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Abstract. The optimal design of grid-connected Hybrid Renewable Energy Systems
(HRESs) is studied by using multi-objective evolutionary algorithm in this paper. With the
total system cost and fuel emissions to be minimized, a two-objective optimization model
of the hybrid system is established. Then, a modi�ed preference-inspired co-evolutionary
algorithm is, for the �rst time, applied to �nd the optimal con�guration of a grid-connected
hybrid system. As an example, a grid-connected hybrid system, including PV panels, wind
turbines, and diesel generators, has been designed and good results are obtained which
show that the proposed method is e�ective.

© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

The rising energy consumption, the depletion of limited
fossil fuels, and the increasing concern for global warm-
ing have enhanced the use of renewable energy sources,
such as solar and wind energy. Renewable energy
sources can decrease the dependence on conventional
resources and reduce the greenhouse gas emissions,
making them potential for electric power generation
in the future. However, they are also unpredictable
and intermittent, hindering their wide application in
practice. A good solution to overcome the drawbacks of
renewable sources is the appropriate design of a Hybrid
Renewable Energy System (HRES), integrating various
energy sources. Compared with single-source energy
systems that include solar or wind energy alone, HRESs
have many advantages, e.g. higher reliability, lower
cost, and less fuel emissions.
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An HRES can operate in either Grid-Connected
(GC) or Stand-Alone (SA) mode according to the
availability of utility grid [1]. Stand-alone systems can
generate electricity without utility grid, so that is why
they are said to be stand-alone and, hence, they are
suitable for remote areas where the grid is not available.
Along with the prevalence of HRESs, an increasing
number of studies about optimal HRES design have
been reported in the literature. The optimal design of
an HRES is a Multi-objective Optimization Problem
(MOP) [2] in most cases, which is too complex to solve
e�ciently by traditional optimization methods. Hence,
various evolutionary algorithms have been applied to
optimally design the HRES with di�erent objectives [3-
9]. However, most of the present studies focus on stand-
alone hybrid systems without considering the utility
grid.

A grid-connected HRES is an independent power
system connected to the electricity grid and the grid
acts as a storage unit with unlimited capacity [1],
so the battery storage device is unnecessary in this
system. A grid-connected system is mainly used to
cater to the local load demand, and surplus genera-
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tion will be fed into the grid. Unlike the abundant
number of literature reviews on stand-alone systems,
there are only a few studies on grid-connected hybrid
systems. Caballero et al. [10] proposed a method for
the optimal business design of a small grid-connected
hybrid PV-wind energy system aiming to minimize the
life-cycle cost of the system under a certain level of
reliability. In this method, the excess energy generated
by the hybrid system is supplied to the grid at a
�xed sale price or through a Net Metering scheme.
Dalton et al. [11] studied a large-scale grid-connected
hotel by an analysis of the technical and �nancial
viability of di�erent types of hybrid power supply
con�gurations. They utilized the HOMER software
to assess the net present cost, renewable fraction,
and payback time of the system. Based on Particle
Swarm Optimization (PSO), Pablo et al. [12] evaluated
three Energy Management Systems (EMSs) of a grid-
connected hybrid system for long-term optimization.
The three EMSs try to seek the optimality of cost,
e�ciency, and lifetime, respectively. Lashkar et al. [13]
proposed a multi-objective optimization methodology
to solve the reactive power-planning problem in power
system. They combined the �-constraint approach,
mixed integer non-linear programming model, and
implemented simulation experiments to simultaneously
optimize the objectives of total fuel cost, power losses,
and system loadability. Bernal and Dufo [14] conducted
an economic and environmental research on PV solar
energy installations in a grid-connected system.

As a matter of fact, the optimal design of a
grid-connected HRES is similar to that of a stand-
alone system. The optimization objectives needed to
be considered include the economic and environmental
indexes, i.e., the cost and fuel emissions. Note that
the cost here consists of the initial investment cost

and the net cost of purchasing electricity which is
equal to the total cost generated by purchasing the
de�cient energy from the grid minus total bene�t
from selling excess energy to the grid. In this paper,
the total system cost and fuel emissions of one year
as two objectives will be taken to establish a grid-
connected hybrid system model including PV panels,
wind turbines, and diesel generators. To �nd the
optimal con�guration of the hybrid system which is a
MOP, the modi�ed preference-inspired co-evolutionary
algorithm using goal vectors (PICEA-g [15]) is adopted
to solve the problem. PICEA-g has better perfor-
mance than other classical Multi-Objective Evolution-
ary Algorithm (MOEA), such as NSGA-II [16] and
MOEA/D [17]. Meanwhile, the modi�ed PICEA-g has
been testi�ed to be e�ective, especially for bi-objective
problems [18], and it is applied to size a grid-connected
HRES for the �rst time in this study.

