed:

ln(Ot+1;1) =2 ln(r1) + � ln(v) + 2� ln(pt)

+' ln(qt�1;1)+"t+ln(1+
l1r1p�t+1q
'�1
t;1

� 
l1) + "t;1 + "t+1;1: (C.4)

Appendix D

Using Eq. (16), the MAX time series equation for
ln(qt;1) is extracted. Substituting MAX model of
ln(qt;1) in Eq. (C.1), the following equation is gener-
ated:

ln(Ot;1) = ln(1 + 
l1r1p�t+1q
'�1
t;1 � 
l1) + "t;1

� �
'� 1

ln(pt)� �
'� 1

+ "t + '"t�1

+ '2"t�2 + '3"t�3 + ::: : (D.1)

Finally, the right-hand side of Eq. (D.1) is substituted
in Eq. (B2.8), and the MAX of retailer's order at period
t + 1, including previous error terms, is obtained as
follows:

ln(Ot+1;1) = ln(r1) + � ln(v) + � ln(pt) + "t+1;1

+ ln(1 + 
l1r1p�t+1q
'�1
t;1 � 
l1) + "t;1

� �
'� 1

ln(pt)� �
'� 1

+ "t + '"t�1

+ '2"t�2 + '3"t�3 + ::: : (D.2)

Appendix E

In order to calculate mean and variance of distributor's
demand, Eq. (32) is converted to its equivalent MAX
time series by Eqs. (E.1)-(E.4):

ln(qt;2) =�2 ln(w�t ) + '2 ln(qt�1;2) + ln(r2)

+ "t;2; ln(r2) = �2; (E.1)
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qt�1;2 =
�

qt;2
r2w��2t

�1='2

; (E.2)

ln(qt�1;2) =
ln(qt;2)
'2

� �2

'2
ln(w�t )� "t;2

'2
� �2
'2
; (E.3)

ln(qt;2) =� �2

'2 � 1
ln(w�t )� �2

'2 � 1
+"t;2+'2"t�1;2

+ '2
2"t�2;2 + '3

2"t�3;2 + ::: : (E.4)

Then, the expected value and variance of Eq. (E.4) are
taken. Afterwards, E[ln(w�t )] = �w and Var[ln(w�t )] =
�2
w are substituted in Eqs. (E.5) and (E.6). The proof

is now completed:

E[ln(qt;2)] =
�

�2

1� '2

�
E[ln(w�t )] +

�
�2

1� '2

�
=
�

�2

1� '2

�
�w +

�
�2

1� '2

�
;

(E.5)

Var[ln(qt;2)] =
�2

2
(1� '2)2 Var[ln(w�t )] +

�
�2
"2

1� '2
2

�
=

�2
2

(1� '2)2�
2
w +

�
�2
"2

1� '2
2

�
; (E.6)

where �2
w is variance of selling prices for distributor's

goods, and �w is mean of selling prices for distributor's
goods.

Appendix F

First, the equivalent value for q'2
t�1;2 is obtained by

Eq. (F.1). Then, by substituting Eq. (F.1) in Eq. (36),
the distributor's order and its natural logarithm are
obtained using Eqs. (F.2) and (F.3), respectively.
Revising Eq. (F.3) with time lagged error terms leads
to a MAX time series as it is demonstrated in Eq. (F.4).
Finally, variance of retailer's order is calculated by
Eqs. (F.5)-(F.7):

q'2
t�1;2 =

qt;2
r2w��2t

; (F.1)

Ot;2 = qt;2(1 + 
l2r2(w�t+1)�2q'2�1
t;2 � 
l2); (F.2)

ln(Ot;2)=ln(qt;2)+ln(1+
l2r2(w�t+1)�2q'2�1
t;2 �
l2);

(F.3)

ln(Ot;2) = ln(1 + 
l2r2(w�t+1)�2q'2�1
t;2 � 
l2)

� �2

'2 � 1
ln(w�t )� �2

'2 � 1
+ "t;2

+'2"t�1;2+'2
2"t�2;2+'3

2"t�3;2+:::; (F.4)

