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1. Introduction

Cellular Manufacturing System (CMS) is a produc-
tion system in which parts are collected into dedi-
cated manufacturing cells, consistent with a number
of relationships in their design and manufacturing
The key benefits of CMS described in
less production cost, less mate-

Abstract. A flexible Cell Scheduling Problem (CSP) under Time-Of-Use (TOU)
electricity tariffs is developed in this study. To apply a kind of energy-conscious policy,
overconsumption cost of on-peak period electricity, limitations on total energy consumption
by all facilities, setup time available on each cell, part defect (pert) percentage, and the
total number of Automated Guided Vehicles (AGV) were considered. Additionally, an
Ant Colony Optimization (ACO) algorithm was employed to find a near-optimum solution
to the proposed Mixed Integer Linear Programming (MILP) model with the objective of
minimizing the total cost of CSP model. Since no benchmark is available in the literature,
a lower bound was implemented as well to validate the result achieved. Moreover, to
improve the quality of the results obtained by meta-heuristic algorithms, two hybrid
algorithms (HGA and HACO) were proposed to solve the model. For parameter tuning of
algorithms, Taguchi experimental design method was applied. Then, numerical examples
were presented to prove the application of the proposed methodology. Our results were
compared with the lower bound, confirming consequently that HACO is capable of finding
better and near-optimum solutions.
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rial handling cost, decline in throughput time and
Work-In-Process (WIP), and also simple production
control [1]. With the improvement of manufacturing
technology and coping with the challenges of cus-
tomer’s demands from mass production to medium
product diversity and medium or small production
volumes with shorter product life cycles, CMSs received
more courtesy from investigators and manufacturers [2-
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6]. Cell Part Scheduling problem (CPS) involves
the allocation of manufacturing resources over time
to perform the processes on a collection of parts
in cells, which is a decision-making process that
plays a significant role in CMS [7]. Based on the
number of cells, the CPS problem can be divided
into Single-Cell Part Scheduling (S-CPS) and Multi-
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Cell Part Scheduling (M-CPS). When dealing with S-
CPS, the problems are comparable to classical flow-
shop or job-shop scheduling problems, which are NP-
hard problems. Therefore, some heuristics or meta-
heuristic algorithms are proposed [8-10]. A Flex-
ible Manufacturing System (FMS) can be defined
as an integrated arrangement of Numerical Control
(NC) machine tools, some supplementary production
equipment, and a material handling system designed
to simultaneously manufacture low to medium vol-
umes of a wide variety of high-quality goods at
low cost [11]. FMS is generally classified into
four different categories: Single Flexible Machines
(SFMs), Flexible Manufacturing Cells (FMCs), Multi-
Machine FMSs (MMFMSs), and Multi-Cell FMSs
(MCFMSs) [12].

Automated Guided Vehicles (AGVs) are among
various innovative material handling methods that
are finding increasing applications today. They can
be interfaced to different other production and stor-
age equipment and controlled through an intelligent
computer control system. Both the scheduling of
operations on machines as well as the scheduling of
AGVs are crucial elements, contributing to the effi-
ciency of the overall FMS [13]. An AGV material
handling system, which is typically integrated with
a block layout, is frequently defined by the mate-
rial handling network. This network specifies the
configuration and direction of the network as well
as the number and location of P/D stations [14,15].
On the world-class level, the field of application
of mobile robots is not constrained to the indus-
try; it is considerably wider, also reaching the areas
of logistics (distribution and storage), oceanographic
and underwater exploration, planetary exploration,
and military applications. At this time in the
industry, and specifically in the existing industrial
projects of mobile robotics, the core objective ap-
plications are in manufacturing (factories, cells, and
FMSs), storage, and services in the logistics of supply
chain [16].

The growth in price and demand for petroleum
and other fossil fuels, together with the decrease in
the reserves of energy commodities and the increasing
concern over global warming, has resulted in greater
efforts toward the minimization of energy consumption.
In the USA, the manufacturing sector consumes about
one-third of the energy usage and produces about
28% of greenhouse gas (GHG) emissions. To produce
one kilowatt-hour of electricity, two pounds of carbon
dioxide is released into the atmosphere, therefore con-
tributing to global warming [17].

Although a substantial number of research papers
are available in the literature, a brief review of those
on the Cell Scheduling Problem (CSP) is presented in
the next section.

2. Literature review

Generally, studies of scheduling problem can be catego-
rized into six main categories: FMS, CSP, FMC, flow
shop, job shop, and assembly line, respectively.

2.1. FMS studies

Scheduling problem for FMS has been investigated by
some academics: Ulusoy et al. [18], Ali et al. [19],
Pach et al. [20], and Leitao & Restivo [21]. After
that, Abazari et al. [22] proposed a linear mathematical
programming model with both continuous and zero-
one variables for job selection and operation-allocation
problems in an FMS to maximize profitability and
utilization of system. The proposed model assigns
operations to different machines considering capacity
of machines, batch-sizes, processing time of operations,
machine costs, tool requirements, and capacity of tool
magazine. They used a GA to solve the formulated
problem.

Similarly, Pach et al. [23] optimized FMS by a
new general hybrid control architecture called ORCA
(dynamic Architecture for an Optimized and Reactive
Control). Balaji and Porselvi [24] used an artificial
immune system and Simulated Annealing (SA) algo-
rithms for scheduling batches of parts based on job
availability model in a multi-cell FMS. A mathematical
model for the investigation problem is used with the
objective function of minimizing the make-span. In
addition, Erdin and Atmaca [25] proposed the im-
plementation of the overall design of a FMS. They
used an application of the strategy of an FMS to
determine essential number, utilization and sequence
of workstations and plant layout for the assumed
manufactured quantity of diverse parts, processing
sequence, and times. He et al. [26] investigated the
problems of part input sequencing and scheduling in
FMS in a Mass Customization/Mass Personalization
(MC/MP) environment. They considered both robot
and machine scheduling rules using a state-dependent
part input sequencing algorithm.

