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Abstract. Soft set theory acts as a fundamental tool for handling uncertainty in
the data by adding a parameterization factor during the process as compared to fuzzy
and intuitionistic fuzzy set theory. In the present manuscript, the work has been done
under environment of the Intuitionistic Fuzzy Soft Sets (IFSSs), and some new averag-
ing/geometric prioritized aggregation operators have been proposed whose preferences,
related to attributes, are made in the form of IFSSs. Their desirable properties have also
been investigated. Furthermore, based on these operators, an approach to investigating the
Multi-Criteria Decision Making (MCDM) problem has been presented. The e�ectiveness
of these operators has been demonstrated through a case study.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Multiple Criteria Group Decision Making Problems
(MCGDM) are important parts of modern decision
theory due to rapid development of economic and social
uncertainties. Today, Decision-Maker (DM) wants
to attain more than one goal by satisfying di�erent
constraints. But, due to the complexity of management
environments and decision problems themselves, DMs
may provide their rating or judgment in the form
of crisp numbers without considering the degree of
fuzziness or vagueness of the data in the domain of the
problem [1]. However, in these days, uncertainties play
a dominant role during the decision-making process,
and the decision-maker cannot give their preferences
to an accurate level without being proper handled.
The main objective during an analysis is to handle
the proper data so as to minimize the uncertainties
level. To handle this, a fuzzy set theory [2] has been
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successfully applied. Having observed its successful
implementation, researchers have extended their theory
to the Intuitionistic Fuzzy Set (IFS) [3] and Interval-
Valued Intuitionistic Fuzzy Set (IVIFS) [4] so as to
minimize the uncertainty level. After their successful
extensions, various researchers have applied it to the
decision-making process. For instance, Xu [5], Xu and
Yager [6] developed weighted averaging and geometric
aggregation operators under IFS environment. Wang
and Liu [7,8] investigated these aggregation operators
by using Einstein operations. Garg [9] presented a
generalized intuitionistic fuzzy interactive geometric
aggregation operators using Einstein t-norm and t-
conorm operations. Garg et al. [10] presented an
entropy-based approach to solving the decision-making
problem under fuzzy environment. Garg [11] developed
a new generalized improved score function to rank
the IVIFSs. Verma and Sharma [12] presented an
intuitionistic fuzzy prioritized weighted average oper-
ator under the Einstein norm operations. Xu and
Chen [13], and Xu [14] developed some arithmetic
and geometric aggregation operators, namely interval-
valued intuitionistic fuzzy weighted averaging and ge-
ometric operators, for aggregating the interval-valued
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intuitionistic fuzzy information. Apart from that,
various researchers pay more attention to decision-
making process to aggregate di�erent alternatives using
di�erent aggregation operators [15-23] and their corre-
sponding references.

Since the above theories have been successfully
applied in various disciplines, they have certain limita-
tions; for instance, their theories are restricted to their
parametrization tools, and hence they cannot be ap-
plied e�ectively to real life problems. To handle these,
soft set theory [24] pays a great deal of attention and
successfully copes with these types of conditions. After
that, many authors have shown an intense interest in
the matter [25,26]. Maji et al. [27,28] combined the
theories of soft set with the fuzzy and intuitionistic
fuzzy set and came up with a new concept of Fuzzy
Soft Set (FSS) and Intuitionistic Fuzzy Soft Set (IFSS).
The advantages of these extended theories are that they
are capable of facilitating the descriptions of the real-
world situation with the help of their parameterizations
property. Meanwhile, the study of hybrid model,
which combines the soft sets with other mathematical
structure, also pays a great deal of attention; hence,
an active research topic of soft set theory will be
presented. A lot of extensions of soft set model have
also been developed recently on intuitionistic fuzzy
soft sets [27,29], generalized fuzzy soft set [30,31],
generalized intuitionistic fuzzy soft set [32,33], distance
measures [34-38], and fuzzy number intuitionistic fuzzy
soft sets [39]. Apart from that, FSSs have been
also successfully applied to MCDM problems in recent
years [40,41].

It has been concluded that these existing ap-
proaches work well under restriction in which the
parameters and decision-makers are at same priority
level. But, this assumption needs to be relaxed to
analyze decisions better. Furthermore, up to now, the
research on FSS and IFSS is only about their basic
theory and applications, but there is no research on
the information aggregation fusion. So, to investigate
this issue, the present work proposed some prioritized
aggregation operations under IFSSs environment by
taking advantage of the prioritized aggregation oper-
ator [42]. Thus, by considering the fact that the IFSS
has a powerful tool to deal with the ambiguity and
vagueness of the data, the work introduced a series
of aggregation operators, namely the intuitionistic
fuzzy soft prioritized weighted and ordered weighted
averaging, intuitionistic fuzzy soft prioritized weighted,
and ordered weighted geometric. Furthermore, these
operators have been tested on the problem of MCDM,
where the most desirable alternative has been com-
puted under the set of di�erent criteria. Finally,
the computed results are compared with that of the
existing operators to show their e�ectiveness.

This paper is organized as follows. Section 2

describes the overview of SS, FSS, and IFSS theo-
ries. Section 3 de�nes the operational laws on IFSS.
Section 4 presents the averaging/geometric priorities
aggregated operators, namely IFSPWA, IFSPOWA,
IFSPWG, IFSPOWG along with their properties. Sec-
tion 5 describes the MCDM approach under IFSS
environment and demonstrates it with the help of an
illustrative example. Finally, a concrete conclusion is
summarized in Section 6.

2. Preliminaries

Some basic de�nitions related to SS, FSS, IFSS are
reviewed on universal set U .

De�nition 2.1. Soft sets [24]: Let E be the set of
parameters. A pair (F;E) is called soft set (SS) over
U where F : E ! KU , the set of all subsets of U .

Example 2.1. Consider a set of four houses given
by U = fh1; h2; h3; h4g and E = fexpensive
\(e1)"; \wooden(e2)"; \cheap(e3)"; \beautiful
(e4)"; \in good location(e5)"g be a set of parameters.
If F : E ! KU be de�ned by Fe1 = fh2; h3g,
Fe2 = fh1; h3; h4g, Fe3 = fh1; h4g, Fe4 = fh1; h2; h3g,
Fe5 = fh2; h4g, then the soft set, which describes the
houses, is de�ned as (F;E) = hFe1 ; Fe2 ; Fe3 ; Fe4 ; Fe5i.
De�nition 2.2. Fuzzy Soft Sets (FSS) [43]: Let IU
denote the set of all fuzzy subsets of U , and then a pair
(F;E) is called FSS over U if F is a mapping derived
from E to IU and is de�ned as Fej = fhx; �j(x)i j x 2
Ug. For any parameter ej , FSS reduces to SS if Fej is
a crisp subset of U .

Example 2.2. Consider Example 2.1 for describ-
ing the \attractiveness of the houses" then FSS
corresponding to what has been de�ned as Fe1 =
fh(h2; 0:2); (h3; 0:7)ig, Fe2 = fh(h1; 0:6); (h3; 0:7); (h4;
0:9)ig, Fe3 = fh(h1; 0:3); (h4; 0:5)ig, Fe4 = fh(h1; 0:6);
(h2; 0:9); (h3; 0:7)ig and Fe5 = fh(h2; 0:7); (h4; 0:6)g.
De�nition 2.3. Intuitionistic Fuzzy Soft Sets
(IFSS) [27]: Let IFS(U) denote the set of all intuition-
istic fuzzy subsets of U , then a pair (F;E) is called an
IFSS over U i� F : E ! IFS(U), such that for any
parameter ej 2 E, Fej can be written as follows:

Fej (xi) = fhxi; �j(xi); �j(xi)i j xi 2 Ug;
where �j(xi) and �j(xi) are degrees of membership
and non-membership, respectively, with conditions 0 �
�j(xi); �j(xi) � 1 and �j(xi) + �j(xi) � 1.

