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Abstract. In this paper, we intend to improve the CPG network presented by Pinto et
al. based on 4-cell model for bipedal locomotion systems. This model is composed of four
coupled identical cells and internal dynamics of each one is described by the Morris-Lecar
nonlinear di�erential equation; also, the couplings between the cells follow the synaptic
type. We exploited an elitist Non-dominated Sorting Genetic Algorithm (NSGA II) to �nd
the best set of coupling weights by which the phase di�erences became optimally close to the
ones required for a primary bipedal gait. Thus, we achieved the rhythmic signals associated
with four primary bipedal gaits of walk, run, two-legged jump, and two-legged hop. Also, we
successfully obtained all secondary gaits corresponding to the bipedal locomotion identi�ed
by Pinto et al. from the 4-cell model by symmetry breaking bifurcations of primary gaits.
Particularly, we were able to produce the secondary gait, called \hesitation walk," through
transition from primary gaits of run and two-legged jump.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

In recent two decades, many researchers have studied
locomotion patterns of di�erent beings in order to
imitate their locomotion mechanism in mobile robots.
Humans and animals are capable of producing di�erent
locomotion patterns, which are called \gaits". More-
over, they are able to switch from one gait to another
that is called \gait transition". They indeed can adjust
to the environmental conditions by producing di�erent
gaits, e.g., walking in normal conditions, running in a
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hurry, and jumping obstacles. Similarly, in robotics,
the interest is in planning control strategies for legged
robots to enable them to perform di�erent gaits, as
well as adaptively and robustly change the gaits [1,2].
These objectives have been considered in many recent
researches on legged robots by using schemes that are
inspired by biological neural networks called Central
Pattern Generator (CPG). CPGs are the units of
generation and transition of locomotion gaits in most of
the animals and human. Some alternative bio-inspired
methods can also be found in the literature, e.g., [3,4]
that focused on the function of the musculoskeletal
system to generate animal gaits. However, the CPG-
based method is a neuro-musculo-skeletal approach
that involves the neural architecture besides the mus-
culoskeletal system to generate adaptive locomotion
gaits for robots similar to naturalistic behaviors of
animals.
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1.1. Neurological background and developing
CPG models

In vertebrates, CPG unit is located in the spinal cord
and its function is transforming the signals received
from the high-level control center, i.e., brain, to stimu-
lating neural oscillatory signals that are sent to muscles
to perform a desired locomotion gait. In this process,
the signal from the brain is only for activating the
CPG network and is not oscillatory. Thus, producing
neural oscillatory signals that make the musculoskeletal
system perform the locomotion pattern asked by the
brain is the task of the CPG. Specially, in order
to produce these signals, there is no essential need
for feedbacks from musculoskeletal system. That is,
these signals are produced centrally in the pattern
generator units. Nevertheless, sensorial information
from environment could modulate the output rhythms
of the CPG to achieve a stable locomotion gait [1].

The idea of the motor pattern generation by a
unit not located in the brain was �rst introduced by
Brown in 1911, by an experimental observation of a
\decerebrated cat" [5,6]. In this study, the cat was
stood on a mechanically driven conveyer belt, and
despite the fact that it lacked cerebellum, it could
walk almost naturally on the conveying belt. Even,
the gait transitions to trot and gallop were respectively
induced by slowly increasing the speed of the conveyer
belt. These observations indicated that the unit of
locomotion gait generator was not located at the upper-
level nerve centers such as cerebrum or cerebellum;
rather they should probably be in the spinal nerve
center.

Brown also presented a model for explaining
how muscle stimulating neural oscillatory signals were
produced based on the reciprocal inhibition principle,
which is known as \half-center" model [5]. In Brown's
model, units of rhythm generator produce alternating
extension and 
exion command signals. In detail, each
unit includes two groups of neurons coupled mutually
by inhibitory connections, having a fatigue mechanism.
The output signals are sent to a pair of muscles that
generate a rhythmic activity in musculoskeletal system.
This conceptual model has been considered as a base
for rhythmic pattern generation in locomotion systems
of animals and humans.

