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Abstract. In recent years, integrated use of demand- and supply-side resources has
been performed by electric utilities, because of their potential attractiveness at both
operational and economic levels. Demand Response Resources (DRRs) can be used
as demand side options, which are the consequence of implementing Demand Response
Programs (DRPs). DRPs comprise the actions taken by end-use customers to reduce their
electricity consumption in response to electricity market's high prices and/or reliability
problems on the electricity network. In this paper, a dynamic economic model of DRPs is
derived based upon the concept of 
exible elasticity of demand and the customer bene�t
function. Precise modeling of these virtual negawatt resources helps system operators to
investigate the impact of responsive loads on power system studies. This paper also aims
to prioritize multifarious DRPs by means of Technique for Order Preference by Similarity
to Ideal Solution (TOPSIS) and entropy methods. Performance of the proposed model is
investigated through numerical studies using a standard IEEE test system.
© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

In the strategic plan of International Energy Agency
(IEA) in 2008-2012 years, demand-side activities were
introduced as the �rst choice in all energy policy
decisions because of the respective potential bene�ts
at both operational and economic levels [1]. Cost
and emission reduction, the decrease of overseas fuel
dependency, an increase in power system reliability,
and an increase in revenues are some of the bene�ts
via implementing Demand-Side Management (DSM)
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programs [1-3]. There are three types of demand-side
management measures based on the overall purpose of
the Load Management (LM) program:

1. Environmental-driven measure: It achieves en-
vironmental and/or social goals by reducing energy
usage and preventing polluted units, leading to
increased energy e�ciency and/or reduced green-
house gas emissions [1];

2. Network-driven measure: It deals with chal-
lenges in the electricity network by reducing de-
mands in ways that maintain the system reliability
in the immediate term and defer the need for
network augmentation over the longer term [3];

3. Economy/market-driven measure: It provides
short-term responses to electricity market condi-
tions to reduce the overall costs of energy supply,
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increase the reserve margin, and mitigate the price
volatility [4].

Under deregulation, the scope of LM programs has
considerably expanded to include Demand Response
Programs (DRPs) [5]. In the Federal Energy Reg-
ulatory Commission (FERC) report [5], DRPs are
divided into di�erent categories: Time-Based Rate
Programs (TBRPs), Incentive-Based Programs (IBPs),
and Market-Based Programs (MBPs). A set of DRPs
has been introduced as a negawat Demand Response
Resources (DRRs). The concept of \negawatt" can
be considered as a theoretical amount of energy saved
by reducing consumption [6]. In DRPs, the customer
signs a contract with the Independent system Operator
(ISO) or the local utility to reduce the demands when
requested [7]. By participating in DRPs, customers
bene�t particularly from the incentives provided by
the ISO or local utility and the decrease of electricity
bill [7]. DRPs are currently operational in many ISOs
around the world [5]. Detailed explanations on DRPs
are given in Section 2. In order to assess the impact
of DRPs on power system studies, multifarious models
have been developed in recent years. Economic models
of responsive loads based on the concept of constant
price elasticity have been addressed in references [8-
12]. Schweppe et al. developed the concept of
spot pricing of electricity to evaluate variable costs
of electric energy on an hourly basis and proposed
three responsive load models: linear, potential, and
exponential demand functions [13]. A customers'
response to the optimal real time prices has been
modeled in [14] for the electricity applying multi-
farious mathematical load models. An optimization
model was proposed to adjust the hourly load level
of a given consumer in response to hourly electricity
prices [15]. Another study utilizes ramping up/down
rates to model variations in the customer load. An
approval function based on the acceptable energy costs
for di�erent clusters of customers was presented in [16].
Moreover, the customer's behavior versus the o�ered
�xed prices for monthly bilateral contracts by applying
a type of market share function was proposed [17].
Ale�azar-Ortega et al. [18] employed analytical and
technical approaches to validating the impact of DRPs.
Customer Baseline Load (CBL) which focuses on ad-
ministrative and contractual approaches was applied
to DRPs modeling [19]. Moreover, the impact of
Demand Response (DR) through optimization methods
was presented in [15]; however, an intelligent approach,
such as multi-agent based and fuzzy logic method,
was used to model demand responses [20,21]. Chen
et al. [22] developed two markets for designing DRPs
to match power supply and demand. DR models
based on participation information of DRRs, suggested
in [22], can be useful for evaluating DR resources'