For the sake of simplicity, we denote this pair to
be Feij = h�ij ; �iji and called as an Intuitionistic Fuzzy
Soft Number (IFSN).
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Table 1. Representation of IFSS for describing the
attractiveness of the houses.
F e1 e2 e3 e4 e5

h1 h0:2; 0:6i h0:1; 0:5i h0:9; 0:1i h0:3; 0:4i h0:6; 0:2i
h2 h0:5; 0:4i h0:2; 0:5i h0:3; 0:7i h0:6; 0:2i h0:4; 0:4i
h3 h0:6; 0:2i h0:5; 0:4i h0:8; 0:1i h0:6; 0:4i h0:2; 0:7i
h4 h0:4; 0:5i h0:3; 0:5i h0:6; 0:1i h0:4; 0:1i h0:2; 0:4i

Example 2.3. Consider the description of the houses
as given in Example 2.1. Then, the rating values of
each house for a particular parameter are represented
in terms of IFSS given in Table 1.

In the process of applying IFSNs to practical
problems, it is necessary to rank them. Moreover, a
score function of Feij is de�ned as follows:

S(Feij ) =
1 + �ij � �ij

2
; (1)

where S(Feij ) 2 [0; 1]. From this de�nition, it has been
seen that the larger S(Feij ) is, the larger IFSN Feij will
be.

Example 2.4. Let Fe11 = h0:4; 0:2i and Fe12 =
h0:3; 0:5i be two IFSNs, then by using Eq. (1), we get
S(Fe11) = 0:2 and S(Fe12) = �0:2. Since S(Fe11) >
(Fe12), we have Fe11 > Fe12 .

However, in some situations, the above function
cannot be used to compare IFSNs. For example,
let Fe11 = h0:2; 0:4i and Fe12 = h0:3; 0:5i, then it
is impossible to know which one is bigger because
S(Fe11) = S(Fe12). For this, accuracy function H of
Feij is de�ned as follows:

H(Feij ) = �ij + �ij ; (2)

where H(Feij ) 2 [0; 1]. Thus, in order to compare
two IFSNs Feij and Geij , the following ranking and
comparison laws of two IFSNs are de�ned below:

1. If S(Feij ) > S(Geij ), then Feij > Geij ;
2. If S(Feij ) = S(Geij ), then:

� If H(Feij ) > H(Geij ), then Feij > Geij ;
� If H(Feij ) = H(Geij ), then Feij = Geij .

De�nition 2.4. Prioritized Weighted Average
(PWA) operator [42]: Let A = fA1; A2; � � � ; Ang be a
collection of attributes and let there be a prioritization
between the attributes expressed by the linear ordering
A1 � A2 � � � � � An, indicating that attribute Aj has
higher priority than Ak if j < k. Also, let Aj(x) be
a performance value of option x under attribute Aj ,
such that Aj(x) 2 [0; 1]. If:

PWA(A1; A2; � � � ; An) =
nX
j=1

TjPn
j=1 Tj

Aj ;

where Tj =
Qj�1
k=1Ak, j = 2; 3; � � � ; n, and T1 = 1,

then PWA(A1; A2; � � � ; An) is called the Prioritized
Weighted Average (PWA) operator.

3. Operational law for IFSNs

In this section, we introduce some operations on IFSNs
and solve some of their desirable properties.

De�nition 3.1. Let Fe = h�; �i, Fe11 = h�11; �11i
and Fe12 = h�12; �12i be three IFSNs, and for any
real number � > 0, by algebraic norms, we have the
following equations:

(i) Fe11 � Fe12 = h�11 + �12 � �11�12; �11�12i;
(ii) Fe11 
 Fe12 = h�11�12; �11 + �12 � �11�12i;
(iii) �Fe = h1� (1� �)�; ��i;
(iv) F�e = h��; 1� (1� �)�i.
Theorem 3.1. All the operation laws for IFSNs as
given in De�nition 3.1, i.e. Fe11�Fe12 , Fe11
Fe12 , �Fe,
and F�e , are also IFSNs.

Proof. Since Fe1j (j = 1; 2) is IFSNs, this implies 0 �
�1j � 1, 0 � �1j � 1, 0 � �1j + �1j � 1, and hence 0 �
(1��11)(1��12) � 1, 0 � 1� (1��11)(1��12) � 1
and 0 � �11�12 � 1. Further, 1� (1� �11)(1� �12) +
�11�12 � 1� �11�12 + �11�12 � 1. Thus, Fe11 � Fe12 is
IFSNs.

Also, 1� (1��)� � 0, �� � 0, 1� (1��)�+�� �
1� (1��)�+ (1��)� � 1. Thus, �Fe is also an IFSN,
which is true similarly for others. �

Theorem 3.2. (Commutative law) Let Fe1j = h�1j ;
�1ji(j = 1; 2) be two IFSNs, then:

(i) Fe11 � Fe12 = Fe12 � Fe11 ;
(ii) Fe11 
 Fe12 = Fe12 
 Fe11 .

Theorem 3.3. (Associative law) Let Fe1j = h�1j ; �1ji(j = 1; 2; 3) be three IFSNs, then:

(i) (Fe11 � Fe12)� Fe13 = Fe11 � (Fe12 � Fe13);
(ii) (Fe11 
 Fe12)
 Fe13 = Fe11 
 (Fe12 
 Fe13).

Theorems 3.2 and 3.3 are straightforward, so we
omit their proofs.

Theorem 3.4. Let Fe = h�; �i and Fe1j = h�1j ; �1ji
(j = 1; 2) be three IFSNs, and then for real numbers
�'s we have:

(i) �(Fe11 � Fe12) = �Fe11 � �Fe11 ;
(ii) (Fe11 
 Fe12)� = F�e11


 F�e11
;

(iii) �1Fe � �2Fe = (�1 + �2)Fe;
(iv) F�1

e 
 F�2
e = F�1+�2

e .
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Proof. We prove parts (i) and (iii), and hence do
similarly for others.

(i) For real number � > 0, �Fe11 = h1�(1��11)�; ��11i
and �Fe12 = h1� (1� �12)�; ��12i. Thus:

�Fe11 � �Fe12

= h1� �1� (1� (1� �11)�)
�

�
1� (1� (1� �12)�)

�
; ��11�

�
12i

= h1� (1� �11)�(1� �12)�; ��11�
�
12i

= h1� ((1� �11)(1� �12))�; (�11�12)�i
= �(Fe11 � Fe12):

Hence, the result.
(iii) For �1; �2 > 0 and IFSN Fe = h�; �i, we have:

�1Fe = h1� (1� �)�1 ; ��1i;
�2Fe = h1� (1� �)�2 ; ��2i:

Thus:

�1Fe � �2Fe

= h1� (1� (1� (1� �)�1))

(1� (1� (1� �)�2)); ��1��2i
= h1� (1� �)�1(1� �)�2 ; ��1��2i
= h1� (1� �)�1+�2 ; ��1+�2i
= (�1 + �2)Fe:

Hence, the result.

4. Averaging/geometric prioritized
aggregation operators

In this section, we will investigate the Prioritized Ag-
gregation (PA) averaging/geometric operators under
IFSS environment.

4.1. Intuitionistic Fuzzy Soft Prioritized
Weighted Average (IFSPWA) operator

In this section, we will introduce the weighted averag-
ing PA operator named as IFSPWA operator for the
collections of IFSNs.

De�nition 4.1. Let Feij = h�ij ; �iji, (i = 1; 2; : : : ;
m; j = 1; 2; : : : ; n) be collections of IFSNs. Then, we
have:

IFSPWA(Fe11 ; Fe12 ; � � � ; Femn)

=
mM
i=1

TiPm
i=1 Ti

0@ nM
j=1

RjPn
j=1Rj

Feij

1A ; (3)

where R1 = 1, T1 = 1 and Rj =
Qj�1
l=1 S(Feil); (j =

2; 3; � � � ; n), Ti =
Qi�1
k=1 S(Fek)(i = 2; 3; � � � ;m) where

S(Feij ) represents the score function of IFSN Feij .
By using De�nition 4.1, we can get the following

result.