The term \central pattern generator" was �rst
introduced by Wilson when he was studying the
locust 
ight motor patterns [7]. He showed that
movement-related sensory feedback was not necessary
for generating normal motor patterns, the discovery
that was an evidence for the existence of a CPG
for neurogenic 
ight in the locust [8]. Later, similar
observations were reported by others. Grillner revealed
that CPG networks were located in the spinal cord of
vertebrates [5]. In fact, he showed that a cat could
continue moving on a treadmill in spite of disconnection

between its brain and spinal cord. Following this,
Grillner and Cohen conducted researches on CPGs by
studying lamprey locomotor system. They found out
that electrical stimulation of a region in the brain stem,
i.e., Mesencephalic Locomotor Region (MLR), could
trigger the motion or change the motion speed [5,9].

The idea of central generation of motor neural
signals attracted the attention of researchers and, con-
sequently, several models were developed to describe
it. Of the most important models are Hodgkin-Huxley
(H-H), FitzHugh-Nagumo (FH-N), Morris-Lecar (M-
L), and Matsuoka leaky-integrator. It should be
noted that these models are neurological. However, in
engineering applications, CPG is a reference trajectory
generator that produces periodic oscillatory signals.
Thus, nonlinear oscillators such as phase or harmonic
oscillators as well as relaxation oscillators are widely
used to simulate CPGs [6].

It should be mentioned that developing the CPG
models is important at least in two aspects; �rst,
making predictions that lead to further development of
physiological knowledge, and second, adaptively gener-
ating reference trajectories in robotic applications. The
rhythmic trajectories produced by a CPG model can be
used in driving multi-legged robots [10], or exploited in
motion assist suits to accomplish synchronization and
entrainment between periodic motions performed by
human user and controlled by robot [11-12].

1.2. Applications of CPG-based control in
robotics

From the viewpoint of robotics engineering, CPG
networks consist in coupled oscillators each of which
generates a reference trajectory for a joint of the
kinematic chain of a robot. The outputs of these
oscillators have the same frequency, but each one can
take a phase shift from another. In fact, a set of phase
di�erences can represent a particular locomotion gait.
Thus, generating a desired gait requires adjusting the
phase di�erences between joint trajectories. Adjusting
the phase di�erences is achieved by tuning the weights
imposed to control coupling strength of the oscillators.
In this way, switching from one gait to another can
result from a proper change in the coupling weights be-
tween oscillators. However, �nding the correct coupling
weights to generate a desired gait is a di�cult task.
Hence, some researchers focused on the design of ar-
chitectures for CPGs constructed by coupled oscillators
and in this way, succeeded to generate common gaits
in legged robots such as bipeds [13-14] and quadrupeds
[15-17], and even in legless robots such as �sh [18] and
snake robots [19-20].

Here, we brie
y review some of the recent re-
searches on gait generation and transition for legged
robots that have applied CPG architectures as the
motor pattern generator. Wu et al. adopted a CPG
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model in which phase di�erences between oscillators
could be arbitrarily adjusted. They realized a con-
tinuous gait transition between walk and trot gaits in
a quadruped robot. Specially, they used an adaptive
frequency version of Hopf nonlinear oscillator as CPG,
where its intrinsic frequency was adapted by sensory
feedbacks [21]. Zhang et al. designed a �ne trot
gait for a parallel-leg quadruped robot named Baby
Elephant. The gait generation was done based on
what they called \series CPG" model. This model
indeed represented a Fourier series for approximating
the reference joint trajectories in which the Fourier
coe�cients were adaptively learned by Hopf nonlinear
oscillators [22]. Liu et al. used CPGs for adaptive loco-
motion control of the AIBO quadruped and NAO biped
robots, separately [23,24]. They applied Kimura's
oscillators, a version of Matsuoka's neuron model, to
online trajectory generation for reference points of
the robots in workspace, rather than generating joint
control signals in joint space. By this method, the
number of oscillators and, consequently, their tuning
parameters were reduced. It was also experimentally
demonstrated that the trajectories were smoothly al-
tered when the platform robots were walking up or
walking down a slope. Cristiano et al. presented a 2-
layer CPG network to locomotion control of the NAO
platform robot. This CPG network followed a master-
slave topology, in which a central Matsuoka's oscillator
was utilized to stimulate the oscillators placed at the
head of the main chains attached to the robot's body.
Then, active joints of the robot in each main chain
were driven through slave oscillators associated with
each of those joints. Also, in order to imitate the
human gaits, some desired phase di�erences between
the main chains of the robot were de�ned that should
be met via adjusting the outputs of the slave oscillators.
In addition, a Genetic Algorithm was used to �nd
optimal parameters for the CPG network in open-
loop [25]. Likewise, Cristiano et al. drove the NAO
robot to walk on unknown sloped terrains by a robust
CPG network based on Matsuoka's oscillators that
directly controlled the angular position of the robot's
joints [26]. This was contrary to the method used by
Liu et al. in [23,24]. Chen et al. investigated transitions
between di�erent gaits in a hexapod robot using a CPG
including oscillators controlled by only one parameter
to adjust the phase lags [27].