The rest of the paper is organized as follows.
Section 2 describes the problem under consideration.
The model of the studied hybrid system is established
in Section 3. Section 4 introduces the optimization al-
gorithm, i.e. modi�ed PICEA-g. Experimental study is
presented in Section 5, and �nally, Section 6 concludes
this paper.

2. Problem description

The considered grid-connected hybrid renewable en-
ergy system includes PV panels, wind turbines, diesel
generators, accessory devices, and utility grid which
can act as a back-up system. A particular con�guration
of the employed system is shown in Figure 1. According
to this �gure, the system energy 
ow can be explained
as follows. The available energy generated by PV
panels and wind turbines is directly used to cater to

Figure 1. A grid-connected hybrid system con�guration.
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the load demand. When the power generation exceeds
the power demand, the excess power will be fed into
the utility grid; thus, it provides additional income
for consumers by their surplus energy sales. On the
contrary, when the energy from the renewable sources
is not enough to satisfy the load demand, the diesel
generators start to work. In case the diesel generators
cannot meet the surplus load demand, the de�cient
electricity will be drawn from the grid resulting in an
increase of system cost of purchasing electricity.

A grid-connected system may be vulnerable con-
fronted by system abnormalities and a good system
design needs to be stable and reliable. In this study, the
power balance of the system will always be maintained
as the grid faults, disturbances blackouts, or other
equipment failures, which are out of consideration.

3. Modeling of the hybrid system

The mathematical model of the hybrid system can
be established based on the problem description. It
is essential to analyze individual components before
constructing the model of their combination. In this
section, we �rst analyze the main system components
and establish their individual model including PV
panels, wind turbines, and diesel generators, and then
the optimization objectives and the system model are
presented.

3.1. Mathematical models of system
components

The utilization of solar energy includes primarily solar
thermoelectric power generation and solar photovoltaic
power generation. Although many studies have focused
on solar thermoelectric power generation [19,20], pho-
tovoltaic generation is becoming prevalent owing to its
economic and environmental advantages. Therefore,
solar photovoltaic generation is considered in this
study. Generally, the output power of PV panels
depends mainly on the e�ective solar radiation, the
characteristics, and the slope angle of the PV panel.
Mathematically, the output of PV panels at an instant
time t, considering that the ambient temperature can
be calculated by the following equations [21]:

TC(t) = TA(t) +
NCOT� 20

800
Sp(t; �); (1)

ISC(t) = [ISC,STC +KI(TC(t)� 25)]
Sp(t; �)

1000
; (2)

VOC(t) = VOC,STC �KV � TC(t); (3)

PM(t; �) = NPV � VOC(t) � ISC; (t; �) � FF (t); (4)

where TC(t) and TA(t) are the cell temperature and
ambient temperature at time t, respectively. NCOT is

the Nominal Cell Operating Temperature provided by
the manufacturer, ISC,STC and VOC,STC are the module
short-circuit current and open-circuit voltage under
Standard Test Conditions, and KI and KV are their
corresponding temperature coe�cients. PM(t) is the
power of a PV array consisting of NPV PV panels, and
FF(t) is the �ll factor. � is the slope angle of the panel,
Sp is the e�ective solar radiation perpendicular to the
tilted panel and it is determined by the horizontal
component of solar radiation (S) as follows [22].

Sp =
S

sinh
� sin(h+ �); (5)

sinh = sin' sin � + cos' cos � cos �; (6)

where h is solar elevation angle, ' is geography of the
latitude, � is hour angle, � is solar declination related
to earth's inclination to the plane of its orbit and the
daily time [6].