2.2. CSP studies

Considering different aspects including machine group-
ing control, Virtual Manufacturing Cells (VMCs), flow-
line manufacturing cell, group layout design model,
etc., CSP has been studied by some researchers: Soli-
manpur et al. [27], Logendran et al. [28], Venkatara-
manaiah [29], Tavakkoli-Moghaddam et al. [30], Lin
et al. [31], Shirazi et al. [32], Kesen et al. [33], Lin
et al. 2011 [34], Kia et al. [35], Batur et al. [36],
Izui et al. [37], Boutsinas [38], and Fazlollahtabar and
Jalali Naini [39]. Later, Zeng et al. [40] studied
the problem of parts scheduling in multi-job shop
cells by considering exceptional parts that need to
visit machines in different cells and be transferred
by robot with the objective of minimizing the make-
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span. Forghani Mohammadi [41] presented a unified
methodology to consecutively solve the cell formation
and layout problems. Also, in order to measure the
material handling cost more accurately, the real situa-
tion of the machines within the cells was used (instead
of the center-to-center distances between the cells).
Correspondingly, Zhang et al. [42] developed a time-
indexed integer programming formulation to identify
manufacturing schedules that minimize electricity cost
and the carbon footprint under TOU tariffs without
compromising production throughput. Their results
suggested that shifting electricity usage, while reducing
electricity cost, may increase CO, emissions in the
regions where the grid base load is met with electricity
from coal-fired power plants.

Li et al. [43] considered the Flow-line Manu-
facturing CSP (FMCSP) with Sequence-Dependent
Family Setup Times (SDFSTs) for total tardiness
and mean total flow time minimization. Based on
the mathematical model of this problem, a Hybrid
Harmony Search (HHS) was proposed. Experimental
results from 900 problem instances showed that HHS
performs relatively better than these meta-heuristics
in finding schedules to minimize the multi-objective
FMCSP with SDFSTs. Recently, Zohrevand et al. [44]
have developed a bi-objective stochastic model. The
first objective function of the developed model seeks
to minimize the total cost, and the second objective
function maximizes labor utilization of the cellular
manufacturing system. Also, Majumder and Laha [45]
investigated the problem of 2-machine robotic cell
scheduling of one-unit cycle with sequence-dependent
setup times and different loading/unloading times of
the parts. They implemented a discrete cuckoo search
algorithm offered to determine the sequence of robot
moves along with the sequence of parts so that the
cycle time is minimized.

2.3. FMC category

Gultekin et al. [46] considered a bi-criteria model
which decides on the allocation of the operations to
the machines, the processing times of the operations on
the machines, and the robot move sequence that jointly
minimize the cycle time and the total manufacturing
cost. Tiiysiiz and Kahraman [47] presented a method
for modeling and exploration of time-critical, dynamic
and complex systems using stochastic PN together
with fuzzy sets. Recently, Naderi and Azab [48] have
studied scheduling of a FMC with parallel processing
capability. They formulated a mixed integer linear
programming model and used five meta-heuristics algo-
rithms to solve it. Also, Yang et al. [49] implemented an
improved discrete Particle Swarm Optimization (PSO)
with genetic operator and random-heuristic initializa-
tion method to minimize the make-span of Flexible
robotic manufacturing CSP with multiple robots.

2.4. Flow shop studies

In the flow shop issue, there exist some topics involving
group scheduling problem [50-52], flexible flow shop
[53], flow shop scheduling [54-57] energy-based flow
shops, etc. With respect to the energy application
in the flow shop, Fang et al. [58] presented a general
multi-objective mixed integer linear programming for-
mulation for optimizing the operating schedule of a
flow shop that considered both productivity (i.e., make-
span) and energy (i.e., peak load and carbon footprint)
related criteria. Dai et al. [59] proposed an energy-
efficient model for Flexible Flow Shop scheduling
(FFS). First, a mathematical model for a FF'S problem,
which is based on an energy-efficient mechanism, is
described to solve multi-objective optimization. Since
FFS is well known as a NP-hard problem, an improved,
genetic-simulated annealing algorithm is adopted to
make a critical trade-off between the make-span and
the total energy consumption to implement a feasible
scheduling. Finally, a case study of a production
scheduling problem for a metal working workshop in
a plant is simulated. The experimental results show
that the relationship between the make-span and the
energy consumption may be apparently conflicting. In
addition, an energy-saving decision is performed in a
feasible scheduling.

2.5. Job shop researches

In the job shop problem, there exist two subjects
including job shop scheduling [60] and flexible job shop
scheduling [61-63].

2.6. Assembly studies
In this topic, the assembly line balancing problem was
investigated by Hamta et al. [64] and Khalili et al. [65].
As seen, to the best of author’s knowledge,
there exists no research work which has considered
setup time, part defect (pert) percentage, and the
total number of AGV simultaneously in the flexible
cell scheduling problem under Time-Of-Use (TOU)
electricity tariffs. This research was motivated by
Abazari et al. [22] and Zhang et al. [42] studies, in
which a flexible cell scheduling problem under Time-Of-
Use (TOU) electricity tariffs is developed. Moreover,
to bring applicability closer to their model of real
energy-conscious problems, additional limitations, such
as total available consumed power, setup time, part
defect (pert) percentage, and the total number of
AGYV are considered. Additionally, two meta-heuristic
algorithms (GA and ACO) are utilized to find a near-
optimum solution to the proposed Mixed Integer Linear
Programming (MILP) model with the objective of
minimizing the total cost of CSP model. To increase
the quality of the outcomes obtained by meta-heuristic
algorithms, two hybrid algorithms (HGA and HACO)
are proposed to solve the model. The hybrid outcomes
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are compared with the lower bound for more validation.
In addition, Taguchi experimental design method is
applied to parameter tuning of the algorithms. In
short, the highlights of the differences of this research
from the above-mentioned studies are as follows:

e Considering time-of-use electricity tariffs and limita-
tion on total power consumption to make an energy-
conscious model,;

e Adding further constraints to the model, such as
setup time available, part defect (pert) percentage,
and the total number of AGV, to make the model
more applicable and extend the model of Cell
Scheduling Problem (CSP);

e Considering an Ant Colony Optimization (ACO)
and a Genetic Algorithm (GA) to better solve the
new model and compare the results;

e Developing two hybrid algorithms (HACO and
HGA) to improve quality of the results;

e Using Taguchi experimental design method for pa-
rameters tuning of algorithms;

e Comparing the solutions of HACO with a lower
bound for more justification.