values. Kirschen showed how this model could be
taken into consideration when scheduling generation
and setting the price of electricity in a pool-based
electricity market [23]. Market clearing programs were
discussed in [24,25], taking their economic bene�ts
into account. A linear economic model of responsive
loads was derived and used for multifarious studies
in [26-32]. In [26-32], the elasticity of demand was
considered as a �xed value for di�erent values of
incentive and penalty, which cannot precisely represent
the customers' behavior. Therefore, in this paper,
extracting a dynamic economic model of responsive
loads was suggested based on the concepts of \
exible
elasticity of demand" and \customer bene�t function".
Indeed, under a smart grid environment, the short-term
elasticity of demand can be suggested [33]. Therefore,
introducing the 
exible elasticity as a consequence of
smart electricity grids causes a more precise modeling
of DRPs; hence, the decreasing rate of consumption
coincides with the ISO's aim of implementing demand
response programs. The proposed model is called
dynamic, because the elasticity of demand should be
appraised for each of DRPs based on the values of
incentive, penalty, and the electricity price. The
proposed dynamic model can be utilized to analyze
the impact of DRPs on load pro�le characteristics.
The entropy method as well as Technique for Order
Preference by Similarity to Ideal Solution (TOPSIS)
method have been also applied together to provide an
opportunity for the decision-maker (i.e., ISO) to select
the program with the highest priority from his point of
view. TOPSIS is a method of compensatory aggrega-
tion that compares a set of alternatives by identifying
weights for each criterion, normalizing scores for each
criterion, and calculating the geometric distance be-
tween each alternative and the ideal alternative, which
is the best score in each criterion [34]. This provides a
more realistic form of modeling than non-compensatory
methods, including or excluding alternative solutions
based on hard cut-o�s [34]. Herein, the goal of ISO
is to select the most e�ective DRPs that promote the
load pro�le characteristics/attributes, simultaneously.
The proposed model is applied to the load curve of
a standard IEEE ten-unit test system. The rest of
the paper is organized as follows. Section 2 provides
a brief background of DRPs. The problem formulation
is explained in detail in Section 3. Section 4 conducts
the numerical simulations. Finally, concluding remarks
are drawn in Section 5.

2. A glance at demand response programs

DRPs can be classi�ed as a set of Independent Sys-
tem Operator-based (ISO) programs that allow end
users to provide interruptible load as a commodity
in the electricity market. DRPs can be classi�ed
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according to how load changes are brought about. In
recent researches, DRPs have been divided into di�er-
ent categories: Time-Based Rate Programs (TBRPs),
Incentive-Based Programs (IBPs), and Market-Based
Programs (MBPs) [5]. Each of these categories consists
of several programs as follows. TBRPs category
includes several programs, such as Real-Time Pricing
(RTP), Critical-Peak Pricing (CPP), and Time-Of-Use
(TOU) tari�s, which give customers time-varying rates
that re
ect the value and cost of electricity in di�erent
time periods [5]. If the price di�erentials between hours
or time periods are signi�cant, customers can respond
to the price structure with signi�cant changes in energy
use, thus reducing their electricity bills if they adjust
the timing of their electricity usage to take advantage
of lower-priced periods and/or avoid consuming when
prices are higher [5]. IBPs include Direct Load Con-
trol (DLC), Interruptible/Curtailable service (I/C),
Emergency Demand Response Program (EDRP), and
Capacity Market Program (CAP) [5]. These programs
give customers load reduction incentives that are sepa-
rated from, or additional to, their retail electricity rate,
which may be �xed (based on average costs) or time-
varying [5]. DLC and EDRP are voluntary programs,
and if customers do not curtail consumption, they are
not penalized. I/C and CAP are mandatory programs,
and enrolled customers are subject to penalties if they
do not curtail when directed. Market-based programs
include Demand Bidding (DB) and Ancillary Service
(A/S) programs [5]. The DB program encourages
customers to provide load reductions at a price at which
they are willing to curtail, or to specify how much load
they would be willing to curtail at posted prices. A/S
programs allow customers to bid load curtailments in
electricity markets as operating reserves. DRPs can
be either a measure, a resource, or both in power
system planning and operation phases with di�erent
timescales [26]. Short-term DR measures, such as DLC,
can be used as fast-response resources for enhancing
voltage control and improving power quality [35,36].
Long-term DR programs, such as those based on long-
term contracts with customers, can be incorporated in
the operational planning problems [5,35]. The focus
of this paper is merely on EDRP and TOU programs.
The time scale of EDRP and TOU programs is day-
ahead scheduling and more [5]. Detailed explanations
on DRPs can be found in [35].