The output power of a wind turbine can be
expressed by the following equation:

PWT(�; t) =

8>>><>>>:
0; � < Vc
1
2CP�AWT�3; Vc � � < Vr

PWTR; Vr � � < Vf

0; � � Vf

(7)

where Cp is power coe�cient of the wind turbine, �
is the air density, AWT is the rotor swept area, PWGR
is the rated power of the wind turbine, and � is the
wind velocity at hub elevation. Cut-in wind speed, Vc,
and cut-o� Vf wind speed are set as 4 m/s and 20 m/s,
respectively. Vr is the rated wind speed taken as 14 m/s
in this study [5].

Given wind speed �r at reference height Hr and
the wind speed at the hub elevation of a wind turbine,
Hwg can be calculated by the power law, which is
widely used by the researchers:

� = �r

�
Hwg

Hr

�

; (8)

where 
 is the wind speed power law coe�cient and its
value is usually set to be one-seventh of relatively 
at
surfaces.

The diesel generator acts as an emergency in case
the power from renewable sources cannot meet the load
demand. Its fuel consumption, Fcons, can be expressed
by a linear function of the power output as follows [5]:

Fcons = AdgPr dg +BdgPdg; (9)

where Pr-dg and Pdg are the generator's rated and
output powers, respectively, Adg and Bdg are the
coe�cients of fuel consumption curve, and their values
can be 0.08145 l/kW h and 0.246 l/kW h in this paper
according to the references.
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3.2. System optimization model
Based on the individual model of each component men-
tioned above, we can establish a bi-objective system
optimization model. The objectives to be minimized
in this paper are system total cost and fuel emissions.
System total cost, Ctot, consists of two parts: the
annualized cost (ACS) and net cost of purchasing
electricity Cgrid. ACS is the sum of annualized initial
investment cost, (Cainv), operation and maintenance
cost (Caom), and replacement cost (Carep) of each
component as follows [4]:
ACS=Cainv(comps)+Caom(comps)+Carep(comps);

(10)

Ctot = ACS+Cgrid; (11)

where the components include PV panels, wind tur-
bines, turbine towers, and diesel generators. These
components usually have a long lifespan on the average;
therefore, they need not to be replaced during the
project lifetime of 25 years considered in this study.

As for the fuel emissions, the number of kg CO2
is utilized as a measure. Both the diesel generators and
power generation forming the grid will produce CO2 in
the system. The total fuel emissions are given by:

Femission =
TX
t=1

Fcons(t) � Ef + Emissiongrid; (12)

where Ef is the emission factor depending on the
characteristic of the diesel generator and fuel used,
and its value is generally 2.5 kg/lit. Emissiongrid is
the emissions produced by the power generation of the
grid to supply the de�cient load demand, that is to say,
the more electricity is supplied by the grid, the more
emissions are produced by the system.

Decision variables are composed of the number of
PV panels, Npv, the number of wind turbines, Nwg,
the number of diesel generators, Ndg, PV panel slope
angle, �, and turbine tower height, Hwg. Considering
the constraints of decision variables and the objectives
mentioned above, the multi-objective optimization
problem, i.e. the system optimization model, can be
expressed as follows:

Min Fobj = (Ctotal; Femission); (13)

subject to

(Npv; Nwg; Ndg) � 0; (14)

Hlow � Hwg � Hhigh; (15)

0� � � � 90�; (16)

where Hlow and Hhigh are the wind turbine towers of
lower and upper height limits (m). Additionally, the
maximum values of Npv, Nwg, and Ndg in the opti-
mization process are set as 30, 20, and 10, respectively.

4. Optimization algorithm

The optimal design of a grid-connected hybrid system
is a multi-objective constraint optimization problem,
as shown in Eqs. (13)-(16). Traditional search and
optimization approaches, such as Newton method,
are no longer e�ective. Multi-Objective Evolution-
ary Algorithms (MOEAs) are well-suited for solving
MOPs owing to their population-based nature which
can �nd a set of trade-o� solutions in a single run.
Numerous MOEAs have been proposed over the past
two decades and Preference-Inspired Co-Evolutionary
Algorithm (PICEA) is one of them. According to the
idea of PICEA, di�erent preference sets might lead to
di�erent regions of a MOP's Pareto front. Therefore,
a promising representative of the trade-o� solutions
(so-called Pareto front) can be achieved, if multiple
speci�ed sets of hypothetical preferences are evolved
during the search process [15,23-25].