1.3. Optimization method to design CPG
networks

As mentioned by Liu and Chen [28], parameter ad-
justment for CPG networks to generate the desired
locomotion gait is a major di�culty. Besides the
above-mentioned references, many others have tried
to overcome this di�culty via applying search-based
optimization methods. For example, Kim et al. used

Particle Swarm Optimization (PSO) to search the CPG
parameters in order to generate optimal walk in a biped
robot [29] and Oliveira et al. applied an Evolutionary
Algorithm (EV) to search for the optimal set of the
CPG parameters for stable walking in a humanoid
robot [30].

Adjusting the parameters of a CPG model be-
comes more di�cult when it is used to generate more
than one gait. For example, human can perform gaits
such as walk, run, jump, hop, etc. As a method
for development of a CPG model that is able to
produce various gaits, it can be useful to consider some
symmetrical features existing in the movement patterns
of legs or joints in the actual locomotor system.

1.4. Bipedal gaits generation by the symmetric
4-cell CPG model

It is observable that in primary bipedal gaits, the
rhythmic movements of legs follow some symmetric
patterns. For instance, in gaits of walk and run, the left
and right legs move half period out of phase, while in
two-legged jump and hop, the legs move in phase. Fur-
thermore, if we focus on the 
exor and extensor muscles
of the ankle joints of the legs, we �nd out that they also
behave with a symmetric phase pattern in activity. For
instance, in the run, both 
exor and extensor muscles of
the ankle joints are in phase, whereas in the walk, they
are half period out of phase. Researchers like Collins,
Buono, Stewart, Golubitsky, and Pinto focused on such
symmetries in animal gaits and developed a symmetry-
based approach to investigate the global features of
general classes of models for CPGs that could control
bipedal, quadrupedal, and hexapodal locomotions [31-
34].

Recently, Pinto and Golubitsky investigated a 4-
cell model for CPG network architecture to produce
rhythmic motor signals corresponding to bipedal gaits
[33]. They predicted 11 possible periodic solutions to
the 4-cell CPG model and classi�ed them into two
groups of primary and secondary gaits according to the
waveform of the signals received by 
exor and extensor
muscles of the ankle joints. They could identify all four
primary gaits, i.e., walk, run, two-legged jump, and
two-legged hop, and four of six nontrivial secondary
gaits, i.e., gallop, skip, asymmetric hop, and one-legged
hop, with bipedal gaits actually performed by human.
Later, another secondary gait was also identi�ed that
was called \hesitation walk". Then, Pinto et al. ad-
dressed gait transitions from a primary to a secondary
gait in the 4-cell CPG model [34]. The gait transition
was in fact the result of bifurcations occurring due to
\symmetry-breaking" between couplings of the CPG
network by varying certain parameters. It was also
noted that the transitions were model-independent,
i.e., they did not depend upon the mathematical model
of the dynamics of the oscillators or the nature of
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the couplings. Pinto et al. examined the achieved
gait transitions as well as both synaptic and di�usive
couplings by two di�erent models of Morris-Lecar and
Wilson-Cowan oscillators [34].