3. Problem formulation

3.1. Development of responsive load dynamic
economic model

After restructuring the power system, the electricity is
considered as a commodity in the state of a service. In
the economy literature, the two most commonly used
mathematical functions for representing a downward

sloping price (�) versus demand (D) are the linear
(D(t) = �at�(t) + bt) and the iso-elastic (D(t) =
at�(t)bt) models [31]. Since both of these functions are
introduced in numerous standard economics textbooks,
typically one of the two is selected when a demand
curve is needed. It should be noted that along with
price, the factors that mostly a�ect the demand for a
commodity or service include consumer incomes and
desires [31]. Shifts and movements in the demand
curve are discussed as follows. Originally, the demand
curve is depicted in Figure 1(a). When the demand
curve shifts to the left (Figure 1(b)), people wish to
buy smaller quantities of the commodity at each price.
A leftward shift of the demand curve is a decrease in
demand. Conversely, when the demand curve shifts
to the right (Figure 1(c)), people wish to buy larger
quantities of the commodity at each price. A rightward
shift represents an increase in demand. A change in the
commodity's own price only causes a movement along
the demand curve, depicted in Figure 1(d).

In this paper, the linear function of demand curve
(i.e., D(t) = �at�(t) + bt � z(t)f(A)) is suggested,
where f(A) represents the shift function of demand
curve and z(t) is assigned as follows:

z(t)=

8>>>>>>>><>>>>>>>>:

+1 Figure 2(b), for IBPs
8 t2fpeak periodg

0 Figure 2(d), for TBRPs
8 t2fpeak, o� peak & valley periodsg

�1 Figure 2(c), for IBPs
8 t2fo� peak & valley periodsg

(1)

1. Elasticity of demand: Elasticity is de�ned as the
demand sensitivity with respect to the price [37]:

E(t; t) =
�(t)
D(t)

@D(t)
@�(t)

: (2)

Figure 1. Shifts in demand curve; change in demand.
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Using the aforementioned function of demand curve
(i.e., D(t) = �atII (t) + bt � z(t)f(A)), the self-
elasticity of demand can be represented as follows:

E(t; t) =
�at�(t)

�at�(t) + bt � z(t):f(A)
: (3)

It should be mentioned that the demand elasticity
is always measured at a spot price. In other words,
even though the slope of the linear structure of the
demand curve is constant, the demand elasticities
are not the same at di�erent prices and may
increase by decreasing the demand. According to
Eq. (2), the demand elasticity of the t-th period
versus the jth period, i.e., cross-elasticity, can be
de�ned as follows [37]:

E(t; j) =
�(j)
D(t)

@D(t)
@�(j)

: (4)

In order to extract the formulation for the cross-
elasticity of demand, the following procedure is
proposed. Suppose that the electricity market o�ers
the electricity power at three di�erent prices such
as �(t), �(j), and �(k). When the electricity
price is equal to �(t) $/MWh, �(j) $/MWh, and
�(k) $/MWh, a customer consumes D(t), D(j),
and D(k) megawatt hours of electricity, respec-
tively. Herein, it is assumed that each customer has
the ability to spend I ($) for consuming electricity.
The preceding explanations can be expressed math-
ematically as follows:

�(t)D(t) + �(j)D(j) + �(k)D(k) = I: (5)

Considering the linear structure for the demand
curve, �(t), D(j), and D(k) are de�ned as follows:

�(t) =
�D(t) + bt � z(t)f(A)

at
; (6)

D(j) = �at�(j) + bt � z(j)f(A); (7)

D(k) = �at�(k) + bt � z(k)f(A): (8)

Substitution of Eqs. (6)-(8) into Eq. (5) and di�er-
entiating D(t) with respect to �(j) yield Eq. (9) as
shown in Box I, which can be extended for a market
with \N" di�erent electricity prices.

Therefore, according to Eq. (4), the cross-
elasticity of demand (the tth period versus the jth
period) can be represented as in Eq. (10) as shown
in Box II.