Preference-Inspired Co-Evolutionary Algorithms
using goal vectors (PICEA-g) are instantiation of
PICEA [15] and perform well on MOP benchmarks.
Like most of evolutionary algorithms, PICEA-g con-
sists of six steps: population initialization, population
evaluation, �tness assignment, selection-for-survive, so-
lution reproduction, and selection-for-variation. How-
ever, PICEA-g di�erentiates itself from others by its
coevolution features. Speci�cally, two populations
are evolved during the search, i.e. a population of
preferences (goal vectors) and the usual population
of candidate solutions. The preferences are mainly
used to guide candidate solutions e�ectively towards
the entire Pareto optimal front. Such an interac-
tion is speci�cally realized in the �tness assignment
procedure. A candidate solution gains �tness by
meeting several goal vectors in objective space, but
the �tness contribution has to be shared evenly with
other solutions to satisfy the same goal vector. The
goal vector will gain �tness only by being satis�ed by
a candidate solution; therefore, the more it is satis�ed,
the lower its �tness value is.

Although PICEA-g shows advantages over other
evolutionary algorithms, the employed �tness assign-
ment method is only weakly Pareto dominance compli-
ant [15]. Thus, Shi et al. [18] proposed an enhanced
�tness assignment method for PICEA-g. The new
�tness assignment method considers both the explicit
�tness value of goal vectors and the Pareto dominance
rank of candidate solutions. This ensures that the
dominated solutions will never have higher �tness
than non-dominated solutions. The modi�ed PICEA-g
with enhanced �tness assignment method (termed as
PICEA-ng) has been demonstrated e�ective and more
details can be found in [18].

The PICEA-ng is implemented within a (� +
�) elitist approach as shown in Figure 2. First, a
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Figure 2. �+ � elitist approach [13].

population of N candidate solutions, CS, and a set
of Ngoal goal vectors, GV , are initialized. The two
populations are then co-evolved for maxGen genera-
tions. In each generation, gt and parents CS(gt) will be
paired up to produce N o�spring, CSc(gt), by genetic
operators (speci�cally, the simulated binary crossover
(SBX) and Polynomial Mutation (PM) operators [16]).
Meanwhile, Ng, new goal vectors, and GVc(gt) are
randomly re-generated according to the pre-de�ned
bounds. Since, in the algorithm, all solutions are
normalized within [0,1], the goal vector bounds can be
set as [1.2,1.2,...,1.2]. Then, CS(gt) and CSc(gt) as
well as GV (gt) and GVc(gt) are pooled, respectively.
The combined population will be sorted based on
their �tness value, respectively. Finally, the same
number of individuals with the parent population is
selected by the truncation selection as the new parent
populations [15].

PICEA-g algorithm is applied to address the
MOP mentioned above. The chromosome of a candi-
date solution is composed of �ve genes in the form:
[NpvjNwgjNdgjHwgj�]. In the optimization process,
round operation is conducted to keep the number of
system devices as integer ones. General parameter
settings are given in Table 1, where pc is recombination
probability, pm is mutation probability, �c and �m

Table 1. General parameter settings.

N Ng MaxGen
pc

(SBX)
�c

(SBX)
pm

(PM)
�m

(PM)
50 50 100 1 15 1/nvar 20

are distribution indices for SBX and PM operators,
respectively. nvar is the number of decision variables.
In this study, nvar = 5. The values of these parameters
are set based on previous literature.

5. Experimental study

As an example of application, the optimal design of
a grid-connected hybrid system to supply power for
an area in Spain (latitude 41.65�) is carried out in
this section. First, the input data are introduced to
conduct the experiment. Then, experimental results
and analyses are presented.

5.1. Input data
The input data set includes the hourly solar irradiation
on horizontal surface, the hourly mean values of wind
speed and ambient temperature, the hourly load de-
mand during one year, and the speci�cations of system
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Figure 3. Monthly average load pro�le.

Figure 4. Hourly meteorological data.

components as shown in Figures 3 and 4 and Tables 2
and 3. The load (only DC load is considered here), solar
radiation, and wind speed are assumed to be constant
during the simulation time step of one hour [26].