The structure of the rest of the paper is organized
as follows. In Section 3, the problem is defined and
the assumptions are made. In Section 4, the problem
is mathematically formulated into a Mixed Integer
Linear Programming (MILP) model. An ACO and a
GA are proposed to solve the problem in Section 5,
and also a Taguchi experimental design method is
utilized for parameter tuning of algorithms. In order to
demonstrate the application of the proposed approach,
numerical examples are solved in Section 6. Finally,
conclusions and future research topics are provided in
Section 7.

3. The problem and assumptions

3.1. The problem

CMS has a structure that can present application
of modern manufacturing knowledge, e.g. just-in-time
manufacturing, FMSs, and computer-integrated man-
ufacturing, where a number of diverse jobs come with
various processing necessities. A job contains one or
more operations and each of them can be executed by
one or more cells. It is assumed that the particularities
related to the production requirements of the job, num-
ber of operations for each job and their machining time,
and number of tool slots required by each operation of
each job on every cell are identified in advance. Also,
critical and optional types of operations are allied with
each job. Vital operations of a job mean that this
operation can be applied only to a specific cell using
a deterministic number of tool slots, whereas optional

operations imply that they can be carried out on a
number of cells with the same or varying machines,
processing time, and tool slots. In this problem, the
flexibility lies in the selection of a cell for processing
the optional operations of the jobs.

It must be highlighted that the European Union
legalized guidelines on energy like Directive of the
European Parliament and of the Council 2006/32/WE
from 5th April, 2006 endue efficiency and energy ser-
vices and repeal Council Directive 93/76/EEC. Based
on the universal developments and latest progress in
green technologies, there is a requirement to take
into consideration the energy consumption and COs
emissions in a company with the usually applied ob-
jectives (minimum travel time, maximum throughput,
and minimum cost). Therefore, in the present study,
the energy efficiency model for flexible Cell Scheduling
Problem (CSP) is presented and evaluated. This
research is concerned with a CSP in a FMC under
Time-Of-Use (TOU) electricity tariffs in which not only
the time available for each cell, but also the maximum
setup time available for each cell are limited; it is
also concerned with two AGVS for material handling
system. Furthermore, there are bounds on the total
energy consumption and the pert percentage that it is
fixed and independent of any type of job operations.
The objective is to find the near-optimum solution to
job selection and loading of a Mixed Integer Linear
Programming (MILP) model so that the total cost,
including under-utilized cost, over-utilized cost, setup
times cost, pert percentage cost, operation process cost,
and energy consumption cost, is minimized while the
constraints are fulfilled.

3.2. Assumptions

In order to minimize the complexities of evaluating the
problem for an applied FMC as shown in Figure 1, the
following assumptions are used for the mathematical
formulation of our model:

(a) All considered times for wholly jobs are determin-
istic;

(b) In each cell, duty of robots is to load or unload
like AGVS;

(¢) The times of loading or unloading between robots
with machines or AGVS are similar;

(d) Every AGV can have only one batch of each job
in order to process the receipt of material storage;

(e) Transportation of AGVs is without delay;
(f) During AGVs travel, stopping is not feasible;

(g) The travel of AGVs is full or empty depending on
the existence or non-existence of job;

(h) Movement of AGVs is based on the shortest route;

(i) Travel time of AGVs depends on sequence of jobs;
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Figure 1. Layout of FMC.

In each time, one empty AGV is available;

All AGVS start the movement of loading or un-
loading station at time zero;

All the jobs, machines, tools, AGVS, robots, and
cells are available at time zero;

Each operation process has to be performed with-
out preemption on exactly one resource of a
specific resource type;

Sharing of tool slots, machines, AGVS, and robots
is not considered;

Each machine can process maximum one operation
at a time;

Adequate rapidly is available for loading or un-
loading;

Over-loading and under-loading of cells are accept-
able;

The setup times and pert percentage available for
each cell are limited;

FEach cell has a fixed pert percentage for processing
any operation (independent of jobs);

The operations of a job must be completed on the
same cell once a cell is selected;

One robot in each cell for loading or unloading is
considered;

Energy consumption as a constraint is considered.

4. Mathematical model

Before presenting the mathematical formulation of the
problem at hand, the notations are first introduced.

The parameters and variables of the model are
defined as follows:

4.1. Parameters

Number of cells

= Q

Number of machines

Number of tool slots

Number of AGVS

Number of operation for each jobs
Number of jobs

S~ O Q-

[

Number of operations of job j
Indexof cell; 1 <e<C

Index of machine; 1 <m < M
l Index of tool slots; 1 <1< L

o

g Index of AGVS; 1< g <@

o Index of operation; 1 < o0 < 0

j Index of job; 1 <3< J

X, Horizontal location coordinate of
storage

Y, Vertical location coordinate of storage

X, Horizontal location coordinate of cell ¢

Y. Vertical location coordinate of cell ¢

T. Available time on cell ¢

VAGV Speed of full AGV

Vaav Speed of empty AGV

C. Idleness unit cost of cell ¢

o Over time unit cost of cell ¢

CsT(jom:y Setup time unit cost for operation o of

job j on machine m by toll slot [



344

Ajoml
Ca(joml)

C

op(joml)

ST,
STjO‘ﬂll

Py

Py

t,
Cp(medium)

Cy(nigh)

B(j,0)

M. Hemmati Far et al./Scientia Iranica, Transactions E: Industrial Engineering 25 (2018) 339-358

Pert percentage for operation o of job
j on machine m by toll slot [

Pert unit cost for operation o of job j
on machine m by toll slot [

Process unit cost for operation o of job
j on machine m by toll slot [

Upper limit for allowable pert
percentage capacity of cell ¢

Batch size of job j

Processing time required for operation
o of job 7 on machine m by toll slot [

Setup time capacity of cell ¢

Setup time required for operation o of
job 7 on machine m by toll slot [

Quantity of electric energy
consumption by one machine
(kWs)

Quantity of electric energy
consumption by one robot or
AGV (kWs)

Total allowable electric energy
consumption of production system
(kWs)