Theorem 4.1. The aggregated value of all IFSNs by
IFSPWA operator is an IFSN de�ned as follows:

IFSPWA(Fe11 ; Fe12 ; � � � ; Femn)

=

*
1�

mY
i=1

0@ nY
j=1

(1� �ij)
RjPn
j=1 Rj

1A TiPm
i=1 Ti

;

mY
i=1

0@ nY
j=1

�
RjPn
j=1 Rj

ij

1A TiPm
i=1 Ti

+
: (4)

Proof. For n = 1, we have:

IFSPWA(Fe11 ; Fe21 ; : : : ; Fem1)

=
mM
i=1

TiPm
i=1 Ti

Fei1

=

*
1�

mY
i=1

(1� �i1)
TiPm
i=1 Ti ;

mY
i=1

�
TiPm
i=1 Ti

i1

+

=

*
1�

mY
i=1

0@ 1Y
j=1

(1� �ij)
RjP1
j=1 Rj

1A TiPm
i=1 Ti

;

mY
i=1

0@ 1Y
j=1

�
RjP1
j=1 Rj

ij

1A TiPm
i=1 Ti

+
;

and for m = 1:

IFSPWA(Fe11 ; Fe12 ; � � � ; Fe1n)

=
nM
j=1

RjPn
j=1Rj

Fe1j

=

*
1�

nY
j=1

(1� �1j)
RjPn
j=1 Rj ;

nY
j=1

�
RjPn
j=1 Rj

1j

+
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=

*
1�

1Y
i=1

0@ nY
j=1

(1� �ij)
RjPn
j=1 Rj

1A TiP1
i=1 Ti

;

1Y
i=1

0@ nY
j=1

�
RjPn
j=1 Rj

ij

1A TiP1
i=1 Ti

+
:

Thus, Eq. (4) holds for n = 1; m = 1. Assume that
Eq. (4) holds for m = k1 + 1, n = k2, and m = k1,
n = k2 + 1, i.e.:

k1+1M
i=1

TiPm
i=1 Ti

0@ k2M
j=1

RjPn
j=1Rj

Feij

1A
=

*
1�

k1+1Y
i=1

0@ k2Y
j=1

(1� �ij)
RjPn
j=1 Rj

1A TiPm
i=1 Ti

;

k1+1Y
i=1

0@ k2Y
j=1

�
RjPn
j=1 Rj

ij

1A TiPm
i=1 Ti

+
;

and:

k1M
i=1

TiPm
i=1 Ti

0@k2+1M
j=1

RjPn
j=1Rj

Feij

1A
=

*
1�

k1Y
i=1

0@k2+1Y
j=1

(1� �ij)
RjPn
j=1 Rj

1A TiPm
i=1 Ti

;

k1Y
i=1

� k2+1Y
j=1

�
RjPn
j=1 Rj

ij

� TiPm
i=1 Ti

+
:

Now:

k1+1M
i=1

TiPk1+1
i=1 Ti

0@k2+1M
j=1

RjPk2+1
j=1 Rj

Feij

1A
=
k1+1M
i=1

TiPk1+1
i=1 Ti

 k2M
j=1

RjPk2+1
j=1 Rj

Feij

� Rk2+1Pk2+1
j=1 Rj

Fe(k2+1)j

!

=

 k1+1M
i=1

TiPk1+1
i=1 Ti

k2M
j=1

 
RjPk2+1
j=1 Rj

Feij

!!

k1+1M
i=1

TiPk1+1
i=1 Ti

 
Rk2+1Pk2+1
j=1 Rj

Fe(k2+1)j

!

=

*
1�

k1+1Y
i=1

0@ k2Y
j=1

(1� �ij)
RjPk2+1

j=1 Rj

1A TiPk1+1
i=1 Ti

�1�
k1+1Y
i=1

 
(1� �(k2+1)j)

Rk2+1Pk2+1
j=1 Rj

! TiPk1+1
i=1 Ti

;

k1+1Y
i=1

0@ k2Y
j=1

�

Rk2+1Pk2+1
j=1 Rj

ij

1A TiPk1+1
i=1 Ti

�
k1+1Y
i=1

0@� RjPk2+1
j=1 Rj

(k2+1)j

1A TiPk1+1
i=1 Ti

+

=

*
1�

k1+1Y
i=1

0@k2+1Y
j=1

(1� �ij)
RjPk2+1

j=1 Rj

1A TiPk1+1
i=1 Ti

;

k1+1Y
i=1

0@k2+1Y
j=1

�

RjPk2+1
j=1 Rj

ij

1A TiPk1+1
i=1 Ti

+
:

Therefore, Eq. (4) holds for m = k1 + 1 and n = k2 +
1, and hence the result holds for all positive integers
m;n � 1 by mathematical induction.

Example 4.1. Let E = fe1; e2; e3g be a set of
parameters and X = fx1; x2; x3; x4g be a set of experts
giving their preferences to describe the \attractiveness
of a house" in terms of IFSNs; they are all summarized
as follows:

(F;E) =

e1 e2 e3

x1

x2

x3

x4

266664
h0:8; 0:1i
h0:4; 0:3i
h0:7; 0:1i
h0:3; 0:5i

h0:5; 0:3i
h0:3; 0:5i
h0:8; 0:2i
h0:5; 0:2i

h0:4; 0:5i
h0:7; 0:2i
h0:5; 0:1i
h0:6; 0:1i

377775 :
By utilizing these pieces of information and R1 =
1, Rj =

Qj�1
l=1 S(Feil) (j = 2; 3), T1 = 1, Ti =Qi�1

k=1 S(Fek) (i = 2; 3; 4), we get:

R =

26664
1 0:85 0:60
1 0:55 0:40
1 0:80 0:80
1 0:40 0:65

37775 ; T =

26664
1

0:71
0:57
0:78

37775 :
Thus, the aggregated IFSN by using Eq. (4) becomes:
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IFSPWA(Fe11 ; Fe12 ; � � � ; Fe43)

=

*
1�

4Y
i=1

0@ 3Y
j=1

(1� �ij)
RjP3
j=1 Rj

1A TiP4
i=1 Ti

;

4Y
i=1

0@ 3Y
j=1

�
RjP3
j=1 Rj

ij

1A TiP4
i=1 Ti

+
=
D
1���(1�0:8)0:41�(1�0:5)0:35�(1�0:4)0:24�0:33

� �(1�0:4)0:51 � (1�0:3)0:28 � (1�0:7)0:20�0:23

� �(1�0:7)0:38 � (1�0:8)0:31 � (1�0:5)0:31�0:19

� �(1�0:3)0:49�(1�0:5)0:20�(1�0:6)0:32�0:25
�
;�

(0:1)0:41 � (0:3)0:35 � (0:5)0:24�0:33

� �(0:3)0:51 � (0:5)0:28 � (0:2)0:20�0:23

� �(0:1)0:38 � (0:2)0:31 � (0:1)0:31�0:19

� �(0:5)0:49 � (0:2)0:20 � (0:1)0:32�0:25
+

= h0:5709; 0:2219i:
Based on Theorem 4.1, we have the following properties
for IFSNs Feij = h�ij ; �iji.
Property 4.1. (Idempotency) If Feij = Fe = h�; �i,
(say) for all i; j then:

IFSPWA(Fe11 ; Fe12 ; : : : ; Femn) = Fe:

Proof. Since for all i; j, Feij is equal, i.e. Feij = Fe,
then we have:

IFSPWA(Fe11 ; Fe12 ; � � � ; Femn)

=

*
1�

mY
i=1

0@ nY
j=1

(1� �)
RjPn
j=1 Rj

1A TiPm
i=1 Ti

;

mY
i=1

0@ nY
j=1

�
RjPn
j=1 Rj

1A TiPm
i=1 Ti

+

=

*
1�

 
(1� �)