1.5. Contributions of this paper
In this paper, we intend to follow the work of Pinto and
Santos [34] in bipedal gaits generation and transition
using the Morris-Lecar model of CPG. Particularly, we
use a genetic algorithm with non-dominated sorting
to search for optimal sets of the coupling weights in
order to produce rhythms corresponding to the primary
bipedal gaits of walk, run, two-legged jump, and two-
legged hop. By exploiting this optimization method, we
optimally adjust the phase di�erences locked between
the rhythmic signals of the 4-cell CPG network as
close as possible to what is actually desired. Also, we
successfully obtain all secondary gaits corresponding to
the bipedal locomotion identi�ed by Pinto et al. from
4-cell model using symmetry breaking bifurcations of
the primary gaits. Especially, we are able to produce
the hesitation walk by transition from the primary gaits
of run and two-legged jump. It should be mentioned
that the hesitation walk has already been predicted by
Pinto et al. as a possible periodic solution to 4-cell
model; however, they did declare to be able to produce
it by any bifurcation of the primary gaits, either from
the run or from the two-legged jump [34].

The rest of this paper is organized as follows.
Section 2 introduces the 4-cell CPG network, the
phase-locking relations between the oscillators, and
symmetries between couplings. Section 3 addresses the
Morris-Lecar equations used for modeling the intrinsic
dynamics of the cells. In Section 4, we brie
y review a
genetic algorithm with non-dominated sorting. Section
5 presents the results obtained by simulations based on
the optimal coupling weights. Gait transitions from
primary to secondary gaits, including the hesitation
walk, are also shown. We draw some conclusions in
Section 6.

2. Four-cell CPG network model

The 4-cell CPG network model for bipedal gaits was
�rstly introduced by Golubitsky et al. [31], and then
studied further by Pinto and Golubitsky [33]. As
shown in Figure 1, this model consists of 4 identical
cells each coupled with its adjacent cells via three
connection ways that are horizontal (pairs of 1-2 and
3-4), vertical (pairs of 1-3 and 2-4), and diagonal (pairs
of 1-4 and 2-3). It is well known that the model has a
symmetric structure with respect to connections if two
pairs of cells coupled through the same connection ways
coordinately interchange their inter-connection signals
as well as their weight values [34].

In the 4-cell CPG network model shown here, each

Figure 1. The four-cell CPG model. Oscillators produce
the rhythmic signals sent to the 
exor/extensor muscles of
the left and right ankle joints. Coupling strength between
the oscillators is controlled via three weights denoted by
wa, wb, and wc. Here, the blue arrows (that have no
label) take the weight values equal to the ones given to the
corresponding green arrows. However, secondary gaits
may be produced when one of the symmetry ways is
broken. Thus, weight values of two conjugated arrows are
not equal necessarily. In the case of the secondary gaits,
the arrows' weight values are denoted by a subscript \ij,"
where i and j determine the numbers of sending and
receiving cells, respectively.

connection way is bilateral and one weight value con-
trols the coupling strength in both directions equally.
However, it should be noted that the equality is
essential if a type of symmetry is required. A 4-
cell CPG model possesses a spatiotemporal symmetric
structure wherever the wave shapes of the cell's output
signals are the same. The primary gaits have this
characteristic with respect to all symmetric directions.
By de�nition, if all oscillators produce signals with
the same waveform, whether in phase or out of phase,
the resulting gait is recognized as a primary gait,
otherwise it is secondary. The bipedal gaits of walk,
run, two-legged jump, and two-legged hop are classi�ed
as primary gaits. In addition, a so-called spatial
symmetry exists in the 4-cell CPG model whenever
the output signals of two pairs of cells are also in
phase. As shown in Figure 2, each primary gait
possesses at least a spatial symmetry depicted by a
symmetry line with respect to the corresponding cells
and couplings. Speci�cally, the walk possesses the
symmetry in diagonal way, the run has it in horizontal
way, the two-legged jump has it in vertical way, and
the two-legged hop has all types of these symmetries.
Therefore, the 4-cell CPG model should possess all
three ways of symmetry to be able to produce all
primary bipedal gaits. In other words, generating the
primary gaits is controlled by only three parameters of
wa, wb, and wc.

The architecture of the 4-cell CPG model has been
inspired by biological reality. The cells placed at the
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Figure 2. The locked phase di�erences should be held between the cells' output signals corresponding to the primary
gaits. The symmetry lines depict the spatial symmetries existing in the primary gaits.

same column, see Figure 1, have roll of the 
exor and
extensor neurons associated with one leg. In fact, this
is inspired by what happens in live musculoskeletal
systems, where two muscle groups, namely, 
exors and
extensors, control the rhythmic movements of a joint.
By these considerations, we are able to explain why the
symmetric connections are required to adjust the phase
di�erences between the cells in generating the primary
bipedal gaits. Brie
y, the symmetries are re
ected in
the CPG output rhythmic movements of the left and
right legs as well as rhythmic activities of the ankle
joints extensor and 
exor muscles, the same as what
happens in a live musculoskeletal system.