Time of loading or unloading for job j
by robot

Unit cost (tariff) of kW power used by
a facility in mid-peak hours

Difference unit cost of kW power used
by a facility in mid-peak hours with
on-peak hours

Set of cells that can perform operation
o of job j

4.2. Variables

TPC

TPC,

TPCy

TPCs

TC(I)
TC(0)

TC(other)

Total electric energy consumption of
production system (kWs)

Quantity of electric energy
consumption for all machines
(kWs)

Quantity of electric energy
consumption for all robots and
AGVS (kWs)

Total of electric energy consumption
on-peak hours of electric energy
consumption

Total cost of under-utilized of all
facilities

Total cost of over-utilized of all
facilities

Other costs including setup times cost,
pert cost, and process cost

TC(P) Total cost of electric energy

consumption of all facilities

TC(medium) Total cost of power consumption in
mid-peak hours for all facilities

TC(high) Total cost of power consumption in

on-peak hours for all facilities

U, Under-utilized time on cell ¢ (a decision
variable)

O, Over-utilized time on cell ¢ (a decision
variable)

O, Over-utilized electric energy
consumption of all the facilities
(a decision variable)

U, Under-utilized electric energy
consumption of all the facilities (a
decision variable)

1 if operation o of job j is assigned
on machine m in cell ¢ by tool slot

!l and carried AGV,
0 otherwise

ongcml =

)1 if job j is selected
710 otherwise

1 if AGV g is selected
0 otherwise

AGV, = {

Based on the above definitions, the mathematical
model of the problem is derived in the next subsections.

4.8. The objective function cost

The total cost of objective function includes under-
utilized cost, over-utilized cost, setup times cost, pert
cost, process cost, and electric energy consumption
cost. With respect to the total available time of all cells
which is limited (see Eq. (9)), we have under-utilized
time cost and over-utilized time cost as follows:

C

TC(1) = Y (U..C.). (1)

c=1

C

TC(0) =Y (0..00). (2)

c=1

Another cost function in the model, involving setup
times cost, pert cost, and process cost for all of cells, is
as follows:

c
TC(other) = Z Z

c=11=1o0

©

J

J M
Z Z CST(joml)'ongcrnl

1j=1m=1
L

1i=1o0

Q

J

M
Z > Cagomi)

1j=1m=1

B

~5Tjoml +

c
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C (@]

L M
~ongcml~bj~ajoml + Z Z Z Z Z
c=1[1=1 o=1 j=1 m=1
COP(jmnl)'tjoml~ongcml~bj~ (3)

In addition, the total cost of consumed power, involving
mid-peak hours and on-peak hours for all facilities, is
as follows:

TC(medium) + T'C(high) = (TPC.Cpmedium) )

+ (TPC5.C" y(hign)) - (4)
where:
TPC = TPC, + TPCs. (5)

The quantity of consumed power for all of machines
(TPCy), robots, and AGVS (T PCy) is, respectively,
as follows:

O; L M
TPC =Py [T YT T (bj.tjoml.xjogcml
c=1 j=1o0=1[=1 m=1
+ STjoml~ongcml>:| - (6)

J J
TPC, =P,. {2. S| 2. bt
Jj=1 Jj=1

a J
XO_XC + YO_E/C
+2. (Z > AGVg.| VLGV' |

g=1j5=1

G J
XO_XC+YO_}/C
¥+ 33 AGY, L+ Yo — X

VI
o AGV

7)) )

Furthermore, total consumed power in on-peak hours
for all equipment is:

c

TPCs = (Py+ D). Y O.. (8)

c=1

4.4. The constraints
As mentioned previously, under-utilized time of a cell
is treated as the unused capacity of that machine,
whereas over-utilized time is considered as the overload
on a cell [22]. We accepted under-utilized time and
over-utilized time of cells, that is:

J 9 L M
Z Z (bj~tjoml~ongcml + STjoml~ongcml)

j=1o0=1I=1 m=1
4 U.-0,=T, ¢=1,2,..C. (9)

Since the required setup times for the operations of the
jobs to be completed on a cell must always be less than
or equal to the setup times available on that cell, we
have:

O L M

2.0

j=1lo=1[=1 m=1

STjoml~ongcml S STca

c=1,2,..,C. (10)

In addition, the total pert percentage occurring for
the operations of the jobs to be completed on a cell
should be always less than or equal to the allowable
pert percentage limit on that cell, that is:

J 9% L M J
Z Z Z Z ongcml~bj~ajoml < Ua(c)~ ij7
j=lo=11=1 m=1 7j=1
c=1,2,..C. (11)

Furthermore, the total number of AGV in production
system is limited, that is:

G
1<) AGV, <2 (12)

g=1

Also, the total allowable consumed power by all facili-
ties is restricted to (P), that is:

9; M

L
Z Z Z (bj~tjoml~ongcml

c J
=1o0=11=1 m=1

PM.[Z ,

c=1j

J
+ STjo7nl~ongc7nl>:| + Pb~ |:2 Z tl])/]
j=1

J G
F2.( Dbty +2.<ZZ
j=1

g=1j=1

[

|Xo B XC| + |Yo B YC|
AGV,. Y+
J Vaav ! Z;z_;
g=1j=
Xo _Xc Yo _}/c
AGY, ] |+ |.Yj>]
V' aav
+U,-0,=P. (13)

Additionally, once a job is selected, each operation of
that job should be completed by one and only one
cell. Correspondingly, if a job is not selected, no cell is
assigned to perform any operation of that job; so, we
have:
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Z ongch:}/}v }/jzovlv j:1a27“~7J7
c€B(j,0)
0= 1a27-~-70j7

g=12 c¢=1,2..C,

m=1,2,..,M, 1=12,..L, (14)

where decision variables are binary as:

ongcml = 07 ]-7 S/] = 07 L. (15)
In addition, all decision variables should be non-
negative as:
U.,0,>0, U,O, >0. (16)
We considered objective function as the total cost
minimization of a flexible CSP under TOU electricity
tariffs so that all the constraints are fulfilled. In the
next section, a hybrid solution algorithm is presented
to efficiently solve the problem.