Pn
j=1 RjPn
j=1 Rj

!Pm
i=1 TiPm
i=1 Ti

;

 
�

Pn
j=1 RjPn
j=1 Rj

!Pm
i=1 TiPm
i=1 Ti

+
= h1� (1� �); �i = h�; �i = Fe: �

Property 4.2. (Boundedness) Let F�eij = hmin
i

min
j

f�ijg, max
i

max
j
f�ijgi and F+

eij = hmax
i

max
j
f�ijg, min

i
min
j
f�ijgi, then:

F�eij � IFSPWA(Fe11 ; Fe12 ; : : : ; Femn) � F+
eij :

Proof. As Feij represents an IFSNs, so for all i; j
min
i

min
j
f�ijg � �ij � max

i
max
j
f�ijg, this implies:

1�max
i

max
j
f�ijg � 1� �ij � 1�min

i
min
j
f�ijg

, (1�max
i

max
j
f�ijg)

RjPn
j=1 Rj � (1� �ij)

RjPn
j=1 Rj

� (1�min
i

min
j
f�ijg)

RjPn
j=1 Rj

, 1�max
i

max
j
f�ijg

�
nY
j=1

(1� �ij)
RjPn
j=1 Rj � 1�max

i
min
j
f�ijg

, 1�max
i

max
j
f�ijg

�
mY
i=1

� nY
j=1

(1� �ij)
RjPn
j=1 Rj

� TiPm
i=1 Ti

� 1�min
i

min
j
f�ijg;

and hence:

min
i

min
j
f�ijg �1�

mY
i=1

0@ nY
j=1

(1��ij)
RjPn
j=1 Rj

1A TiPm
i=1 Ti

� max
i

max
j
f�ijg: (5)

Furthermore:

min
i

min
j
f�ijg � �ij � max

i
max
j
f�ijg

, (min
i

min
j
f�ijg)

RjPn
j=1 Rj � �

RjPn
j=1 Rj

ij

� (max
i

max
j
f�ijg)

RjPn
j=1 Rj
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, min
i

min
j
f�ijg �

nY
j=1

�
RjPn
j=1 Rj

ij � max
i

max
j
f�ijg

, (min
i

min
j
f�ijg)

TiPm
i=1 Ti � (

nY
j=1

�
RjPn
j=1 Rj

ij )
TiPm
i=1 Ti

� (max
i

max
j
f�ijg)

TiPm
i=1 Ti

, (min
i

min
j
f�ijg)

Pm
i=1 TiPm
i=1 Ti

�
mY
i=1

(
nY
j=1

�
RjPn
j=1 Rj

ij )
TiPm
i=1 Ti

� (max
i

max
j
f�ijg)

Pm
i=1 TiPm
i=1 Ti ;

and hence:

min
i

min
j
f�ijg �

mY
i=1

0@ nY
j=1

�
RjPn
j=1 Rj

ij

1A TiPm
i=1 Ti

� max
i

max
j
f�ijg: (6)

Let � � IFSPWA(Fe11 ; Fe12 ; � � � ; Femn) = h��; ��i,
then we have, from Eqs. (5) and (6), min

i
min
j
f�ijg �

�� � max
i

max
j
f�ijg and min

i
min
j
f�ijg � �� �

max
i

max
j
f�ijg. Now:

S(�) =
1 + �� � ��

2

�
1 + max

i
max
j
f�ijg�min

i
min
j
f�ijg

2
=S(F+

eij );

S(�) =
1 + �� � ��

2

�
1 + min

j
min
i
f�ijg�max

j
max
i
f�ijg

2
=S(F�eij ):

In that direction, three cases are considered:

- Case 1: If S(Feij ) < S(F+
eij ) and S(Feij ) > S(F�eij ),

then by comparison laws between two IFSNs, we
have:

F�eij � IFSPWA(Fe11 ; Fe12 ; � � � ; Fenm) � F+
eij :

- Case 2: If S(Feij ) = S(F+
eij ), i.e., �� � �� =

max
j

max
i
f�ijg � min

j
min
i
f�ijg, then by the above

inequalities, we have �� = max
j

max
i
f�ijg and �� =

min
j

min
i
f�ijg. Thus:

H(�) = �� + �� = max
j

max
i
f�ijg+ min

j
min
i
f�ijg

= H(F+
eij )

then by comparison laws between two IFSNs, we
have:

IFSPWA(Fe11 ; Fe12 ; � � � ; Fenm) = F+
eij :

- Case 3: If S(Feij ) = S(F�eij ), i.e. �� � �� =
min
j

min
i
f�ijg � max

j
max
i
f�ijg, then by the above

inequalities, we have �� = min
j

min
i
f�ijg and �� =

max
j

max
i
f�ijg. Thus:

H(�) = �� + �� = min
j

min
i
f�ijg+ max

j
max
i
f�ijg

= H(F�eij );

Then, it follows that:

IFSPWA(Fe11 ; Fe12 ; � � � ; Fenm) = F�eij :

Hence, property holds. �

Property 4.3. (Monotonicity) Let F 0eij be another
IFSNs, such that Feij � F 0eij for all i; j, then:

IFSPWA(Fe11 ; Fe12 ; � � � ; Femn)

� IFSPWA(F 0e11
; F 0e12

; � � � ; F 0emn)

Proof. Proof is as similar as that of Property 4.2, so
we omit it here.

4.2. Intuitionistic Fuzzy Soft Prioritized
Ordered Weighted Average (IFSPOWA)
operator

In this section, we will introduce an ordered weighted
averaging PA operator named as IFSPOWA operator
for the collections of IFSNs.

De�nition 4.2. Let Feij = h�ij ; �iji (i = 1; 2; : : : ;m;
j = 1; 2; : : : ; n) be IFSNs. Then, an Intuitionistic
Fuzzy Soft Prioritized Ordered Weighted Average (IF-
SPOWA) operator is de�ned as follows:

IFSPOWA(Fe11 ; Fe12 ; � � � ; Femn)

=
mM
i=1

Ti
mP
i=1

Ti

0BB@ nM
j=1

Rj
nP
j=1

Rj
Fe�(i)(j)

1CCA ; (7)
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where Rj =
Qj�1
l=1 S(Fei(l)) and Ti =

Qi�1
k=1 S(Fe�(k)).

Let R1 = 1, T1 = 1, and S(Fe) represents score
function of IFSN Fe. Also, � and  are permutations
of (1; 2; � � � ;m) and (1; 2; : : : ; n), such that e�(i)j �
e�(i�1)j and ei(j) � ei(j�1) for i = 2; 3; :::;m; j =
2; 3; :::; n.

Theorem 4.2. The aggregated value of all IFSNs
Feij = h�ij ; �iji (i = 1; 2; : : : ;m; j = 1; 2; : : : ; n) by
using IFSPOWA operator is still an IFSN and is de�ned
as follows:

IFSPOWA(Fe11 ; Fe12 ; : : : ; Femn)

=

*
1�

mY
i=1

0@ nY
j=1

(1� ��(i)(j))
RjPn
j=1 Rj

1A TiPm
i=1 Ti

;

mY
i=1

0@ nY
j=1

�
RjPn
j=1 Rj

�(i)(j)

1A TiPm
i=1 Ti

+
; (8)

where R1 = 1, T1 = 1, Rj =
Qj�1
l=1 S(Fei(l)) (j =

2; 3; � � � ; n), and Ti =
i�1Q
k=1

S(Fe�(k)) (i = 2; 3; � � � ;m),

where S(Fe) represents score function of IFSN Fe.