2. Responsive load dynamic economic model:
Suppose that, by implementing DRPs, the cus-
tomer changes his demand fromD0(t) (initial value)
to D(t). Therefore, the demand change will be [29]:

�D(t) = D(t)�D0(t): (11)

If A(t) ($) is paid as an incentive to the customer
at the tth hour for each MWh load reduction, the
total incentive for participating in IBPs will be as
follows [29]:

p(�D(t)) = A(t)[D0(t)�D(t)] 8 t: (12)

If the customer enrolled in DRPs does not commit
to his obligations according to the contract, he will

@D(t)
@�(j)

=
�2a2

t�(j) + atbt � atf(A)z(j)n
(bt�z(t)f(A)at)

2+4 [�a2
t (�(j)2+�(k)2)+atbt(�(j)+�(k))�atI�atf(A)(z(j)�(j)+z(k)�(k))]

o1=2 :
(9)

Box I

E(t; j) =
�2a2

t�(j) + atbt � atf(A)z(j)8><>:(bt � z(t)f(A)at)
2 + 4

264�at:I +
NP
�=1
� 6=t
�a2

t�(�)2 + atbt�(�)� atf(A)z(�)�(�)

375
9>=>;

1=2

� �(j)
�at�(t) + bt � z(t)f(A)

: (10)

Box II
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be faced with penalty. If the contract level at the
tth hour and the penalty in the same period are
denoted by IC(t) and pen(t), respectively, then the
total penalty will be calculated as follows [29]:

PEN(�D(t)) = pen(t) [IC(t)� j�D(t)j] : (13)

If B(D(t)) is the income of customer during the
tth hour from the use of D(t) (MWh) of electricity,
then the customer's bene�t, S(D(t)), for the tth
hour will be as follows [29]:

S(D(t)) =B(D(t))�D(t)�(t) + p(�D(t))

� PEN(�D(t)): (14)

In Eq. (14), B(D(t)) is the customers' bene�t func-
tion, which is the quadratic function as follows [13]:

B(D(t)) = B0(t) + �0(t)[D(t)�D0(t)]�
1 +

D(t)�D0(t)
2E(t; t)D0(t)

�
: (15)

Using Eqs. (12), (13), and (15), the graph of S(D(t))
is similar to an open down parabola. Hence, accord-
ing to the classical optimization rules, to maximize
the customer's bene�t, @S=@D(t) should be equal to
zero. Solving @S=@D(t) for @B(D(t))=@D(t) yields as
follows [29]:

@B(D(t))
@D(t)

= �(t) +A(t) + pen(t) 8 D(t) � 0:
(16)

Di�erentiating Eq. (15) with respect to D(t) and
substituting the result into Eq. (16), the customer's
consumption will be as follows [29]:

D(t)=D0(t)
�

1+E(t; t)
�(t)��0(t)+A(t)+pen(t)

�0(t)

�
:

(17)

Substitution of Eq. (3) into Eq. (17) yields:

D(t) =D0(t)
�

1� at�(t)
�0(t)

��(t)��0(t) +A(t) + pen(t)
�at�(t) + bt � z(t)f(A)

�
: (18)

Eq. (18) represents the behavior of some loads with
sensitivity just in a single period. Such loads are
not able to move from one period to another (e.g.,
illuminating loads) and can be only on or o�. On
the other hand, some loads can be transferred from
the peak period to the o�-peak or low periods (e.g.,
process loads). Such behavior is called multi-period
sensitivity and can be evaluated using \cross-elasticity
of demand" [38]. Similar to the procedure of acquiring
Eq. (17), the multi-period load economic model can be
expressed as follows:

D(t) =D0(t)

8>><>>:1 +
24X
j=1
j 6=t

E(t; j)

[�(j)��0(j) +A(j) + pen(j)]
�0(j)

9>>=>>; : (19)

Eq. (19) can be extended according to the de�nition of
cross-elasticity in Eq. (10) as shown in Box III.

By combining Eqs. (18) and (20) and considering
coe�cient \�" as the potential of DRPs implementa-
tion, the responsive load dynamic economic model will
be presented as in Eq. (21) as shown in Box IV.