5. The hybrid solution algorithms

Abazari et al. [22] mentioned the number of possible so-
lutions some of which may not be feasible with respect
to the constraints of system such as capacity of ma-
chines/cells and capacity of tool magazine. Computing
all these solutions to determine the optimum one is
computationally intractable for medium- to large-sized
problems. In addition, it is the fact that MLP of a
FMS is recognized for its complexity [66]. Moreover,
the MLP related to automated manufacturing system
belongs to the classification of NP-hard problems where
the computational solution times are non-polynomial
in the size of the problem [67-72]. Due to this fact,
we need to employ a meta-heuristic search algorithm
to solve it. Therefore, two meta-heuristic algorithms
are employed as well to enable the validation of the
results obtained. In the next two subsections, brief
descriptions are first given for GA and ACO.

Recent investigations in [73-76] have shown that
hybrid meta-heuristics work better than individual
meta-heuristics in solving mixed integer or nonlin-
ear models. Commonly, hybridization refers to the
mixture of two search algorithms to solve a given
problem [75]. There are some methods to utilize
hybrid meta-heuristics, one of which is combining the
traditional GA with any of the other meta-heuristic
algorithms. Consequently, this research considered
a hybrid algorithm based on a GA and an Ant
Colony Optimization (ACO), named HACO, in or-
der to solve the Mixed Integer Linear Programming
(MILP) problem. In the proposed method, to make
a hybrid algorithm (HGA), ACO is used to produce
the best initial solutions. Accordingly, the initial

inputs for the hybrid GA come from the best out-
puts (Uc,O0c,Up,0p,Y;, Xjogemi, AGV,) of the ACO.
Then, The HGA runs until a termination condition
(i-e., on the maximum number of iterations) is met.

5.1. Genetic Algorithm (GA)
Genetic algorithms are stochastic search methods
based on the mechanism of natural selection and
natural genetics. GA varies from conventional search
methods in a sense that it starts with an initial set of
random solutions, called population. Each individual
in the population is called a chromosome, representing
a solution to the problem at hand. The chromosomes
evolve through successive iterations, called generations.
During each generation, the chromosomes are evalu-
ated through some measures of fitness. To produce the
next generation, new chromosomes, called offspring,
are shaped by either crossover or mutation operators.
A new generation is formed according to the fitness
values of the chromosomes. After several generatious,
the algorithm converges to the best chromosome [77].
The core parameters of a GA are population
size, Nga, crossover probability, P., and mutation
probability, P,,. Also, the steps taken in the proposed
real-coded GA algorithm are:

1. Set parameters P., P,,, and Nga;
Initialize the population randomly;

3. Evaluate the objective function (total cost) of all
chromosomes;

4. Select individuals for mating pool;

Apply the crossover operation to each pair of
chromosomes with probability P.;

6. Apply the mutation operation to each chromosome
with probability P,,;

7. Replace the current population by the resulting
mating pool;

Evaluate the objective function;

If stopping criterion is met, stop. Otherwise, go to
Step 5.

Figure 2 shows the flowchart of the GA algorithm [78].

5.2. The Ant Colony Optimization (ACO)
Ant Colony Optimization (ACO) is a meta-heuristic
algorithm based on Swarm Intelligence (SI) suggested
by Dorigo in the 1990s (e.g., [79-81]). It is one of the
most advanced methods for approximate optimization
that has been used to deal with many problems in real-
world environments. In what follows, we briefly review
the basis of ACO employed to find a near-optimum
solution.

The notion behind ACO is based on the “natural”
algorithm used by real ants to generate a near-optimal
path between their nest and the food source, as shown
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Initialization

Chromosome selection for new population

!

Crossover operation

L

Mutation operation

New population selection and
objective function evaluation

A

Objective function evaluation for each chromosome

Stopping
criteria
is met

Figure 2. The flowchart of the proposed GA [78].

() (d)
Figure 3. Basic Ant Colony Optimization behavior at
different time stamps. The green areas represent the
amount of pheromones on each path.

in Figure 3. During their seeking food process, ants de-
posit chemical substances, called pheromones, on their
way back to their nest. Other ants sense the pheromone
and get highly interested towards the marked paths;
the more pheromone that is released on a path, the
more attractive that path becomes. The pheromone
evaporates and vanishes over time. Evaporation re-
moves the pheromone on longer paths (and also on
less interesting paths). Shorter paths are refreshed
more rapidly, therefore having the chance of being more
frequently explored. Naturally, ants will join towards

Initialize (set parameters)
repeat
Each ant is located on the primary node
repeat
Each ant employs a state move rule to increase the
solution
Apply the pheromone local update rule
until all the ants have made a complete solution
Apply a local search method
Apply the pheromone global update rule

until the stop conditions is fulfilled

Figure 4. The procedure involved in the ACO algorithm.

the most efficient path due to the fact that it gets the
strongest density of pheromone. The concept of the
ACO algorithm is to mimic this performance. This
simulation is achieved by creating a pheromone matrix,
n xm, employed by two key operations: the pheromone
quantity tuning (also identified as pheromone deposit
and pheromone evaporation rules) and a probabilistic
rule that selects an endpoint based on the pheromone
quantity (the state transition rule).

The procedure of the ACO algorithm is displayed
in Figure 4. In this algorithm, m ants are employed
in each cycle to make a full solution. To complete this
task, the solution is obtained in steps. To define each
step, two rules are used as follows:

arg max {[7(i, 5)].[n(i. )]}
§= ifq < go (exploration) (17)
S otherwise (exploitation)

r Tij(t .
Py = & O (18)
0 otherwise
where:
e 7 and 7 are two nodes on the graph that denote the

search space;
e 5 is an arc that connects ¢ and j;

e Sisa path chosen according to the probability given
in Eq. (18);
e ¢ is a uniform random value between 0 and 1;

e 0 < ¢ < 1 is a parameter chosen during the
implementation of the algorithm;

e 0 < a<1,0< 8 <1 are two parameters that
determine the relative influence of the pheromone
path and heuristic information,;
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e N*is the set of feasible nodes that can be visited by
an ant;

e 7 denotes the index of the ant;

e p;; denotes the probability of ant r in node i to
choose node j;

e 7(i,7) is the pheromone path value between nodes 4
and 7;

e 1)(i,7) is a heuristic value used as the visibility from
nodes 7 to j.