Proof. Proof of this theorem is the same as that of
Theorem 4.1. �

Example 4.2. As given in Example 4.1, (F;E) is
an IFSN. Now, by using Eq. (1), we have S(e11) =
0:85, S(e12) = 0:60 and S(e13) = 0:45. Thus,
S(e11) > S(e12) > S(e13), and therefore, Fe1(1) =
h0:8; 0:1i; Fe1(2) = h0:5; 0:3i and Fe1(3) = h0:4; 0:5i.
Similarly, we can �nd the other Fei(j) . Hence, the
ordered matrix of ei(j)'s is given as follows:

(F;E) =

(e1) (e2) (e3)5
x1

x2

x3

x4

266664
h0:8; 0:1i
h0:7; 0:2i
h0:7; 0:1i
h0:6; 0:1i

h0:8; 0:2i
h0:4; 0:3i
h0:8; 0:2i
h0:5; 0:2i

h0:5; 0:1i
h0:3; 0:5i
h0:5; 0:1i
h0:3; 0:5i

377775:
Furthermore:

S(Fe1(1)) = 0:85; S(Fe2(1)) = 0:75;

S(Fe3(1)) = 0:8; S(Fe4(1)) = 0:75;

therefore:

S(Fe1(1)) > S(Fe3(1)) > S(Fe2(1)) > S(Fe4(1)):

Thus:

Fe�(1)(1) = h0:8; 0:1i; Fe�(2)(1) = h0:7; 0:1i;
Fe�(3)(1) = h0:7; 0:2i; Fe�(4)(1) = h0:6; 0:1i:

Then, the ordered matrix for IFSS (F;E) is:

(F;E) =

(e1) (e2) (e3)
�(x1)
�(x2)
�(x3)
�(x4)

266664
h0:8; 0:1i
h0:7; 0:1i
h0:7; 0:2i
h0:6; 0:1i

h0:8; 0:2i
h0:5; 0:2i
h0:5; 0:3i
h0:4; 0:3i

h0:5; 0:1i
h0:4; 0:5i
h0:3; 0:5i
h0:3; 0:5i

377775:

Now, by using R1 = 1, T1 = 1, Rj =
j�1Q
l=1

S(Fei(l))

(j = 2; 3), and Ti =
i�1Q
k=1

S(Fe�(k)) (i = 2; 3; 4), we get:

R =

26664
1 0:85 0:80
1 0:80 0:65
1 0:75 0:60
1 0:75 0:55

37775 ; T =

26664
1

0:7868
0:6376
0:6583

37775 :
Hence:

IFSPOWA(Fe11 ; Fe12 ; � � � ; Fe43)

=

*
1�

4Y
i=1

0@ 3Y
j=1

(1� ��(i)(j))
RjP3
j=1 Rj

1A TiP4
i=1 Ti

;

4Y
i=1

0@ 3Y
j=1

�
RjP3
j=1 Rj

�(i)(j)

1A TiP4
i=1 Ti

+
= h0:5964; 0:2127i:

As similar to IFSPWA operator, IFSPOWA operator
also satis�es some properties.

Property 4.4. Let Feij and F 0eij ; (i = 1; 2; � � � ;m;
j = 1; 2; � � � ; n) be two collections of IFSNs, then:

(i) (Idempotancy) If all Feij = Fe, then IFSPOWA
(Fe11 ; Fe12 ; � � � ; Femn);

(ii) (Boundedness) Let F�eij = hmin
i

min
j
f�ijg;max

i
max
j
f�ijgi and F+

eij = hmax
i

max
j
f�ijg;min

i
min
j

f�ijgi then F�eij � IFSPOWA(Fe11 ; Fe12 ; � � � ;
Femn) � F+

eij ;

(iii) (Monotonicity) If Feij � F 0eij , for all i; j,
then IFSPOWA(Fe11 ; Fe12 ; � � � ; Femn) �
IFSPOWA(F 0e11

; F 0e12
; � � � ; F 0emn).
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4.3. Intuitionistic Fuzzy Soft Prioritized
Weighted Geometric (IFSPWG) operator

In this section, we will introduce the weighted geomet-
ric PA operator named as IFSPWG operator for the
collections of IFSNs.

De�nition 4.3. Let Feij = h�ij ; �iji; (i = 1; 2; � � � ;
m; j = 1; 2; � � � ; n) be collections of IFSNs. Then, an
IFSPWG operator is de�ned as follows:

IFSPWG(Fe11 ; Fe12 ; � � � ; Femn)

=
mO
i=1

0@ nO
j=1

F
RjPn
j=1 Rj

eij

1A TiPm
i=1 Ti

; (9)

where R1 = 1, T1 = 1, Rj =
Qj�1
l=1 S(Feil) (j =

2; 3; � � � ; n), and Ti =
Qi�1
k=1 S(Fek) (i = 2; 3; � � � ;m);

S(Fe) represents the score function of IFSN Fe.

Theorem 4.3. The aggregated value of all IFSNs
Feij by using IFSPWG operator is still an IFSN de�ned
as follows:

IFSPWG(Fe11 ; Fe12 ; � � � ; Femn)

=

*
mY
i=1

0@ nY
j=1

�
RjPn
j=1 Rj

ij

1A TiPm
i=1 Ti

;

1�
mY
i=1

0@ nY
j=1

(1� �ij)
RjPn
j=1 Rj

1A TiPm
i=1 Ti

+
: (10)

Proof. We prove this result by mathematical induc-
tion on n and m. For n = 1:

IFSPWG(Fe11 ; Fe21 ; � � � ; Fem1) =
mO
i=1

F
TiPm
i=1 Ti

ei1

=

*
mY
i=1

�
TiPm
i=1 Ti

i1 ; 1�
mY
i=1

(1� �i1)
TiPm
i=1 Ti

+

=

*
mY
i=1

0@ 1Y
j=1

�
RjP1
j=1 Rj

ij

1A TiPm
i=1 Ti

;

1�
mY
i=1

0@ 1Y
j=1

(1� �ij)
RjP1
j=1 Rj

1A TiPm
i=1 Ti

+
;

and for m = 1:

IFSPWG(Fe11 ; Fe12 ; � � � ; Fe1n) =
nO
j=1

F
RjPn
j=1 Rj

e1j

=

*
nY
j=1

�
RjPn
j=1 Rj

1j ; 1�
nY
j=1

(1� �1j)
RjPn
j=1 Rj

+

=

*
1Y
i=1

0@ nY
j=1

�
RjPn
j=1 Rj

ij

1A TiP1
i=1 Ti

;

1�
1Y
i=1

0@ nY
j=1

(1� �ij)
RjPn
j=1 Rj

1A TiP1
i=1 Ti

+
:

Assume that the result is true for m = k1 + 1, n = k2,
and m = k1, n = k2 + 1 i.e.:

k1+1O
i=1

0@ k2O
j=1

F

RjPk2
j=1 Rj

eij

1A TiPk1+1
i=1 Ti

=

* k1+1Y
i=1

0@ k2Y
j=1

�

RjPk2
j=1 Rj

ij

1A TiPk1+1
i=1 Ti

;

1�
k1+1Y
i=1

0@ k2Y
j=1

(1� �ij)
RjPk2
j=1 Rj

1A TiPk1+1
i=1 Ti

+
;

and:

k1O
i=1

0@k2+1O
j=1

F

RjPk2+1
j=1 Rj

eij

1A TiPk1
i=1 Ti

=

* k1Y
i=1

0@k2+1Y
j=1

�

RjPk2+1
j=1 Rj

ij

1A TiPk1
i=1 Ti

;

1�
k1Y
i=1

0@k2+1Y
j=1

(1� �ij)
RjPk2+1

j=1 Rj

1A TiPk1
i=1 Ti

+
:

Now, to prove that the result is true for m = k1 + 1
and n = k2 + 1:

k1+1O
i=1

0@k2+1O
j=1

F

RjPk2+1
j=1 Rj

eij

1A TiPk1+1
i=1 Ti

=
k1+1O
i=1

0@ k2O
j=1

F

RjPk2+1
j=1 Rj

eij 
 F
Rk2+1Pk2+1
j=1 Rj

e(k2+1)j

1A TiPk1+1
i=1 Ti

=

0B@k1+1O
i=1

0@ k2O
j=1

F

RjPk2+1
j=1 Rj

eij

1A TiPk1+1
i=1 Ti

1CA
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k1+1O
i=1

0@F Rk2+1Pk2+1
j=1 Rj

e(k2+1)j

1A TiPk1+1
i=1 Ti

=

* k1+1Y
i=1

0@ k2Y
j=1

�

RjPk2+1
j=1 Rj

ij

1A TiPk1+1
i=1 Ti



k1+1Y
i=1

0@� Rk2+1Pk2+1
j=1 Rj

(k2+1)j

1A TiPk1+1
i=1 Ti

;

1�
k1+1Y
i=1

0@ k2Y
j=1

(1� �ij)
RjPk2+1

j=1 Rj

1A TiPk1+1
i=1 Ti


1�
k1+1Y
i=1

 
(1��(k2+1)j)

Rk2+1Pk2+1
j=1 Rj

! TiPk1+1
i=1 Ti

+

=

* k1+1Y
i=1

0@k2+1Y
j=1

�

RjPk2+1
j=1 Rj

ij

1A TiPk1+1
i=1 Ti

;

1�
k1+1Y
i=1

0@k2+1Y
j=1

(1��ij)
RjPk2+1

j=1 Rj

1A TiPk1+1
i=1 Ti

+
:

It shows that the result holds for m = k1 + 1 and
n = k2 +1; thus, by mathematical induction, the result
holds for all m;n � 1. �

Example 4.3. Let X = fx1; x2; x3; x4g be a set of
experts giving their preferences for describing their \us-
age of a mobile" on certain parameters E = fe1; e2; e3g.
Then, IFSS (F;E) is de�ned as follows:

(F;E) =

e1 e2 e3

x1

x2

x3

x4

2666664
h0:7; 0:2i
h0:7; 0:1i
h0:6; 0:1i
h0:6; 0:4i

h0:4; 0:1i
h0:5; 0:3i
h0:5; 0:2i
h0:8; 0:1i

h0:6; 0:1i
h0:3; 0:6i
h0:8; 0:1i
h0:6; 0:1i

3777775:
Based on these data, we get:

R =

26664
1 0:75 0:65
1 0:80 0:60
1 0:75 0:65
1 0:60 0:85

37775 ; T =

26664
1

0:7103
0:5910
0:7401

37775 ;
and hence by using Eq. (10), we get:

IFSPWG(Fe11 ; Fe12 ; � � � ; Fe43)

=

*
4Y
i=1

0@ 3Y
j=1

�
RjP3
j=1 Rj

ij

1A TiP4
i=1 Ti

;

1�
4Y
i=1

0@ 3Y
j=1

(1� �ij)
RjP3
j=1 Rj

1A TiP4
i=1 Ti

+
= h0:5771; 0:2101i

As similar to IFSPWA operator, IFSPWG also satis�es
some properties for the collection of IFSNs Feij (i =
1; 2; � � � ;m; j = 1; 2; � � � ; n) which are as follows:

Property 4.5. (Idempotency) If all Feij = Fe =
h�; �i, then IFSPWG(Fe11 ; Fe12 ; � � � ; Femn) = Fe.

Proof. Since all Feij are equal, i.e. Feij = Fe, then
we have:

IFSPWG(Fe11 ; Fe12 ; � � � ; Femn)

=

*
mY
i=1

0@ nY
j=1

�
RjPn
j=1 Rj

1A TiPm
i=1 Ti

;

1�
mY
i=1

0@ nY
j=1

(1� �)
RjPn
j=1 Rj

1A TiPm
i=1 Ti

+

=

* 
�

Pn
j=1 RjPn
j=1 Rj

!Pm
i=1 TiPm
i=1 Ti

;

1�
 

(1� �)

Pn
j=1 RjPn
j=1 Rj

!Pm
i=1 TiPm
i=1 Ti

+
=


�; 1� (1� �)

�
= h�; �i = Fe: �

Property 4.6. (Boundedness) Let F�eij = hmin
i

min
j

f�ijg;max
i

max
j
f�ijgi and F+

eij = hmax
i

max
j
f�ijg;min

i
min
j
f�ijgi, then:

F�eij � IFSPWG(Fe11 ; Fe12 ; � � � ; Femn) � F+
eij :

Proof. Since for all i, j, we have:

min
i

min
j
f�ijg � �ij � max

i
max
j
f�ijg

, min
i

min
j
f�ijg
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�
nY
j=1

�
RjPn
j=1 Rj

ij � max
i

max
j
f�ijg

, (min
i

min
j
f�ijg)

TiPm
i=1 Ti

�
� nY
j=1

�
RjPn
j=1 Rj

ij

� TiPm
i=1 Ti

� (max
i

max
j
f�ijg)

TiPm
i=1 Ti ;

which implies that:

min
i

min
j
f�ijg �

mY
i=1

0@ nY
j=1

�
RjPn
j=1 Rj

ij

1A TiPm
i=1 Ti

� max
i

max
j
f�ijg: (11)

Furthermore:
min
i

min
j
f�ijg � �ij � max

i
max
j
f�ijg

, 1�max
i

max
j
f�ijg �

nY
j=1

(1� �ij)
RjPn
j=1 Rj

� 1�min
i

min
j
f�ijg

, (1�max
i

max
j
f�ijg)

Pm
i=1 TiPm
i=1 Ti

�
mY
i=1

� nY
j=1

(1� �ij)
RjPn
j=1 Rj

� TiPm
i=1 Ti

� (1�min
i

min
j
f�ijg)

Pm
i=1 TiPm
i=1 Ti

, 1�max
i

max
j
f�ijg

�
mY
i=1

� nY
j=1

(1� �ij)
RjPn
j=1 Rj

� TiPm
i=1 Ti

� 1�min
i

min
j
f�ijg;

which implies that:

min
i

min
j
f�ijg �1�

mY
i=1

0@ nY
j=1

(1��ij)
RjPn
j=1 Rj

1A TiPm
i=1 Ti

� max
i

max
j
f�ijg: (12)

Let � � IFSPWG(Fe11 ; Fe12 ; � � � ; Femn) = h��; ��i.
Thus, from Eqs. (11) and (12), we get min

i
min
j
f�ijg �

�� � max
i

max
j
f�ijg, min

i
min
j
f�ijg � �� � max

i
max
j
f�ijg. Now:

S(�) =
1 + �� � ��

2

�
1+max

i
max
j
f�ijg�min

i
min
j
f�ijg

2
=S(F+

eij );

S(�) =
1 + �� � ��

2

�
1+min

j
min
i
f�ijg�max

j
max
i
f�ijg

2
=S(F�eij ):

Hence, by comparison law, we get:

F�eij � IFSPWG(Fe11 ; Fe12 ; � � � ; Femn)�F+
eij : �

Property 4.7. (Monotonicity) Let F 0eij be another
collection of IFSNs, such that Feij � F 0eij for
i, j, then IFSPWG(Fe11 ; Fe12 ; � � � ; Femn) � IFSP
WG(F 0e11

; F 0e12
; � � � ; F 0emn).

Proof. Proof of this property is the same as that of
Property 4.6, so it is omitted here. �
4.4. Intuitionistic Fuzzy Soft Prioritized

Ordered Weighted Geometric
(IFSPOWG) operator

In this section, we will introduce an ordered weighted
geometric PA operator named as IFSPOWG operator
for the collections of IFSNs.