3.2. Procedure of DRPs sorting
One of the responsibilities of a decision-maker (i.e.,
ISO) is setting rules for selecting and prioritizing
DRPs [38]. The goal of this section is to select
the most e�ective DRPs that promote the load pro-
�le characteristics/attributes, simultaneously. Since
the criteria of building P&D (Planning and Design)
evaluation have diverse signi�cance and meanings, it
cannot be assumed that each evaluation criterion is

D(t) = D0(t)

8>>>>>>>>>>>><>>>>>>>>>>>>:

1 + � � �

24X
j=1
t 6=j

��2a2
t�(j)2 + �(j)(atbt � atf(A)z(j))

�
[�(j)��0(j) +A(j) + pen(j)]

[�at�(t)�0(j) + bt�0(j)� z(t)f(A)�0(j)]�18><>:(bt � z(t)f(A)at)2 + 4

264�at:I +
NP
�=1
� 6=t
�a2

t�(�)2 + atbt�(�)� atf(A)z(�)�(�)

375
9>=>;

1=2

9>>>>>>>>>>>>=>>>>>>>>>>>>;
:

(20)

Box III
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D(t) = �D0(t)

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

1� at�(t)
�0(t)

� �(t)��0(t) +A(t) + pen(t)
�at�(t) + bt � z(t):f(A)

+ � � �

24X
j=1
t 6=j

��2a2
t�(j)2 + �(j)(atbt � atf(A)z(j))

�
[�(j)��0(j) +A(j) + pen(j)]

[�at�(t)�0(j) + bt�0(j)� z(t)f(A)�0(j)]�18><>:(bt � z(t)f(A)at)2 + 4

264�at:I +
NP
�=1
� 6=t
�a2

t�(�)2 + atbt�(�)�atf(A)z(�)�(�)

375
9>=>;

1=2

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;
:
(21)

Box IV

Attribute 1 � � � Attribute NAT

De =
Alternative 1

...
Alternative NAL

24 �1;1 ::: �1;NAT� � � ::: :::
�NAL;1 ::: �NAL;NAT

35 (22)

Box V

of equal importance [34]. Evaluating the best plan
is a complex and wide-ranging problem, requiring
the most inclusive and 
exible method [34]. Herein,
the attributes are weighted by means of the entropy
method [39]. Entropy is a criterion in the information
theory that explains the uncertainty in a discrete
distribution function (Pl) that can be summarized as
follows. Consider a decision matrix, De, as Eq. (22)
shown in Box V, where �lk is the performance of the
lth alternative regarding the k-th attribute [34]. Each
element of the decision matrix, i.e., Eq. (22), can be
normalized as follows:

Plk =
�lk

NALP
k=1

�lk
: (23)

Thus, weighting each attribute, Wk, can be calculated
by:

Wk=
1 + (ln NAL)�1:

NALP
l=1

[Pl � lnPl]k

NATP
k=1

�
1 + (lnNAL)�1:

NALP
l=1

[Pl � lnPl]k
� : (24)

If the decision-maker has a prior consideration/ knowl-
edge about the importance factor of attribute (�k),
then the weights are improved as follows:

IWk =
�k �Wk

NATP
k=1

�k �Wk

: (25)

In Eq. (25), lower weights suggests that the impact of

the attribute is similar for all of the alternatives and
its importance is negligible for the decision.

In this step, ISO sorts the DRPs (alternatives)
by means of TOPSIS method. TOPSIS as a multi-
criteria decision analysis method is a sub-discipline of
operations research that explicitly evaluates multiple
con
icting criteria in decision-making [34]. Herein,
TOPSIS is based on the concept that the chosen alter-
native should have the shortest geometric distance from
the positive ideal solution and the longest geometric
distance from the negative ideal solution [34]. It is
a method of compensatory aggregation that compares
a set of alternatives by identifying weights for each
criterion, normalizing scores for each criterion, and
calculating the geometric distance between each alter-
native and the ideal alternative, which is the best score
in each criterion. An assumption of TOPSIS is that
the criteria are monotonically increasing or decreasing.
Normalization is usually required as the parameters or
criteria are often of incongruous dimensions in multi-
criteria problems. Compensatory methods, such as
TOPSIS, allow trade-o�s between criteria, where a
poor result in one criterion can be negated by a good
result in another criterion. This provides a more realis-
tic form of modeling than non-compensatory methods,
including or excluding alternative solutions based on
hard cut-o�s. In this paper, the goal of ISO is to select
the most e�ective DRPs that promote the load pro�le
characteristics/attributes, simultaneously [34,40]. The
optimization procedure of TOPSIS method can be
presented as follows [40]:
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Figure 2. Flowchart of prioritizing demand response programs.

i. Calculate weighted normalized De matrix as fol-
lows:

Vlk = Wk � �lks
NALP
l=1

�2
lk

: (26)

ii. Find the ideal and anti-ideal solutions. The ideal
solution, v+

k , is the maximum value for the positive
criterion and the minimum value for the negative
criterion in each column. Similarly, the anti-
ideal solution, v�k , is the minimum and maximum
values for the positive and negative criteria in each
column, respectively;

iii. The mean distance between each alternative and
anti-ideal solution can be calculated as follows:

Cl =

s
NATP
k=1

(vlk � v�k )2s
NATP
k=1

(vlk � v+
k )2 +

s
NATP
k=1

(vlk � v�k )2

0 � Cl � 1: (27)

Finally, the alternatives are sorted according to Cl
value. The higher Cl coe�cient is, the more e�ective
the program (alternative) will be. Figure 2 depicts
the aforementioned hierarchy for the demand response
portfolio-sorting algorithm.

4. Simulation results and discussion

In this section, the standard IEEE ten-unit test
system has been used for simulation studies. Fig-
ure 3 represents the aforementioned load curve that
is divided into three di�erent periods, namely valley

Figure 3. Ten-unit test system load curve.
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period (00:00 am{5:00 am), o�-peak period (5:00 am-
9:00 am and 14:00 pm-19:00 pm), and peak period
(9:00 am-14:00 pm and 19:00 pm-24:00 pm) [26]. The
implementation potential of DRPs is considered 0.2
and 0.4, meaning that the total signed contracts for
participating customers in the programs are equal to
20% and 40% of the total load, respectively.

In this study, the constant coe�cients of the
linear demand curve, i.e., \at" and \bt", are assumed
7 and 1300, respectively [41]. Several DRPs have
been introduced as indicated in Table 1 which are the
combination of TBRPs and IBPs. Herein, the initial
value of electricity price and f(A) are assumed equal to
20 $/MWh and f0:1 bt�A=Amaxg, respectively, where
Amax is considered equal to 10 $/MWh, as shown in
Table 1.

For each of the aforementioned programs, the

demand elasticity is calculated using Eqs. (3) and
(10) and listed in Table 2. It can be concluded
that increasing the values of incentive and electricity
price is directly parallel to the elasticity of demand.
Implementation of dynamic DRPs provides the means
for customers to decrease or shift their consumption
from peak period to the valley or o�-peak periods.

4.1. Studying the e�ect of proposed dynamic
DR model on the load curve

This section discusses the results obtained through
numerical studies from both \economical" and \load
pro�le characteristics" viewpoints. The DR incentive
value as an economic index is calculated for each of
DRPs. Furthermore, several technical indices, namely
peak reduction, electrical energy consumption, load
factor, and peak to valley distance, are evaluated for

Table 1. Statement of scenarios.

Programs
(I = 2000$)

Program
no.

Scenario
no.

� �(t)
($/MWh)

Incentive
value

($/MWh)

C
om

bi
na

ti
on

of
E

D
R

P
an

d
T

O
U

pr
og

ra
m

s

1 1 0.2 22.5
42 0.4

2 3 0.2 27.5
4 0.4

3 5 0.2 22.5
106 0.4

4 7 0.2 27.5
8 0.4

Table 2. Calculated elasticity of demand for di�erent DRPs.

Elasticity of programs 1 and 2 (A = 4 $/MWh)

H
ou

rs 1-5 6-9 10-14 15-19 20-24
Program

1
Program

2
Program

1
Program

2
Program

1
Program

2
Program

1
Program

2
Program

1
Program

2
1-5 -0.1207 -0.1207 0.0321 0.0309 0.032 0.0348 0.0321 0.0309 0.032 0.0348
6-9 0.0321 0.0309 -0.1207 -0.1207 0.032 0.0348 0.0321 0.0309 0.032 0.0348

10-14 0.0354 0.0358 0.0354 0.0358 -0.1480 -0.1870 0.0354 0.0358 0.0354 0.0404
15-19 0.0321 0.0309 0.0321 0.0309 0.032 0.0348 -0.1207 -0.1207 0.032 0.0348
20-24 0.0354 0.0358 0.0354 0.0358 0.0354 0.0404 0.0354 0.0358 -0.1480 -0.1870

Elasticity of programs 3 and 4 (A = 10 $/MWh)