Also, two updated rules are used: the first is the
evaporation of the existing pheromone; the second is
the quantity of the added pheromone on the path.
These rules are presented in Eqgs. (19) and (20):

Tt +1) = pri(t) + A1), (19)

Af(t) =

1/L, if ant r goes from node ¢ to node j
0 otherwise (20)

where:

e [, shows how much the pheromone path should
increase;

e 0 < p<1is the evaporation parameter.

5.3. Tagucht experimental design method

A standard experimental policy mode was mainly
established in 1920 by Ronald Fischer to expand the
efficiency of farming production [82]. Genichi Taguchi
advanced a different experimental design technique to
increase the efficiency of application and appraisal of
experiments. Its method is further appropriate for
appraising production processes because the necessary
number of experiments is reduced meaningfully. The
design of experiment by the Taguchi method affords a
simple, effective, and organized methodology to define
the best settings [83,84]. Experimental results are
changed to a Signal/Noise (S/N) ratio, which means
a ratio of an average standard deviation (Taguchi et
al. [85]). This ratio can be designed in three diverse
methods: ‘small value is good’, ‘great value is good’,
and ‘nominal value is good’. A superior S/N ratio
shows a better test effect. Thus, in experiments, a level
of the factor which has the maximum ratio denotes a
better presentation. The ratio lets control mean and
variance, while an analysis of variance (ANOVA) is
accomplished at the similar time. In this way, the
effects of factors can be exposed statistically. S/N ratio
can be calculated by the following equation:

1 L
=—-10x 1 ht 2 21
" x logy, [nley] (21)

where 7 is amount of S/N ratio, n is the number
of observations in the experiment, and y; is value
of characteristic for ith experiment. The algorithm’s
stages are as follows:

1. Choosing and assessing interfaces between factors;
2. Defining levels of factors;

3. Picking the suitable orthogonal group;

4

Allocating factors and their interfaces to every
column of the orthogonal group;

wt

Grasping the experiments;

6. Analyzing the results.

Khaw et al. [86] stated that Taguchi method con-
siders orthogonal groups as a mathematical implement
that study the smallest number of experiments with
a large number of parameters. Through the Taguchi
experimental design, quality increases in a different
viewpoint. The method was useful in this study to
decrease the number of experiments. For GA, there
were three factors and all of them had five levels. Also,
for ACO, there were five factors and all of them had
five levels. Therefore, we use the L25 (L25, all five-
levels) orthogonal group to decrease the number of
experiments. This intended that only 25 experiments
were necessary to grasp a decision. To find the truth,
experiments were repeated five times (i.e., 25x5 = 125)
for each problem.

5.8.1. An application: parameter tuning for GA and
ACO

In this section, the offered stages above are followed

to demonstrate the effectiveness of the method. The

stages of application are as follows:

o Stage 1: We considered parameters P., P,,, and
number of population for GA, and also considered
parameters ¢, «, and [ evaporation parameter,
and number of population for ACO as the main
parameters;

o Stage 2: The parameters and their values were
named ‘factors’ and ‘levels’, respectively. The fac-
tors and their levels of GA and ACO are summarized
in Table 1;

e Stage 3: In our problem, the factors had five
levels. Hence, a L25 set was well suitable for our
examination. Arrangement of orthogonal groups for
parameter design is seen in the literature [87];

o Stage 4: The selected L25 design set for GA and
ACO was displayed in Table 2, where the last
column shows the total cost of 30 jobs problems;

e Stage 5: In this stage, we ran each test problem of
Table 2 by MATLAB coding and recorded results
of total cost for 30 jobs problems. Effective factors
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Table 1. Parameters (factors) and their levels for GA and ACO.

Algorithm Factors Levels
1 2 3 4 5
P, 0.75 0.8 0.85 0.9 0.95
GA P, 0.006  0.007 0.008 0.009 0.01

Number of population

80 90 100 110 120

q 0 0.25 0.5 0.75 1

ACO @ 0.5 1 1.5 2 3

164 1 2 3 5 10

Evaporation parameter 0 0.25 0.5 0.75 1

Number of population 80 90 100 110 120
Table 2. .25 design set for GA and ACO for 30 jobs.
. GA factors GA cost ACO factors
Experiment Number of Evaporation Number of ACO cost
number Pe Pm . q a B .
population parameter population

1 0.75 0.006 80 944.61 0 0.5 1 0 80 752.60
2 0.75 0.007 90 834.75 0 1 2 0.25 90 761.33
3 0.75 0.008 100 878.00 0 1.5 3 0.5 100 752.86
4 0.75 0.009 110 886.38 0 5 0.75 110 753.05
5 0.75 0.01 120 829.92 0 10 1 120 756.11
6 0.8 0.006 90 891.21 0.25 0.5 2 0.5 110 759.93
7 0.8 0.007 100 824.64 025 1 3 0.75 120 760.41
8 0.8 0.008 110 930.78 025 1.5 5 1 80 752.97
9 0.8 0.009 120 866.55 0.25 10 0 90 753.25
10 0.8 0.01 80 815.92 0.25 0.25 100 752.44
11 0.85 0.006 100 831.29 0.5 05 3 1 90 752.94
12 0.85 0.007 110 773.83 0.5 1 5 0 100 752.77
13 0.85 0.008 120 837.63 0.5 1.5 10 0.25 110 752.52
14 0.85 0.009 80 776.86 0.5 1 0.5 120 753.05
15 0.85 0.01 90 77117 0.5 2 0.75 80 752.53
16 0.9 0.006 110 876.50 0.75 05 5 0.25 120 752.51
17 0.9 0.007 120 819.13 0.7 1 10 0.5 80 752.31
18 0.9 0.008 80 827.71 0.7 15 1 0.75 90 752.33
19 0.9 0.009 90 871.83 0.75 1 100 752.44
20 0.9 0.01 100 873.13 0.75 3 0 110 752.18
21 0.95 0.006 120 861.66 1 0.5 10 0.75 100 752.81
22 0.95 0.007 80 871.53 1 1 1 1 110 755.78
23 0.95 0.008 90 879.06 1 1.5 2 0 120 752.42
24 0.95 0.009 100 860.42 1 3 0.25 80 752.45
25 0.95 0.01 110 846.43 1 5 0.5 90 753.16

and levels of the effectiveness were established using
Signal-to-Noise ratios, (S/N), which were selected
as “the lowest value is the best” in Minitab software;

e Stage 6: In the last stage, analyses of the output

of Taguchi method in Minitab software displayed
that tuned parameters of GA and ACO are in
accordance with those in Table 3. Also, S/N ratios
criteria for 30 jobs problems by ACO are presented
in Figure 5.