Var[ln(Ot;2)] =Var[ln(qt;2)] + Var[ln(1

+ 
l2r2(w�t+1)�2q'2�1
t;2 � 
l2 ]

+ 2cov(ln(qt;2); ln(1 + 
l2r2(w�t+1)�2

q'2�1
t;2 � 
l2); (F.5)

Var[ln(Ot;2)] =
�

�2
2

(1� '2)2�
2
w +

�
�2
"2

1� '2
2

��
+ Var[ln(1 + 
l2r2(w�t+1)�2q'2�1

t;2

� 
l2)] + 2E[ln(qt;2) ln(1

+ 
l2r2(w�t+1)�2q'2�1
t;2 � 
l2)]

� 2E[ln(qt;2)]E[ln(1 + 
l2r2(w�t+1)�2

q'2�1
t;2 � 
l2)]; (F.6)

Var[ln(Ot;2)] =
�

�2
2

(1� '2)2�
2
w +

�
�2
"2

1� '2
2

��
+ Var[ln(1 + 
l2r2(w�t+1)�2q'2�1

t;2

� 
l2)] + 2E[ln(qt;2) ln(1+


l2r2(w�t+1)�2q'2�1
t;2 � 
l2)]

� 2
��

�2

1� '2

�
�w + (

�2
1� '2

)
�

E[ln(1+
l2r2(w�t+1)�2q'2�1
t;2 �
l2)]:

(F.7)

Appendix G1

As in the method presented by Hosoda and Disney [15],
E(
Pl2
i=1Ot+i;1j
t) is equal to the sum of the �rst l1

terms of a geometric progression. In the geometric
progression, terms are orders over lead time. Thus,
using the formulation for calculating sum of the �rst l1
terms of a geometric progression having Ot+1;1 as the
�rst term, its progression ratio is r1v2�p�t . The proof is
given as follows:

Ot+1;1 = r1p�t+1Ot;1 = r1v�p�tOt;1; (G1.1)

Ot+2;1 = r1p�t+2Ot+1;1 = r1v2�p�tOt+1;1; (G1.2)

Ot+3;1 = r1p�t+3Ot+2;1 = r1v2�p�tOt+2;1; (G1.3)

...
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Eq. (G1.4) shows the sum of a geometric progression
of orders over lead time:

Ôl2t;1 =E
�Xl2

i=1
Ot+i;1j
t

�
=
r1v�p�tOt;1[1� (r1v2�p�t )l2 ]

1� r1v2�p�t

= rl2r1v�p�tOt;1; (G1.4)

where:

rl2 =
1� (r1v2�p�t )l2

1� r1v2�p�t
;

Ot+1;1 = r1v�p�tOt;1;


t = fOt;1; Ot�1;1; Ot�2;1; :::g; (G1.5)

and:

pt+i+1 = vpt+i

(
v 6= 1 if i = 0; 1
v = 1 if i > 1

:

Appendix G2

First, Eq. (37) is used for calculating distributor's
ordering quantity. The corresponding values for St;2
and St�1;2 are obtained by Eqs. (G2.1) and (G2.2).
Then, these values are substituted in Eqs. (37); as the
result of this substitution, Eq. (G2.3) is obtained:

St;2 = rl2r1v�p�tOt;1 + k2�̂l2 ; (G2.1)

St�1;2 = rl2r1v�p�t�1Ot�1;1 + k2�̂l2 ; (G2.2)

Ot;2 =Ot;1+rl2r1v�p�tOt;1�rl2r1v�p�t�1Ot�1;1:
(G2.3)

The goal of this subsection is to calculate distributor's
order at period t(Ot;2) by the use of retailer's order
at period t(Ot;1). Therefore, retailer's order in the
previous period (Ot�1;1) should be converted to Ot;1.
For achieving this goal, the equivalent value of Ot;1
from Eq. (G2.4) is substituted in Eq. (G2.3) as it is
indicated in Eq. (G2.5):

Ot+1;1 = r1v�p�tOt;1 ! Ot;1 = r1v�p�t�1Ot�1;1;
(G2.4)

Ot;2 = Ot;1 +rl2r1v�p�tOt;1 �rl2Ot;1: (G2.5)