H
ou

rs 1-5 6-9 10-14 15-19 20-24
Program

3
Program

4
Program

3
Program

4
Program

3
Program

4
Program

3
Program

4
Program

3
Program

4
1-5 -0.1207 -0.1207 0.0329 0.0329 0.0287 0.0287 0.0329 0.0329 0.0287 0.0287
6-9 0.0329 0.0329 -0.1207 -0.1207 0.0287 0.0287 0.0329 0.0329 0.0287 0.0287

10-14 0.0406 0.0414 0.0406 0.0414 -0.1662 -0.2110 0.0406 0.0414 0.0354 0.0402
15-19 0.0329 0.0329 0.0329 0.0329 0.0287 0.0287 -0.1207 -0.1207 0.0287 0.0287
20-24 0.0406 0.0414 0.0406 0.0414 0.0354 0.0402 0.0406 0.0414 -0.1662 -0.2110
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Table 3. Economical and technical comparison of DRPs.

Program
no.

DR incentive value ($) Peak (MW) Peak reduction (%)
� = 0:2 � = 0:4 � = 0:2 � = 0:4 � = 0:2 � = 0:4

Initial load | | 1,500 1,500 | |
1 2,828.52 5,657.04 1,415.4 1,369 -5.63 -8.73
2 4,896 9,792.01 1,353.7 1,382.8 -9.75 -7.81
3 19,291.2 38,582.4 1,375.0 1,450 -8.33 -3.32
4 28,652.8 57,304.5 1,375.8 1,451 -8.28 -3.22

Table 4. Technical comparison of DRPs.

Program
no.

Energy consumption (MWh) Load factor (%) Peak to valley (MW)
� = 0:2 � = 0:4 � = 0:2 � = 0:4 � = 0:2 � = 0:4

Initial load 27,100 27,100 75.27 75.27 800 800
1 26,741.5 26,383.1 78.71 80.29 699.6 659.2
2 26,228 25,356 80.73 76.41 639.4 738.8
3 25,972.9 24,845.9 78.71 71.39 697.9 895.9
4 24,970.7 22,841.4 75.62 65.56 758.5 1,016

each program. Tables 3 and 4 compare the performance
of the proposed DR model using the above-mentioned
economical and technical indices.

The �rst rows in Tables 3 and 4 present the \base
case" with actual load curve (Figure 3), where no DRP
is implemented. In this case, as shown in Table 4, the
load factor is equal to 75.27% which will be increased
by implementing several DRPs of Table 1. The energy
consumption is 27,100 MWh that is considerably more
than the other programs. The load curve will be
improved after implementing di�erent DRPs as follows.

Program 1: Now, it is assumed that ISO pays
4 $/MWh as an incentive for load reduction, and the
electricity price for peak period is considered equal to
22.5 $/MWh. As seen in Tables 3 and 4, in Program
1, the maximum peak reduction (8.73%), the maxi-
mum increase in load factor (6.67%), and the mini-
mum distance between peak and valley (659.15 MW)
are achieved when � = 0:4, in comparison with the
base case. According to Table 3, for this case, the
minimum DR incentive value is 2,828.52$ for � = 0:2,
as compared with other DRPs;
Program 2: In this case, a maximum load factor
(80.73%) is achieved for � = 0:2 in comparison with
the base case. As indicated in Table 3, by decreasing
customers' participation level, the load reduction
value will increase and stand at the allowable level
(9.75% for � = 0:2). The maximum distance between
peak and valley (738.86 MW) is achieved when � =
0:4; by decreasing customers' participation level, this
technical parameter will have descending behavior;
Program 3: In the third program, it is assumed
that 10 $/MWh is an incentive and 22.5 $/MWh is

the price for implementing DRPs. By applying the
proposed model to the initial load curve, maximum
peak reduction is obtained (�8:33%) when � = 0:2.
Herein, when � = 0:4, the value of load factor is
decreased (5.16%) and the distance between peak and
valley is increased by 11.98% for � = 0:4, as compared
with the base case;

Program 4: In this case, the value of load factor
is decreased which is in the direct relation with the
values of price and incentive. According to Table 4,
the distance between peak and valley is increased
after implementing this program for � = 0:4. In
Program 4, the value of load factor is decreased at
least 12.90% for � = 0:4.

In the subsequent section, we will discuss the
importance of customers' participation level, values of
incentive, and electricity price for each of DRPs from
the ISO perspective in detail.