350 M. Hemmati Far et al./Scientia Iranica, Transactions E: Industrial Engineering 25 (2018) 339-358

Table 3. Tuned parameters of GA and ACO by Taguchi method .

GA ACO
Total number Numb f E " Numb :
umber o vaporation umber o
of jobs P, P, . a g P .
population parameter population
10 0.85 0.01 120 0.25 05 1 0 80
15 0.75 0.007 110 0.75 1 5 1 90
20 0.75 0.01 120 0.7%5 0.5 2 0.75 100
25 0.75 0.01 90 1 1 3 1 100
30 0.85 0.007 120 0.7 15 5 0 100
Data means
q o 5
-57.53
-57.54 /\\- \ /\.
-57.55
‘E -57.56
T -57.57
Z,
= T T T T T T T T T T T T T T
5 1 2 3 4 5 1 3 4 5 1 2 3 4 5
§ Evaporation parameter Number of population
= 57.53-
-57.54 \ \ /\
-57.56 1
-57.571

Signal-to-noise: Smaller is better

Figure 5. The main effects plot for SN ratio for ACO parameter (30 jobs problem).

5.4. The steps concerned with the solution
method
e Step 1: In a specified test problem, determine the
total cost of all jobs for the model by tuned GA and
ACO;

e Step 2:
problem;

e Step 3: Make two hybrid algorithms (HACO &
HGA) to determine the better and near-optimum
solutions;

Find the better algorithm for each test

e Step 4: Determine the lower bound solution to the
model using HACO;

e Step 5: Compare the results of the HACO with the
lower bound in Step 4.

6. Numerical examples

In order to demonstrate the application of the proposed
hybrid procedure and to study its performances, nu-
merical examples are given in this section. The initial
data of the examples for 30 jobs are given in Table 4.
The initial parameter values for implementation of

GA are as follows: probability of crossover (0.75-
0.95), probability of mutation (0.005-0.01), population
(80-120) and stopping criterion equal to 100 itera-
tions. In addition, the initial parameter values for
implementation of ACO are as follows: Number of
ant (80-120), rate of evaporation (0-1), ¢ (0-1), «
(0-3), B (1-10), and stopping criterion equal to 100
iterations. It is noticeable from the literature that the
parameters used in GA and ACO have robust effect
on both result time and result quality. Hence, the GA
and ACO parameters used were based on a Taguchi
experimental design method mentioned in Subsection
5.3. In addition, five test problems with different
number of jobs (10, 15, 20, 25, and 30 jobs) are used.
All the test problems are solved on a notebook Intel
core i5-4200 with 1.60 GHz CPU and 8 Gig RAM.
Furthermore, the GA and ACO algorithms are coded
using the MATLAB R2011a software.

The steps involved in the proposed procedure to
solve the test problems are as follows:

- Step 1: In a given test problem, determine the total
cost of all jobs for model by GA and ACO.
In this step, each algorithm runs 20 times
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Table 4. The initial data of the examples.

Jobs Cell Batch Operation Unit processing Unit setup Total slots Machine
number size number time times needed number
1 8 1 18,12, 15 0.9, 0.6, 0.75 6,3,5 1,2,4
9 9 1 25, 21, 27 1.25, 1.05, 1.35 1,2,4 2,1,4
2 24, 20 1.2, 1 5,1 2,1
1 26, 23 1.3, 1.15 2,3 1,2
3 13 2 11, 15 0.55, 0.75 4,6 2,4
3 8,12, 9 0.4, 0.6, 0.45 4,52 2,1, 4
4 6 1 14, 13, 17 0.7, 0.65, 0.85 3,6, 1 1,2, 4
2 19, 8, 15 0.95, 0.4, 0.75 4,3, 1 1,2, 4
1 22,19, 16 1.1, 0.95, 0.8 6,2, 6 2,1, 4
5 1 9 2 25, 17, 26 1.25, 0.85, 1.3 4,5, 1 1,24
3 9 0.45 3 4
6 10 1 16, 12 0.8, 0.6 2,2 1,4
2 7,13,9 0.35, 0.65, 0.45 4,5,3 1,2, 4
1 19, 19, 23 0.95, 0.95, 1.15 6,4, 2 1,2, 4
7 12 2 13, 16, 10 0.65, 0.8, 0.5 6,5, 1 1,2,4
3 23, 26 1.15, 1.3 3,3 2,4
1 25, 18, 25 1.25, 0.9, 1.25 54,6 2,1,4
8 13 2 7,7, 15 0.35, 0.35, 0.75 1,2,6 1,2,4
3 24, 31, 18 1.2, 1.55, 0.9 5,4, 1 2,4,1
9 7 1 14,13, 17 0.7, 0.65, 0.85 2,1,6 1,5,3
2 19, 8, 15, 21 0.95, 0.4, 0.75, 1.05 4,2,5,3 6,1,3,5
1 25, 18, 25 1.25, 0.9, 1.25 2,3,4 6,1,5
10 8 2 7,15, 10 0.35, 0.75, 0.5 5, 6,2 1,3,5
3 24, 31, 18 1.2, 1.55, 0.9 3,6,4 6,1,3
11 9 1 25, 18, 25 1.25, 0.9, 1.25 1,55 5,6, 1
2 7, 7,15 0.35, 0.35, 0.75 2,6,4 6,3,5
1 25, 18, 25 1.25, 0.9, 1.25 3,3,2 1,6,5
12 6 2 7,7,15, 10 0.35, 0.35, 0.75, 0.5 6,5,1, 4 6,3,1,5
2 3 24, 31, 18 1.2, 1.55, 0.9 2,5,6 3, 1,6
13 7 1 18, 12 0.9, 0.6 4,3 5,1
u 10 1 14, 13, 17 0.95, 0.95, 1.15 2,1, 6 3,6, 1
2 10, 6 0.5, 0.3 3,4 5,6
1 12, 10, 13 0.6, 0.5, 0.65 3,5, 4 5.3, 6
15 11 2 5,7 0.25, 0.35 6, 3 1,5
3 7,9 0.35, 0.45 5, 1 6, 3
1 9,15 0.45, 0.75 2,1 3,2
16 5 2 7,8 0.35, 0.4 4,3 2,3
3 10, 12 0.5, 0.6 6, 4 2,3
1 8,9 0.4, 0.45 3,1 2,3
17 4 2 7,8 0.35, 0.4 6, 5 3,2
3 13, 14 0.65, 0.7 6, 3 3,2
3
1 14, 23 0.7, 1.15 2,4 2,3
18 8 2 7,12 0.35, 0.6 4,5 3,2
3 10, 14 0.5, 0.7 6, 2 2,3
1 14, 14 0.7, 0.7 3,2 2,3
19 12 2 8, 11 0.4, 0.55 6, 4 3,2
3 5,9 0.25, 0.45 1,2 3,2
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Table 4. The initial data of the examples (continued).