Then, natural logarithm of Eq. (G2.5) is taken as
follows:

ln(Ot;2)=ln(Ot;1)+ln(1+rl2r1v�p�t�rl2)+"t;2:
(G2.6)

By substituting Eq. (D.1) in Eq. (G2.6), distributor's
order is estimated by the following equation:

ln(Ot;2)= ln(1+
l1r1p�t+1q
'�1
t;1 �
l1)� �

'� 1
ln(pt)

+ ln(1 +rl2r1v�p�t �rl2)� �
'� 1

+ "t;2

+ "t;1 + "t + '"t�1 + '2"t�2

+ '3"t�3 + ::: : (G2.7)

Finally, variance of distributor's order is calculated by
Eq. (G2.8), and the proof is completed:

Var[ln(Ot;2)] =Var[ln(1 + 
l1r1p�t+1q
'�1
t;1 � 
l1)]

+
�

�2

(1� ')2�
2
p

�
+ Var[ln(1

+rl2r1v�p�t �rl2)]+
2�

1� 'Cov(ln(1

+ 
l1r1p�t+1q
'�1
t;1 � 
l1); ln(pt))

+ 2Cov(ln(1 + 
l1r1p�t+1q
'�1
t;1 �
l1);

ln(1 +rl2r1v�p�t �rl2))

+
2�

1� 'Cov(ln(pt); ln(1 +rl2r1v�p�t

�rl2))+�2
"2 +�2

"1 +
�

�2
"

1�'2

�
: (G2.8)

Appendix H

Eq. (H.1) shows distributor's order quantity at period
t+ 1:

O0t+1;2 = qt+1;2 + 
l2(qt+2;2 � qt+1;2): (H.1)

The corresponding values for qt+1;2 and qt+2;2 are
substituted in Eq. (H.1), and Eq. (H.2) is generated.
Then, the equivalent values for qt;2 and qt+1;2 are
substituted in Eq. (H.2) and Eq. (H.3) is produced:

O0t+1;2 =r2(w�t+1)�2q'2
t;2 + 
l2r2(w�t+2)�2q'2

t+1;2

� 
l1r2(w�t+1)�2q'2
t;2; (H.2)

O0t+1;2 =r2(w�t+1)�2(r2w��2t q'2
t�1;2)'2

+ 
l2r2(w�t+2)�2(r2(w�t+1)�2q'2
t;2)'2

� 
l1r2(w�t+1)�2(r2wt��2q'2
t�1;2)'2 ; (H.3)

where w�t+i+1 = v0w�t+i and (w�t+i+1)�2 = v0�2(w�t+i)�2 ,
i = 0; 1; 2; :::; l2. Setting (w�t+1)�2 = v0�2(w�t )�2 and
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having '2 � 1, Eq. (H.3) is rewritten as follows.

O0t+1;2 =r2v0�2w��2t r2w��2t q'2
t�1;2

+ 
l2r2v02�2w��2t r2w��2t+1q
'2
t;2

� 
l1r2v0�2w��2t r2w��2t q'2
t�1;2; (H.4)

where v is a constant number indicating how much
price information is transferred from the present period
to the next period. Because �2 is a very small quantity,
it can be inferred that v02�2 � v0�2 , which leads to
Eq. (H.5). Finally, Eq. (H.6) shows the distributor's
ordering quantity at period t + 1. The proof is now
completed:

O0t+1;2 =r2v0�2w��2t [r2w��2t q'2
t�1;2 + 
l2r2(w�t+1)�2q'2

t;2

� 
l1r2w��2t q'2
t�1;2]; (H.5)

O0t+1;2 = r2v0�2w��2t Ot;2: (H.6)

After obtaining distributor's order at period t+1, ARX
time series should be calculated to forecast distributor's
order at period t+ 1. The order forecasting process is
necessary for measuring and reducing BWE. Eq. (H.7)
shows ARX model for predicting distributor's order
at period t + 1. This equation is obtained by taking
natural logarithm of Eq. (H.6):

ln(O0t+1;2) = ln(r2) + �2 ln(v0) + �2 ln(w�t )

+ ln(Ot;2) + "t+1;2; (H.7)

where "t+1;2 is a white noise process for distributor's
order forecasting at period t + 1 with zero mean and
variance of �2

"2 .