De�nition 4.4. Let Feij = h�ij ; �iji (i = 1; 2; � � � ;
m; j = 1; 2; � � � ; n) be the collections of IFSNs. Then,
an IFSPOWG operator is de�ned as follows:

IFSPOWG(Fe11 ; Fe12 ; � � � ; Femn)

=
mO
i=1

0@ nO
j=1

F
RjPn
j=1 Rj

e�(i)(j)

1A TiPm
i=1 Ti

; (13)

where R1 = 1, T1 = 1 Rj =
j�1Q
l=1

S(Fei(l)) and Ti =

i�1Q
k=1

S(Fe�(k)); S(Fe) represents the score function of

IFSN Fe, and � and  are permutations of (1; 2; � � � ;m)
and (1; 2; � � � ; n), such that e�(i)j � e�(i�1)j and
ei(j) � ei(j�1) for any i = 2; 3; :::;m; j = 2; 3; :::; n:



R. Arora and H. Garg/Scientia Iranica, Transactions E: Industrial Engineering 25 (2018) 466{482 477

Theorem 4.4. The aggregated value of all IFSNs
Feij by using IFSPOWG operator is still an IFSN
de�ned as follows:

IFSPOWG(Fe11 ; Fe12 ; � � � ; Femn)

=

*
mY
i=1

0@ nY
j=1

�
RjPm
j=1 Rj

�(i)(j)

1A TiPm
i=1 Ti

;

1�
mY
i=1

0@ nY
j=1

(1���(i)(j))
RjPn
j=1 Rj

1A TiPm
i=1 Ti

+
;
(14)

where R1 = 1, T1 = 1, Rj =
j�1Q
l=1

S(Fei(l)); j = 2; 3;

� � � ; n, Ti =
i�1Q
k=1

S(Fe�(k)) (i = 2; 3; � � � ;m).

Proof. Proof of this theorem is the same as that of
Theorem 4.3. �

Example 4.4. Considering Example 4.3 and by using
Eq. (1), we get the ordered matrix as follows:

(F;E) =

(e1) (e2) (e3)
�(x1)
�(x2)
�(x3)
�(x4)

266664
h0:8; 0:1i
h0:8; 0:1i
h0:7; 0:1i
h0:7; 0:2i

h0:6; 0:1i
h0:6; 0:1i
h0:6; 0:1i
h0:5; 0:3i

h0:4; 0:1i
h0:5; 0:2i
h0:6; 0:4i
h0:3; 0:6i

377775:
Thus, based on the matrix, values of Rj =
j�1Q
l=1

S(Feil); j = 2; 3, and Ti =
i�1Q
k=1

S(Fek); i = 2; 3; 4,

are as follows:

R =

26664
1 0:85 0:75
1 0:85 0:75
1 0:80 0:75
1 0:75 0:60

37775 ; T =

26664
1

0:7481
0:7529
0:7181

37775 :
Hence, by Eq. (14), we get:

IFSPOWG(Fe11 ; Fe12 ; � � � ; Fe43)

=

*
4Y
i=1

0@ 3Y
j=1

�
RjP3
j=1 Rj

�(i)(j)

1A TiP4
i=1 Ti

;

1�
4Y
i=1

0@ 3Y
j=1

(1���(i)(j))
RjP3
j=1 Rj

1A TiP4
i=1 Ti

+
= h0:5927; 0:1946i:

As similar to IFSPOWA operator, IFSPOWG operator
also satis�es the same properties for the collection of
IFSNs Feij .

5. MCDM based on the proposed operators

5.1. An approach based on the proposed
operators

Let A = fA1; A2; � � � ; Atg be the set of alternatives,
E = fe1; e2; � � � ; eng be the set of parameters, and
X = fx1; x2; � � � ; xmg be the set of experts giving
their preferences corresponding to each alternative Ab
(b = 1; 2; � � � ; t) with respect to each parameter ej
(j = 1; 2; � � � ; n) in terms of IFSNs Feij = h�ij ; �iji.
In the following, we develop an approach based on
the proposed operator to MCDM with intuitionistic
fuzzy soft information, which involves the following
steps:

- Step 1: Collect the information related to each
alternative under di�erent parameters in terms of
intuitionistic fuzzy soft matrix, D = (Feij ) = h�ij ;
�ijim�n;

- Step 2: Normalize these collective information
decision matrices by transforming the rating values
of cost (C) type into bene�t (B), if any, by using the
normalization formula:

qij =

(
F ceij ; for cost type parameters
Feij ; for bene�t type parameters

where F ceij = h�ij ; �iji is the complement of Feij =
h�ij ; �iji;

- Step 3: Calculate Rj (j = 1; 2; � � � ; n), Ti (i =
1; 2; � � � ;m) as follows:

T1 = 1; R1 = 1; (15)

Rj =
j�1Y
l=1

S(Feil); j = 1; 2; � � � ; n; (16)

Ti =
i�1Y
k=1

S(Fek); i = 1; 2; � � � ;m: (17)

- Step 4: Aggregate IFSNs q(b)
ij (i = 1; 2; � � � ;m; j =

1; 2; � � � ; n) for each alternative Ab(b = 1; 2; � � � ; t)
into the collective preference value q(b) by the
proposed IFSPWA (or IFSPWG, IFSPOWA, IF-
SPOWG) operator.

- Step 5: By using Eq. (1), we get the score value for
each q(b)(b = 1; 2; � � � ; t);

- Step 6: Rank alternatives Ab (b = 1; 2; � � � ; t) and
select the best one(s).
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5.2. Numerical example
The above decision-making procedure has been illus-
trated with a practical example about recruitment of
a professor in Mathematics Department for a central
Government university. The panel of �ve experts
x1, x2, x3, x4, x5 will judge four candidates A1,
A2, A3, A4 and select one candidate on the ba-
sis of certain parameters E = f\Quali�cation(e1)",
\Teaching experience (e2)", \research experience(e3)",
\number of publications(e4)", and \Teaching Ability
(e5)"g. Then, we utilize the approach developed to
get the most desirable alternative(s).

5.2.1. By IFSPWA operator
The steps of the proposed approach have been executed
and their detail descriptions are summarized as follows:

- Step 1: The given candidates are being evaluated
by �ve experts to give their grades in terms of
IFSNs and are summarized in Tables 2, 3, 4, and
5, respectively, for each candidate.

- Step 2: Since all the parameters are of the same
type, so, there is no need for normalization.

Table 2. Intuitionistic fuzzy soft matrix for the candidate
A1.

e1 e2 e3 e4 e5

x1 h0:3; 0:4i h0:5; 0:1i h0:6; 0:2i h0:7; 0:1i h0:6; 0:2i
x2 h0:6; 0:1i h0:6; 0:2i h0:2; 0:4i h0:5; 0:1i h0:7; 0:3i
x3 h0:5; 0:1i h0:7; 0:2i h0:5; 0:4i h0:2; 0:2i h0:4; 0:2i
x4 h0:2; 0:4i h0:5; 0:1i h0:6; 0:1i h0:4; 0:1i h0:6; 0:2i
x5 h0:6; 0:1i h0:3; 0:4i h0:4; 0:3i h0:6; 0:1i h0:5; 0:2i

Table 3. Intuitionistic fuzzy soft matrix for the candidate
A2.

e1 e2 e3 e4 e5

x1 h0:4; 0:3i h0:5; 0:1i h0:6; 0:2i h0:7; 0:1i h0:7; 0:2i
x2 h0:6; 0:1i h0:5; 0:3i h0:4; 0:3i h0:4; 0:3i h0:4; 0:1i
x3 h0:5; 0:3i h0:5; 0:1i h0:5; 0:3i h0:3; 0:2i h0:6; 0:2i
x4 h0:5; 0:3i h0:7; 0:3i h0:4; 0:2i h0:5; 0:1i h0:5; 0:2i
x5 h0:4; 0:2i h0:5; 0:2i h0:3; 0:3i h0:6; 0:1i h0:4; 0:2i

Table 4. Intuitionistic fuzzy soft matrix for the candidate
A3.