According to Figure 2, in the walk and run,
the left and right legs are half period out of phase.
However, in gaits of two-legged jump and hop, in which
both legs move together uniformly, the left and right
legs are always in phase. Hence, footprints of both legs
are in the same row at the start and at the end of
each jump or each hop. However, the ground contact
duration in the two-legged jump is longer than that in
the two-legged hop. Furthermore, in gaits of walk and
two-legged jump, both 
exor and extensor muscles of
each leg are half period out of phase, because of the
need for ankle rotation during performing the gaits.
Contrariwise, in the run and two-legged hop, they are
in phase, due to the need for rigidity in the ankle
joints [32].

In the case of secondary gaits, �rst, the symmetry
in the coupling ways considered in CPG architectures
of primary gaits is broken, and consequently, because
of the symmetry breaking, two di�erent signals are
produced by the cells. For example, the gallop may
result from breaking of the symmetry in both the walk
and two-legged jump gaits. Then, the muscle groups
of the left leg receive the same signal shape, and those
of the right leg receive another shape. Moreover, in
both of the legs, the 
exor and extensor muscles are

half period out of phase. Therefore, the gallop has the
symmetry neither in horizontal way of the two-legged
jump nor in diagonal way of the walk.

3. The Morris-Lecar nonlinear oscillator

Various types of nonlinear oscillators have been pre-
sented to model the cells of a CPG [6]. The Morris-
Lecar model is one of them used in this paper because
of its high resemblance to the biological model as well as
simplicity. This model describes the rhythmic behavior
of the cells of a CPG network by a set of nonlinear
equations as follows:8<: _u = f1(u; v) = �'�(v)(n(v)� u)

_v =f2(u; v) = �m(v)gca(v � Vca)
� gl(v � Vl)� gku(v � Vk) + Iapp;

(1)

where, v measures the membrane potential of neurons,
Iapp is current stimulus, and each term gca(v � Vca),
gl(v�Vl), and gk(v�Vk) models an ionic channel that
regulates the voltage v along the membrane of the axon.
Also, the functions m(v), n(v), and �(v) are given by:

m(v) =
1
2

�
1 + tanh

�
v � V1

V2

��
;

n(v) =
1
2

�
1 + tanh

�
v � V3

V4

��
;

�(v) = cosh
�
v � V3

2V4

�
: (2)

The remaining parameters are constant, chosen in
numerical simulations as those given in Table 1. The
values of the parameters, except for gca; ', and Iapp,
are �xed in all of the simulations.

Eq. (1) describes the internal dynamics of one
cell, while the output produced by the cell is a result

Table 1. The parameter values of the Morris-Lecar model used for numerical simulations.
VVV 1

(mV)
VVV 2

(mV)
VVV 3

(mV)
VVV 4

(mV)
VVV k

(mV)
VVV l

(mV)
VVV ca
(mV)

gggk
(mmho/cm2)

gggl
(mmho/cm2)

gggca
(mmho/cm2)

IIIapp

(�A/cm2)
'''

0.01 0.15 0.10 0.15 -0.70 -0.50 1.00 2.00 0.50 0.90 0.23� 0.30 0.1 � 0.5
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of coupling the cell with the other ones. Therefore,
we should consider a model for couplings established
between each two cells. Two models called synaptic
and di�usive are introduced to this end [34]. Here, we
choose the synaptic model that implies h(yk; yi) = yk,
where h is coupling function, and yk and yi are the
outputs of the deliverer and receiver cells, respectively.
Accordingly, dynamics of the 4-cell CPG network
model is formulated as follows:

_y1 =F (y1; y2; y3; y4) = f2(u1; y1) � wa21 h(y2; y1)

� wb31 h(y3; y1)� wc41 h(y4; y1);

_y2 =F (y2; y1; y4; y3) = f2(u2; y2)� wa12 h(y1; y2)