Appendix I

First, the equivalent value for q'3
t�1;3 is obtained by

Eq. (I.1). Then, by substituting Eq. (I.1) in Eq. (44),
the manufacturer's order is obtained as it is indicated
in Eq. (I.2). Natural logarithm of Eq. (I.2) is calculated
by Eq. (I.3), and its MAX time series is shown by
Eq. (I.4). Finally, variance of retailer's order is
calculated through Eqs. (I.5)-(I-7):

q'3
t�1;3 =

qt;3
r3z��3t

; (I.1)

Ot;3 = qt;3(1 + 
l3r3(z�t+1)�3q'3�1
t;3 � 
l3); (I.2)

ln(Ot;3)=ln(qt;3)+ln(1+
l3r3(z�t+1)�3q'3�1
t;3 �
l3);

(I.3)

ln(Ot;3) = ln(1 + 
l3r3(z�t+1)�3q'3�1
t;3 � 
l3)

� �3

'3 � 1
ln(z�t )� �3

'3 � 1
+"t;3 + '3"t�1;3

+ '2
3"t�2;3 + '3

3"t�3;3 + :::; (I.4)

Var[ln(Ot;3)] =Var[ln(qt;3)] + Var[ln(1 + 
l3r3

(z�t+1)�3q'3�1
t;3 � 
l3 ]

+ 2cov(ln(qt;3); ln(1 + 
l3r3(z�t+1)�3

q'3�1
t;3 � 
l3); (I.5)

Var[ln(Ot;3)] =
�

�2
3

(1� '3)2�
2
z+
�

�2
"3

1� '2
3

��
+Var[ln(1

+ 
l3r3(z�t+1)�3q'3�1
t;3 � 
l3)]

+ 2E[ln(qt;3) ln(1 + 
l3r3(z�t+1)�3

q'3�1
t;3 � 
l3)]� 2E[ln(qt;3)]E[ln(1

+ 
l3r3(z�t+1)�3q'3�1
t;3 � 
l3)]; (I.6)

Var[ln(Ot;3)]=
�

�2
3

(1� '3)2�
2
z+
�

�2
"3

1� '2
3

��
+Var[ln(1

+ 
l3r3(z�t+1)�3q'3�1
t;3 � 
l3)]

+ 2E[ln(qt;3) ln(1 + 
l3r3(z�t+1)�3

q'3�1
t;3 � 
l3)]� 2

��
�3

1� '3

�
�z

+
�

�3
1� '3

��
E[ln(1 + 
l3r3(z�t+1)�3

q'3�1
t;3 � 
l3)]: (I.7)

Appendix J

The corresponding values of OUT policy for manufac-
turer in periods t and t� 1 are obtained by Eqs. (J.1)
and (J.2). Then, these values are substituted in
Eq. (45), and Eq. (J.3) is obtained:

St;3 = �l3r2v
00�w��t Ot;2 + k3�̂l3 ; (J.1)

St�1;3 = �l3r2v
00�(w�t�1)�Ot�1;2 + k3�̂l3 ; (J.2)

Ot;3 =Ot;2 + �l3r2v
00�w��t Ot;2

��l3r2v
00�(w�t�1)�Ot�1;2: (J.3)
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The goal of this subsection is to calculate manufac-
turer's order at period t(Ot;3) using distributor's order
at period t(Ot;2) as follows:

Ot;3 = Ot;2 +rl3r2v
00�w��t Ot;2 �rl3Ot;2: (J.4)

Eq. (J.5) shows the natural logarithm of Eq. (J.4):

ln(Ot;3)=ln(Ot;2)+ln(1+�l3r2v
00�w��t ��l3)+"t;3:

(J.5)

By substituting Eq. (G.7) in Eq. (J.5), manufacturer's
order is estimated by the following equation:

ln(Ot;3) = ln(1 + �l3r2v
00�w��t ��l3) + ln(1

+ 
l1r1(p�t+1)�q'�1
t;1 � 
l1)� �

'� 1
ln(p�t )