4.2. Prioritization of DRPs
To improve the load pro�le characteristics as well
as customer's bene�t, the following attributes are
considered: \peak reduction", \energy consumption",
\load factor", \distance between peak to valley", and
\DR incentive value". Accordingly, decision matrix De
is established using Eq. (22) with the results shown in
Tables 3 and 4. The decision matrix represents the
performance of each program for each attribute. Then,
the attributes are weighted by the entropy method.
The calculated weights of the attributes are shown
in Table 5. Since ISO has the primary responsibility
of maintaining security of the system, the weights of
attributes should be acceptable from its point of view;
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Figure 4. Prioritizing of scenarios from ISO perspective
using TOPSIS method.

Table 5. Weights of attributes.

Attribute Weight

Peak reduction 0.1446
Energy consumption 0.0024
Load factor 0.0046
Peak to valley 0.0267
DR incentive value 0.8217

Table 6. Improved weights of attributes.

Attribute Improved weight

Peak reduction 0.3274
Energy consumption 0.0018
Load factor 0.0104
Peak to valley 0.0403
DR incentive value 0.6201

otherwise, ISO can modify the weights based on its
decision. For example, peak load reduction increases
the reserve capacity, which will result in increasing the
system security margin.

Hence, ISO may consider the importance factor
of attributes as follows:

�NAT = f0:3; 0:1; 0:3; 0:2; 0:1g
8 NAT = 1; 2; 3; 4; 5:

Based on the above importance factors, the im-
proved weights of attributes are obtained using Eq. (25)
as presented in Table 6.

Now, by using the TOPSIS method, the priorities
of DRPs can be calculated as indicated in Figure 4. Ac-
cording to Figure 4, by implementing Scenario 4 with
the highest priority, ISO will obtain the desired load
pro�le characteristics and achieve relative satisfaction
of costumers. Investigation of the above results reveals
that, for various policies, di�erent improved weights of
attributes will result in multifarious priorities of DRPs.
In practice, when some restrictions exist to implement
a certain program with higher priority, ISO can choose
another program with lower priority.

5. Conclusion

In this paper, DRPs as one of the important infras-
tructures of smart grid technologies were studied. This
paper described a study in which a dynamic model was
suggested to demonstrate and quantify the economic
impact of price elasticity of demand in DRPs. Herein,
the importance of emergency DRPs and TOU pro-
grams was investigated. Therefore, based upon 
exible
elasticity of demand as well as customer bene�t func-
tion, a dynamic economic model of responsive loads
was derived for DRPs. This model can be utilized for
the purpose of improving load pro�le characteristics as
well as satisfaction of customers. ISO could prioritize
multifarious DRPs and would choose the best program
with the highest priority considering its perspectives.
Prioritizing approach of DRPs was presented based on
multi-attribute decision-making techniques including
entropy and TOPSIS methods. The applicability of
the proposed structure was illustrated using a standard
IEEE ten-unit test system. Future research is required
to develop more accurate models of DRPs considering
load uncertainty as well as market clearing regarding
virtual DRRs.

Nomenclature

A(t) Incentive of the demand response
program at the t-th hour for each
MWh load reduction

at; bt Coe�cients of demand curve
B(D(t)) Customer's income at the tth hour

after implementing DRPs
B0(t) Customer's income when the demand

is at nominal value (D0(t))
D(t) Power demand at the tth hour after

implementing DRPs
De Decision matrix
D0(t) Power demand at the tth hour
E(t; j) Cross-elasticity
E(t; t) Self-elasticity
f(A) Demand curve shift function, which is

assumed as a function of incentive
I Customer' funds for consuming

electricity
IC(t) Incentive-based programs contract

level
j jth period
k kth period
ln Natural logarithm function
N Number of di�erent electricity prices

in the market
NAL Number of alternatives
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NAT Number of attributes
p(�D(t)) Total incentive for customers'

participation in DRPs at tth hour
pen(t) Penalty at the tth hour
S(D(t)) Customer's bene�t from implementing

DRPs at the tth hour
Vlk Weighted normalized decision matrix

v+
k Ideal solution

v�k Anti-ideal solution
W Weighting of attributes
�lk Performance of the lth alternative

regarding the kth attribute
z(t) Binary value which is equal to 1 for

implementing IBPs at the tth time
interval; otherwise, it is equal to 0

�(t) Secondary/virtual electricity price of
an hour for implementing TBRPs

�0(t) Initial electricity price of an hour
before implementing DRPs

� Potential of implementing DRPs
�k Decision-maker's importance factor
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