� wb42 h(y4; y2)� wc32 h(y3; y2);

_y3 =F (y3; y4; y1; y2) = f2(u3; y3)� wa43 h(y4; y3)

� wb13 h(y1; y3)� wc23 h(y2; y3);

_y4 =F (y4; y3; y2; y1) = f2(u4; y4)� wa34 h(y3; y4)

� wb24 h(y2; y4)� wc14 h(y1; y4); (3)

where, yi denotes the output of a cell. It should be
noted that both ui and yi are variables of the cells'
internal dynamics. Thus, according to Eq. (1), we have:

_ui = f1(ui; yi) i = 1; 2; 3; 4:

4. Optimal primary bipedal gaits

In generating the primary bipedal gaits, we should try
to adjust the coupling weights so that cells' output
signals possess phase di�erences similar to the ones con-
sidered in Figure 2. We solve this problem via a multi-
objective optimization technique. In the �rst step, the
objectives should be de�ned and formulated. It is clear
that if each cell retains a correct phase di�erence from
the cell numbered 1, then the phase di�erence between
each two cells will be correct, too. Therefore, in the
case of each primary gait, we formulate the objective
functions as follows:

walk:

z1 = j��(y1; y2)� 180�j ; z2 = j��(y1; y3)� 180�j ;
z3 = j��(y1; y4)� 0�j ;

run:

z1 = j��(y1; y2)� 180�j ; z2 = j��(y1; y3)� 0�j ;
z3 = j��(y1; y4)� 180�j ;

Two-legged jump:

z1 = j��(y1; y2)� 0�j ; z2 = j��(y1; y3)� 180�j ;
z3 = j��(y1; y4)� 180�j ;

Two-legged hop:

z1 = j��(y1; y2)� 0�j ; z2 = j��(y1; y3)� 0�j ;
z3 = j��(y1; y4)� 0�j ; (4)

where, z0s denote the objective functions and ��(.,.)
measures the phase di�erences between arguments via
cross correlation analysis.

The elitist Non-dominated Sorting Genetic Al-
gorithm (NSGA-II), introduced by Deb et al. [35], is
utilized here to solve the multi-objective optimization
problem formulated by Eqs. (4) for each primary
bipedal gait. The optimizing variables are wa; wb, and
wc, by considering that the symmetries in all couplings
should be conserved in the network. These variables are
coded into a chromosome. An initial population is gen-
erated and in a repetitive procedure using the operators
of selection, crossover, and mutation, new populations
with higher �tness are generated. The NSGA-II ranks
the populations according to a dominance rule. In this
way, each solution of a population is assigned a �tness
value based on its rank in the population, not its actual
objective function value. Thus, these dummy �tness
values determine an entire Pareto optimal solution set.
A Pareto optimal set is a set of solutions that are non-
dominated by each other [36].

It is noted that, based on the dominance rule,
solution X dominates Y if X is not worse than Y in
any aspect (by evaluating objective functions) and X
is better than Y at least in one facet. Hence, for each
solution, a dominated set and a failure counter are
assigned. Then, if X dominates Y in a comparison,
Y is added to the dominated set of X, and the failure
counter of Y is increased by one. Thus, Pareto optimal
solution set of rank of 1 includes the solutions with a
failure count of zero. Other Pareto fronts are formed by
repeating this for the remaining solutions with a failure
count of 1 and so on. Eventually, a new population
is generated from the best non-dominated fronts by
regarding the crowding distance approach.

5. Results and discussion

As mentioned before, there are two contributions to
present in this section. The �rst is the generation of
primary bipedal gaits by the 4-cell CPG model with
optimal coupling weights. The next is the generation of
secondary bipedal gaits, especially the hesitation walk,
by means of symmetry breaking bifurcations of the
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Table 2. Values of optimal coupling weights, cell parameters, and initial conditions used in generating the primary gaits.