+ ln(1+rl2r1v
00�p��t �rl2)� �

'� 1
+ "t;3

+ "t;2 + "t;1 + "t + '"t�1 + '2"t�2

+ '3"t�3 + ::: : (J.6)

Finally, variance of manufacturer's order is calculated
by Eq. (J.7). The proof is now completed:

Var[ln(Ot;3)] =Var[ln(1 + �l3r2v
00�w��t ��l3)]

+ Var[ln(1+ 
l1r1(p�t+1)�q'�1
t;1 � 
l1)]

+
�

�2

(1� ')2�
2
p

�
+ Var[ln(1

+rl2r1v
00�p��t �rl2)] + 2Cov(ln(1

+ �l3r2v��w��t ��l3); ln(1

+ 
l1r1(p�t+1)�q'�1
t;1 � 
l1))

+ 2Cov(ln(1 + �l3r2v
00�w��t ��l3);

ln(1 +rl2r1v
00�p��t �rl2))

+ 2Cov(ln(1 + 
l1r1(p�t+1)�q'�1
t;1

� 
l1); ln(1 +rl2r1v
00�p��t �rl2))

+
2�

1�'Cov(ln(p�t ); ln(1+�l3r2v
00�w��t

��l3)) +
2�

1� 'Cov(ln(p�t ); ln(1

+ 
l1r1(p�t+1)�q'�1
t;1 � 
l1))

+
2�

1�'Cov(ln(p�t );ln(1+rl2r1v
00�p��t

�rl2))+�2
"3 +�2

"2 +�2
"1 +
�

�2
"

1�'2

�
: (J.7)

Appendix K

Eqs. (K.1) and (K.2) are used to forecast retailer's
prices. In order to calculate MSE of retailer's demand,
the actual values of demands are subtracted from
the forecasted ones. The MSE of retailer's demand
is shown in Eq. (K.3). Eq. (K.4) is obtained by
substituting Eq. (K.2) in Eq. (K.3). The MSE of
retailer's demand is calculated through Eq. (K.5) for
the case in which the optimal values of prices are used,
Eqs. (K.1) to (K.5) are shown in Box K.I.

Since some part of the price information is lost
in each period of time and it is not transferred to the
next period, price inequality (p�t )ac � (�papt�1)ac exists,
where ap is a declining exponent. acln(p�t ) � ac[ln(�)+
ap ln(pt�1) + "p;t] is the natural logarithm of the price
inequality. Two positive terms (1 � a) ln(qt�1;1) and
ln(r1) are subtracted from both sides of the above
inequality, and the positive term ln(qt;1) is added to
both sides as shown in Box K.II.

The following operations prove that MSEp2 �
MSEp1:

0 � S1t � S2t ! S2
1t � S2

2t !
nX
t=1

S2
1t �

nX
t=1

S2
2t

! MSEp2 � MSEp1:

The proposed method, which uses optimal prices to
forecast future demands, has low forecasting error in
comparison with the technique presented by Zhang and
Burke [28], which forecasts prices. Therefore, the proof
for Theorem 9 is completed.

Appendix L

BWE is calculated using two methods. First, BWE
is quanti�ed through the proposed method, in which
optimal prices are calculated and used for forecasting
demands and orders. Second, BWE is measured
through the method in the literature using forecasted
prices for predicting demands and orders.

B�1 is the BWE in retailer's level, where p�t
includes the optimal values for retailer price at period t,
t = f1; 2; :::; ng. Let ln(qt;1) and ln(1+
l1r1p�t+1q

'�1
t;1 �


l1) be two independent variables; therefore, their
covariance is equal to zero. Table L.1 shows that these
variables are independent.