The hourly mean values of solar irradiation and
wind speed data at 10 meters height as well as the
ambient temperature in Figure 4 are the average data
of the last ten years [6]. The technical characteristics
of system components are given in Tables 2 and 3,
where initial investment cost, Cinv, and operation and
maintenance cost, Com, are used to calculate ACS. WT
tower stands for wind turbine tower.

Additionally, the limit of turbine tower height is
between 5 and 30 meters, the rotor length is 2 meters,
and the rated power is 8892 W. As for the diesel

Table 2. PV panels speci�cations.

Voc
(V)

Isc
(A)

Vmax

(V)
Imax

(A)
NCOT
(�C)

21 7.22 17 6.47 43

Table 3. The cost speci�cations of system components.

Item
Initial

investment
cost Cinv

Maintenance
cost Com

Lifetime
(year)

PV panel 3000 $ 30 $ 25

Wind turbine 3013 $ 50 $ 25

WT tower 250 $/m 2.5 $/m 25

Diesel generator 1514 $ 0.17 $/h 25

generator, its rated power is 2 kW and its Com is related
to the operation time. In addition, the e�ciency of the
inverter is set to be 90%. The nominal interest rate and
annual in
ation rate considered are 3.75% and 1.5%,
respectively. The fuel price used by the diesel generator
is 1.2 $/lit [26]. The prices of selling electricity back to
the grid and buying electricity from it are assumed to
be equal and they are both 0.1/$kW h. The produced
equivalent CO2 emissions are set as 0.5 kg per unit
power, when we purchase electricity from the grid in
this study.

5.2. Results
With the input data, the PICEA-ng algorithm has
been applied to address the optimization problem. The
optimization result is shown in Figure 5, which is
the representation of the last generation in objective
space. As can be observed from the result, the
total system cost and fuel emissions have a signi�cant

Figure 5. Pareto front of the last generation.
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Table 4. Three typical optimal solutions.

Solution Npv Nwg Ndg Hwg � Femission(kg) Ctot ($)

1 30 10 0 26.10 47.29 2434.79 8051.49
2 3 7 0 19.83 57.63 3978.92 2835.72
3 0 1 0 25.53 56.10 5555.77 1675.14

negative relationship, i.e. a more cost-e�ective system
will produce more fuel emissions.

Along with the obtained Pareto set, a decision-
maker has to select a suitable solution by incorporating
his/her a posteriori preference information. As an
example, three typical solutions are selected from the
Pareto set according to the fuel emissions objective
(the minimal, medium, and maximum one) as shown
in Table 4.

Compared with the previous work [26], this pa-
per studied a grid-connected hybrid renewable energy
system using the modi�ed PICEA-g algorithm. In the
grid-connected hybrid system, the utility grid serves as
the storage device, so that the battery bank can be
excluded. Although the system model and objectives
are di�erent, good results of the problems by means
of the preference-inspired co-evolutionary approach are
obtained. It is worthy to note that the number of
diesel generators is zero in the grid-connected system
con�gurations, i.e. there is no diesel generators in the
optimal con�gurations. The reason may be that the
cost of diesel generators is high, and they emit too
many greenhouse gases compared with acquiring the
same electricity from the grid.

6. Conclusions

The modi�ed Preference-Inspired Co-Evolutionary Al-
gorithm (PICEA-ng), which has high performance
and simplicity compared with other evolutionary al-
gorithms, has been used for the �rst time to the
optimal design of grid-connected hybrid renewable
energy systems in this article. With simultaneous
minimization of total system cost and fuel emissions,
we established the grid-connected system model, which
is a two-objective optimization problem. As a case
study, a grid-connected hybrid system, including PV
panels, wind turbines, and diesel generators, has been
designed to �nd the optimal con�guration and good
results are obtained by the proposed method.

It is worth mentioning that the optimization
model is limited to a static environment, where some
noisy parameters can be considered in the input data or
objective functions to describe uncertain problems for
future research. Moreover, various prices of selling the
excess power back to the grid and buying the electricity
from the grid might be considered to study their
in
uence on the optimal design of a grid-connected

hybrid system. Lastly, other advanced evolutionary
algorithms, e.g. [27,28,29], can be employed to solve
the optimal design of HRES. In another aspect, the
problem itself can be formulated as a standard multi-
objective problem to benchmark the performance of
di�erent multi-objective evolutionary algorithms.
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