Optimal coupling
weights values

Cells parameters
values

Initial conditions
values

Gait (wa; wb; wc) (gca; Iapp; ')

 
LFLFLF RFRFRF
LELELE RERERE

!
Walk (0:588 0:092 0:238) (0:900 0:230 0:255)

 
(0:280 0:277) (�0:197 0:159)

(�0:197 0:159) (0:280 0:277)

!
Run (0:153 �0:281 0:143) (0:900 0:290 0:395)

 
(0:280 0:277) (�0:197 0:159)

(�0:197 0:159) (0:280 0:277)

!
Two-legged

jump
(�0:171 0:003 0:739) (0:900 0:280 0:295)

 
(�0:046 0:398) (0:046 0:398)
(0:327 0:253) (0:327 0:253)

!
Two-legged

hop
(0:101 �0:210 �0:109) (0:900 0:280 0:295)

 
(�0:046 0:398) (�0:046 0:398)
(�0:046 0:398) (�0:046 0:398)

!
Table 3. Values of cells parameters and coupling weights corresponding to gait transitions.

Transition Cells parameters
values

Primary coupling
weights values

Changed coupling weights
values for symmetry

Primary
gait

Secondary
gait

(gca; Iapp; ') (wa; wb; wc) breaking bifurcations of
primary gaits

Walk Skip (0:900 0:270 0:105) (0:588 0:092 0:238) wb3!1 = wb4!2 = +0:558
Run Skip (0:900 0:265 0:275) (0:153 �0:281 0:143) wc3!2 = wc4!1 = �0:200
Walk Gallop (0:900 0:270 0:295) (0:588 0:092 0:238) wa2!1 = wa4!3 = �0:553

Two-legged
jump

Gallop (0:900 0:280 0:495) (�0:171 0:003 0:739) wa1!2 = wa3!4 = �0:011

Run
Hesitation

walk
(0:900 0:295 0:175) (0:153 �0:281 0:143) wa2!1 = wa3!4 = �0:292

Two-legged
jump

Hesitation
walk

(0:670 0:280 0:195) (�0:171 0:003 0:739) wa2!1 = wa3!4 = �0:421

Two-legged
hop

One-legged
hop

(0:900 0:270 0:295) (0:101 �0:210 �0:109) wa2!1 = wa4!3 = �0:300

Two-legged
hop

Asymmetric
hop

(0:900 0:270 0:155) (0:101 �0:210 �0:109) wa2!1 = wa3!4 = +0:359

primary gaits. The results presented here have been
obtained by numerical simulations in MATLAB.

In Table 2, we present the optimal values for
coupling weights calculated by the NSGA-II. This al-
gorithm applies the 2-point crossover operator in which
crossover and mutation rates are set to 0.8 and 0.03,
respectively. In addition, the non-�xed parameters
in internal dynamics of the cells as well as values
of initial conditions to solve the dynamics are given
here. Note that symmetry conditions corresponding
to each primary gait are regarded in initial valuing.
Figure 3 shows output rhythmic signals of the cells
obtained by numerical simulations for each one of the
walk, run, two-legged jump, and two-legged hop gaits,
respectively.

After generating all primary gaits, we could also
produce �ve secondary bipedal gaits via symmetry

breaking bifurcations imposed by changing some values
of coupling weights in the network of a primary gait.
They were previously identi�ed as patterns for bipedal
gaits each of which can be a possible rhythmic solution
to 4-cell CPG model [33]. Figure 4 shows architectures
of the model by which we can generate the secondary
gaits. Also, in Figures 5 to 8, the cells' output rhythmic
signals corresponding to each generated secondary gait
are shown. In Table 3, the values used in numerical
simulations have been listed in detail, too.

As shown in Figure 3, in each case of primary
gaits, the shape of the cells' output signals is the same.
The phase di�erences have also been achieved same as
those expected and shown in Figure 2. For example,
all the cells' output signals corresponding to the two-
legged hop are in phase. On the other side, in the
case of secondary gaits, two di�erent patterns in the
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Figure 3. The 4-cell rhythmic output signals corresponding to (a) walk, (b) run, (c) two-legged jump, and (d) two-legged
hop.

output signals are revealed. We have shown each of
the patterns with a distinct color in Figures 5 to 8. It
is clear that the output signals of secondary gaits do
not possess any type of symmetry either with respect
to patterns or by the way of phase lags. For example,
in Figure 5(a), the output signals corresponding to the
skip gait are shown, in which the pairs of cells that
are adjacent vertically or opposite diagonally produce
two di�erent shapes of signals. Therefore, there is
not any symmetry in horizontal or diagonal lines.
Furthermore, the pairs of cells that are horizontally
adjacent produce output signals with the same shape,
but half period out of phase. Thus, there is no spatial
symmetry in vertical way, too. However, it is possible
that the signal patterns may coincide with each other
via a shift along the time. Hence, it is said that a
vertical spatiotemporal symmetry exists in the signals
generating the skip gait.