As it is shown in Table L.1, E[ln(1 +

l1r1p�t+1q

'�1
t;1 � 
l1)] � E[ln(qt;1)] = E[ln(qt;1) ln(1 +


l1r1p�t+1q
'�1
t;1 � 
l1)], which are equal to 0.024191.
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pt = �papt�1; (K.1)

ln(pt) = ln(�) + ap ln(pt�1) + "p;t; (K.2)

MSEp1 =

nP
t=1

[ln(qt;1)� (�acln(pt) + (1� a) ln(qt�1;1) + ln(r1))]2

n
; 8 n > 0; (K.3)

MSEp1 =

nP
t=1

[ln(qt;1)� (�ac[ln(�) + ap ln(pt�1) + "p;t] + (1� a) ln(qt�1;1) + ln(r1))]2

n

=

nP
t=1

[ln(qt;1) + ac[ln(�) + ap ln(pt�1) + "p;t]� (1� a) ln(qt�1;1)� ln(r1)]2

n
; (K.4)

MSEp2 =
Pn
t=1[ln(qt;1)� (�acln(p�t ) + (1� a) ln(qt�1;1) + ln(r1))]2

n

=

nP
t=1

[ln(qt;1) + (acln(p�t )� (1� a) ln(qt�1;1)� ln(r1))]2

n
: (K.5)

Box K.I

S1tz }| {
ln(qt;1) + (acln(p�t )� (1� a) ln(qt�1;1)� ln(r1)) �

S2tz }| {
ln(qt;1) + (ac[ln(�) + ap ln(pt�1) + "p;t]� (1� a) ln(qt�1;1)� ln(r1)) :

Box K.II

Table L.1. Independency of two variables.

E[ln(qt;1)] 4.686407
E[ln(1 + 
l1r1p�t+1q

'�1
t;1 � 
l1)] 0.005162

E[ln(1 + 
l1r1p�t+1q'�1
t;1 � 
l1)]� E[ln(qt;1)] 0.024191

E[ln(qt;1) ln(1 + 
l1r1p�t+1q'�1
t;1 � 
l1)] 0.024191

Thus, ln(qt;1) and ln(1 + 
l1r1p�t+1q
'�1
t;1 �
l1) are two

independent variables.
Eq. (L.1) shows BWE in retailer's level calculated

through optimal prices as shown in Box L.I.
For the case in which forecasted prices are used,

variances of demands and orders are calculated. First,
variance of price is calculated using Eqs. (L.2) and
(L.3). Eq. (L.2) is an Auto-Regressive (AR) model
for price forecasting. Then, variance of prices is used
for calculating variance of demands. Eq. (L.4) shows

variance of demands, which is used as a denominator
of BWE equation presented by Eq. (L.5).

ln(pt) = ln(�) + ap ln(pt�1) + "t;p; (L.2)

Var[ln(pt�1)] = �2
p;

Var["t;p] = �2
"p ! Var[ln(pt)] = a2

p�
2
p + �2

"p ; (L.3)

Var[ln(qt;1)] =
�2

(1� ')2 Var[ln(pt)] +
�

�2
"

1� '2

�
=

�2

(1� ')2 (a2
p�

2
p+�2

"p) +
�

�2
"

1� '2

�
:

(L.4)

After calculating variance of demands, variance of
orders is calculated and used as a numerator of BWE
equation. Eq. (L.5) as shown in Box L.II, shows BWE
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B�1 =
Var[ln(Ot;1)]
Var[ln(qt;1)]

=

hh
�2

(1�')2�2
p +

�
�2
"

1�'2

�i
+ Var[ln(1 + 
l1r1p��t+1q

'�1
t;1 � 
l1)]

ih
�2

(1�')2�2
p +

�
�2
"

1�'2

�i

=1 +

F1z }| {
Var[ln(1 + 
l1r1p��t+1q

'�1
t;1 � 
l1)]�

�2

(1� ')2�
2
p +

�
�2
"

1� '2

��
| {z }

F2

: (L.1)

Box L.I

B1 =
Var[ln(Ot;1)]
Var[ln(qt;1)]

=

hh
�2

(1�')2 (a2
p�2
p + �2

"p) +
�

�2
"

1�'2

�i
+ Var[ln(1 + 
l1r1(�papt )�q'�1

t;1 � 
l1)]
ih

�2

(1�')2 (a2
p�2
p + �2

"p) +
�

�2
"

1�'2

�i

= 1 +
Var

G1z }| {
[ln(1 + 
l1r1(�papt )�q'�1

t;1 � 
l1)]�
�2

(1� ')2 (a2
p�

2
p + �2

"p) +
�

�2
"

1� '2

��
| {z }

G2

: (L.5)

Box L.II

in retailer echelon when prices are forecasted instead of
using the optimal values of prices.