e1 e2 e3 e4 e5

x1 h0:4; 0:3i h0:5; 0:4i h0:5; 0:2i h0:6; 0:1i h0:4; 0:2i
x2 h0:5; 0:1i h0:3; 0:2i h0:3; 0:2i h0:4; 0:2i h0:3; 0:2i
x3 h0:5; 0:3i h0:5; 0:1i h0:4; 0:2i h0:2; 0:2i h0:5; 0:4i
x4 h0:5; 0:1i h0:4; 0:5i h0:3; 0:2i h0:7; 0:2i h0:3; 0:2i
x5 h0:7; 0:1i h0:4; 0:6i h0:4; 0:2i h0:3; 0:1i h0:6; 0:1i

Table 5. Intuitionistic fuzzy soft matrix for the candidate
A4.

e1 e2 e3 e4 e5

x1 h0:3; 0:4i h0:8; 0:1i h0:7; 0:1i h0:4; 0:3i h0:2; 0:3i
x2 h0:5; 0:1i h0:4; 0:2i h0:4; 0:2i h0:6; 0:1i h0:2; 0:6i
x3 h0:2; 0:1i h0:4; 0:2i h0:5; 0:4i h0:4; 0:2i h0:5; 0:2i
x4 h0:7; 0:2i h0:5; 0:1i h0:6; 0:1i h0:4; 0:1i h0:7; 0:1i
x5 h0:5; 0:2i h0:5; 0:4i h0:4; 0:2i h0:3; 0:2i h0:7; 0:1i

- Step 3: Utilize Eqs. (15)-(17) to �nd R(b)
j and T (b)

i
(b = 1; 2; 3; 4) corresponding to each candidate A1,
A2, A3 and A4, then we get:

R(1)
j =

26666664
1 0:45 0:70 0:70 0:80
1 0:75 0:70 0:40 0:70
1 0:70 0:75 0:55 0:50
1 0:40 0:70 0:75 0:65
1 0:75 0:45 0:55 0:75

37777775 ;

R(2)
j =

26666664
1 0:55 0:70 0:70 0:80
1 0:75 0:60 0:55 0:55
1 0:60 0:70 0:60 0:55
1 0:60 0:70 0:60 0:70
1 0:60 0:65 0:50 0:75

37777775 ;

R(3)
j =

26666664
1 0:55 0:55 0:65 0:75
1 0:70 0:55 0:55 0:60
1 0:60 0:70 0:60 0:50
1 0:70 0:45 0:55 0:75
1 0:80 0:40 0:60 0:60

37777775 ;

R(4)
j =

26666664
1 0:45 0:85 0:80 0:55
1 0:70 0:60 0:60 0:75
1 0:55 0:60 0:55 0:60
1 0:75 0:70 0:75 0:65
1 0:65 0:55 0:60 0:55

37777775 ;

T (1)
i =

26666664
1

0:6760
0:6834
0:6554
0:6427

37777775 ; T (2)
i =

26666664
1

0:7063
0:6521
0:6360
0:6554

37777775 ;

T (3)
i =

2666664
1

0:6272
0:6092
0:6076
0:6327

3777775 ; T (4)
i =

2666664
1

0:6474
0:6243
0:6017
0:7403

3777775 :
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- Step 4: Based on these values, the di�erent
preferences of the alternatives are aggregated into
collective one (q(b)) for each bth candidate by using
Eq. (4); so, we get:

q(1) =h0:5166; 0:1853i; q(2) =h0:5157; 0:1942i;
q(3) =h0:4614; 0:1943i; q(4) =h0:4932; 0:1839i:

- Step 5: The score values corresponding to each
candidate are:

S(q(1)) = 0:6657; S(q(2)) = 0:6608;

S(q(3)) = 0:6335; S(q(4)) = 0:6547:

- Step 6: Thus, the ranking is S(q(1)) > S(q(2)) >
S(q(4)) > S(q(3)); hence, A1 is the best candidate
for the required post.

5.2.2. By IFSPWG operator
Based on IFSPWG operator, the following steps have
been performed.

- Step 1: Same as that of above.
- Step 2: All the parameters are of the same type, so

there is no need of normalizing the data.

- Step 3: Eqs. (15)-(17) are utilized to �nd T (b)
i (b =

1; 2; 3; 4) corresponding to each candidate, and then
we get:

T (1)
i =

26666664
1

0:6335
0:6296
0:6132
0:5889

37777775 ; T (2)
i =

26666664
1

0:6803
0:6280
0:6178
0:6376

37777775 ;

T (3)
i =

26666664
1

0:6075
0:5967
0:5795
0:5873

37777775 ; T (4)
i =

26666664
1

0:5736
0:5624
0:5692
0:7223

37777775 :
- Step 4: Based on these equations, the aggregated

values obtained by using Eq. (4) for each candidate
are:
q(1) =h0:4632; 0:2251i; q(2) =h0:4897; 0:2152i;
q(3) =h0:4295; 0:2378i; q(4) =h0:4319; 0:2285i:

- Step 5: The score values corresponding to each
candidate are:
S(q(1)) = 0:6191; S(q(2)) = 0:6372;

S(q(3)) = 0:5958; S(q(4)) = 0:6017:

- Step 6: Therefore, the ranking is S(q(2)) >
S(q(1)) > S(q(4)) > S(q(3)); hence, A2 is the best
candidate for the required post.

5.3. Comparative studies
To demonstrate the e�ectiveness of the proposed ap-
proach as compared to the existing ones for MCDM, an
analysis has been conducted by using di�erent opera-
tors as proposed by various researchers [5-8,12]. So, the
grades corresponding to di�erent parameters of each
candidate are aggregated by geometric operator cor-
responding to the weight vector (0:2; 0:2; 0:2; 0:2; 0:2)T
and their aggregated results are summarized in Table 6.
By using these aggregated values, the di�erent ap-
proaches as proposed by various authors [5-8,12] have
been applied to it and their score values as well as
ranking of each candidate are computed and tabulated
in Table 7.

Table 6. Aggregated intuitionistic fuzzy soft matrix for candidates.

A1 A2 A3 A4

x1 h0:4807; 0:2150i h0:5368; 0:1841i h0:4554; 0:2921i h0:4103; 0:2552i
x2 h0:5796; 0:2052i h0:4786; 0:2063i h0:3508; 0:1761i h0:3704; 0:2990i
x3 h0:4854; 0:1879i h0:4973; 0:1991i h0:4512; 0:2497i h0:3596; 0:1879i
x4 h0:4107; 0:2104i h0:5562; 0:2528i h0:4103; 0:3011i h0:5839; 0:1261i
x5 h0:4407; 0:2512i h0:4440; 0:1959i h0:4947; 0:3264i h0:5111; 0:2550i

Table 7. Comparative studies with some of the existing approaches.

Method Score Ranking
s(q(1)) s(q(2)) s(q(3)) s(q(4))

Xu [5] 0.1271 0.1443 0.0951 0.1175 q2 � q1 � q4 � q3
Xu and Yager [6] 0.1255 0.1411 0.0920 0.1086 q2 � q1 � q4 � q3
Wang and Liu [7] 0.1257 0.1416 0.0925 0.1098 q2 � q1 � q4 � q3
Wang and Liu [8] 0.1269 0.1438 0.0946 0.1162 q2 � q1 � q4 � q3
Verma and Sharma [12] 0.6275 0.6435 0.5957 0.6144 q2 � q1 � q4 � q3
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6. Conclusion

The aim of this paper is to present the intuitionistic
fuzzy soft prioritized aggregation operator to solve
MCDM problem in which the priority level for each
parameter and expert is di�erent. For that matter,
a series of prioritized averaging/geometric aggregation
operators, such as IFSPWA, IFSPOWA, IFSPWG,
and IFSPOWG, have been presented. The important
characteristic of these operators is that they take
the parameters and decision-makers according to their
priority level. Finally, an approach to solving MCDM
problems under the intuitionistic fuzzy soft set envi-
ronment has been given. To demonstrate the proposed
work, a practical example about the recruitment of
the candidate is given, and the results obtained by
the proposed approach are compared with those of the
existing methods. In the future work, we shall apply
these operators to other �elds such as mathematical
programming, cluster analysis, big-data analysis, and
so on.
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