Similarly, by paying attention to architectures
shown in Figure 7, we can �nd a type of spatiotemporal
symmetries for each secondary gait. The gallop and
one-legged hop gaits have horizontal spatiotemporal
symmetry; also, the hesitation walk and asymmetric
hop have diagonal spatiotemporal symmetry. However,
the secondary gaits generated by a transition from
two-legged hop do not need to shift their same shape
signals a long time to coincide with each other. Thus,
a spatial symmetry exists here. Clearly, each spatial
symmetry will also be a spatiotemporal symmetry. It is
noted that the phase di�erences demanded between the
cells of the networks in Figure 4 are meaningful when
measured for signals of the same shape. By considering
the cells' output signals shown in Figure 3, we �nd
out that all primary gaits have all the three types of
spatiotemporal symmetries. In addition, each one of
the walk, run, and two-legged jump possesses only a
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Figure 4. Architectures of the 4-cell CPG network to generate secondary gaits via symmetry breaking bifurcation in a
primary gait. In the secondary gaits of skip, gallop, and hesitation walk, each pair of signals having the same shape hold a
phase lag of 180�. Thus, they have spatiotemporal symmetries. In contrast, in the cases of one-legged hop and asymmetric
hop, signals of the same shape are in phase. Hence, they have some spatial symmetries.

Figure 5. Transitions from (a) walk to skip and (b) gallop.

diagonal, a horizontal, and a vertical spatial symmetry,
respectively. But, the two-legged hop possesses all
types of the spatial symmetries.

As shown in Figure 4, each primary gait can
produce two secondary gaits through transitions. Spe-
cially, we could produce the hesitation walk via tran-
sition from both the two-legged jump and the run. In

both of the cases, it is achieved by changing the values
of the horizontal coupling weights. Figures 6(b) and
7(b) show two sets of signals producing the hesitation
walk, in which the left 
exor and the right extensor
muscles receive signals of the same shape, however, half
period out of phase. This is true for the left extensor
and the right 
exor, too; although, it does not mean
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Figure 6. Transitions from (a) run to skip and (b) hesitation walk.

Figure 7. Transitions from (a) two-legged jump to gallop and (b) hesitation walk.

that there is an expected phase lag between the left and
right extensors, or between the left and right 
exors.

6. Conclusions

In this paper, we investigated the bio-inspired 4-cell
CPG network model to generate rhythmic patterns
corresponding to di�erent primary bipedal gaits and
transitions from them to secondary gaits. The model
was composed of four coupled Morris-Lecar nonlin-
ear oscillators jointed together via synaptic model
of coupling, to generate rhythms sent to the 
exor

and extensor ankle muscles of the left and right legs.
Existence of symmetries in establishing couplings drew
out rhythmic output signals having all spatiotemporal
symmetries and some spatial symmetries associated
with the primary gaits. In order to adjust correct
phase di�erences between the output signals by which
we could be able to obtain the expected symmetries,
a genetic algorithm with non-dominated sorting was
used. Then, the secondary gaits were produced
by symmetry breaking bifurcations of primary gaits
caused by changing the values of some coupling weights
in the network of primary gaits. The skip, gallop,
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Figure 8. Transitions from (a) two-legged hop to one-legged hop and (b) asymmetric hop.

one-legged hop, asymmetric hop, and especially the
hesitation walk gaits were produced by transitions from
the primary gaits of walk, run, two-legged jump, and
hop. Hesitation walk had not been obtained for run
or Two-legged hop in [34]. It is worth to note that we
recently presented a similar research paper in which
di�usive model of coupling was examined to generate
the secondary gaits [37]. However, we succeeded there
in generating the hesitation walk only via transition
from run.

Nomenclature

v Membrane potential
Iapp Applied current stimulus
g Instantaneous membrane conductance
vca Equilibrium potential corresponding to

Ca++

vk Equilibrium potential corresponding to
K++

vl Equilibrium potential corresponding to
leak
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