Since some part of the price information is lost in
each period of time and it is not transferred to the
next period, price inequality p��t+1 < (�papt )� exists;
therefore, F1 < G1.

The following inequalities show that BWE is
signi�cantly reduced by utilizing the method proposed
in this paper in comparison with the method used
in literature. The model proposed here �nds the
optimal values for prices. The optimal prices are
substituted in demand and order forecasting models.
Finally, variances of demands and orders are calculated
and BWE is quanti�ed. However, the method in
the literature uses forecasted prices, leading to higher
demand ampli�cation and more BWE value:

0 < ap < 1! 0 < a2
p < 1! a2

p�
2
p < �2

p

and �2
"p � 0 (�2

"p is a very small value);

a2
p�

2
p + �2

"p < �2
p ! G2 < F2; (L.6)

(
F1 < G1

F2 > G2
! B�1 < B1: (L.7)

Similarly, it can be proved that BWE in distributor's
and manufacturer's echelons is minimal at optimal
price and lead time; however, the proof is not included
here for briefness.

Appendix M

In this part of the paper, the theoretical and practi-
cal distinctions between the demand received by the
distributor (or the manufacturer) and its downstream
order are described.

M.1. In theory
The demand received by the manufacturer di�ers from
its downstream order as follows [31,32]:

qt;3 = qt;2 + (Ot;2 �Ot�1;2);

Ot;2 = mt;2 + z2
pvt;2;
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where mt;2 = E(
Pl3
i=1 q2;t+ijq2;t) is the mean of de-

mands and vt;2 = var(
Pl3
i=1 q2;t+ijq2;t) is the variance

of demands.
As it is observable from the above equations, the

demand received by the manufacturer (qt;3) is not equal
to its downstream order (Ot;2). Instead, the demand
received by the distributor is equal to the demand of
retailer plus the di�erence between retailer's orders at
two consecutive periods of time. In this paper, the
theoretical distinction between the demand received by
the distributor and its downstream order is modelled
as follows:

qt;3 =r3w��a3c3
t q1�a3

t�1;3 6= Ot;2 = qt;2

+ (
l2r2(w�t+1)�2q'2
t;2 � 
l2r2w��2t q'2

t�1;2)

ln(qt;3) = �3 ln(z�t ) + '3 ln(qt�1;3) + ln(r3) + "t;3

6= ln(Ot;2) = ln(qt;2) + ln(1 + 
l2r2w�2t+1q
'2�1
t;2

� 
l2) + "t;2:

Both the demand received by the manufacturer
(qt;3) and the logarithm of the demand received by the
manufacturer (ln(qt;3)) di�er from distributor's order
(Ot;2) and logarithm of distributor's order (ln(Ot;2)).

M.2. In practice
In this paper, a three-echelon auto-parts supply chain
has been practically investigated. In a supply chain,
the manufacturer requires to have distributor's demand
in advance in order to be able to produce adequate
products. Assume that the manufacturer decides to
provide the raw material to produce the next week's
products. In the current week, the manufacturer does
not have market demand for the next week. Thus,
the manufacturer uses the forecasted demand of the

distributor, which is predicted by demand planning
department. Manufacturer will place its order for
providing the required raw material based on the
forecasted demand of the distributor. Then, at the end
of forecasting period, the distributor places its actual
order and manufacturer will receive actual demand of
the distributor. Thus, the distributor's order di�ers
from demand that the manufacturer receives from
demand forecasting department. This occurs due to
the fact that actual demand of distributor is not
available in the planning period (current week); hence,
its forecasted demand is used. This paper showed that
using demand of each entity for calculating its order
quantities would reduce BWE signi�cantly in compari-
son with the method in which downstream orders were
used. This is due to the fact that downstream orders
accumulate forecasting errors; however, using demand
of each entity only includes forecast errors of one stage.
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