Jobs Cell Batch Operation Unit processing Unit setup Total slots Machine
number size number time times needed number
1 5,8, 6, 10 0.25, 0.4, 0.3, 0.5 2,5,4,2 8,3,7,9
20 10 2 3,4,2, 4 0.15, 0.2, 0.1, 0.2 6,1,4,3 7,9 3,8
3 2,7 0.1, 0.35 3,2 8,3
1 13, 14, 15, 2 0.65, 0.7, 0.75, 0.1 4,5,3,6 7,9, 3,8
21 7 2 7,5,7,6 0.35, 0.25, 0.35, 0.3 6,1,2,1 9,7, 8,3
3 2,2,5 0.1, 0.1, 0.3 6,5, 2 3,7,9
1 15, 13, 23, 11 0.75, 0.65, 1.15, 0.55 3,4,5,6 3,9, 7,8
22 4 8 2 12, 13,4, 5 0.6, 0.65, 0.2, 0.25 4,4,2,1 7,9, 3,8
3 4, 11 0.2, 0.55 1,3 9,7
1 4,11 0.2, 0.55 6, 5 79
23 14 2 4,13, 12 0.2, 0.65, 0.6 3,4, 2 8, 3,9
3 11, 12, 23 0.55, 0.6, 1.15 1,2,3 7,8, 9
1 12,13, 5 0.6, 0.65, 0.25 5,6, 6 9,3, 7
24 8 2 4, 11 0.2, 0.55 3,4 8,3
3 5, 8 0.25, 0.4 5,1 7,9
1 6,7, 2 0.3, 0.35, 0.1 5,3,4 2,7,4
25 9 2 2,5, 5 0.1, 0.25, 0.25 2,6,1 4,2, 7
3 2,4,4 0.1, 0.2, 0.2 2,1,4 7,4, 2
1 18,21, 6 0.9, 1.05, 0.3 5,3, 2 2,7, 4
26 10 2 15, 6 0.75, 0.3 4,1 2,7
3 6, 12 0.3, 0.6 4,3 2,4
1 12, 14, 4 0.6, 0.7, 0.2 6, 3, 5 7,4, 2
27 11 2 10, 4, 6 0.5, 0.2, 0.3 2, 1,4 2,7, 4
. 3 4,8 0.2, 0.4 2,5 2,4
5
1 4 0.2 5 7
28 6 2 3,16 0.15, 0.8 1,4 2,4
3 4,5 0.2, 0.25 3,5 7,4
1 9,9,6 0.45, 0.45, 0.3 3,2,1 7,2,4
29 7 2 4,6 0.2, 0.3 5,4 7,4
3 13, 8 0.65, 0.4 6,1 2,7
1 18 0.9 1 4
30 5 2 10, 5 0.5, 0.25 6, 5 7,2
3 3,5 0.15, 0.25 3,5 2,4

for each test problem, where their minimum total
costs, the least CPU times (s), and consumed power
cost based on GA and ACO implementations are
presented in Table 5;

Step 2: The better algorithm is found by de-
termining the percentage difference between their
results. Based on the results given in Table 5, in
all test problems, ACO is the better algorithm for
total costs, the least CPU times (s), and consumed
power cost. In terms of the total cost, ACO has
always better performance, where its percentage
improvements over GA are 0.00, 1.46, 2.3, 4.85,
and 5.15 (average: 2.75) for 10, 15, 20, 25, and
30 jobs problems, respectively. Also, percentage

improvements of CPU time (s) over GA are 19.36,
21.99, 15.28, 12.99, and 13.98 (average: 16.72) for
10, 15, 20, 25, and 30 jobs problems, separately.
Furthermore, in terms of consumed power cost, ACO
improvement percentages over GA are 0.00, 6.57,
7.15, 7.48, and 7.62 (average: 5.76) for 10, 15, 20, 25,
and 30 jobs problems, respectively. The comparison
results of the algorithms are presented in Figures 6-8.
Also, all improvement trends are shown in Figure 9;

Step 3: Make two hybrid algorithms (HACO &
HGA) to determine the better, near-optimum solu-
tions.

Regarding the results in Step 1, in this step,
two hybrid algorithms are suggested to find a better
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Table 5. Total cost results of all algorithms for all examples (Steps 1-5).
Total . Hybrid Diff.2 Percen.P
Total cost CPU time Power cost Lower B .
number total with penalty HACO detailed cost
. (%) (s) €)) bounds
of jobs cost HACO %
c
ACO GA ACO GA ACO GA HGA HACO Perfor.® Power Total
cost cost cost
10 349.23 349.23 14.74 18.28 23.07 23.07 349.23 349.23  348.47 0.76 0.22 326.16 23.07 349.23
15 512.11 519.70 17.27 22.14 38.10 40.78 517.07 511.82 510.14 1.68 0.33 473.74 38.08 511.82
20 572.36 585.85 22.35 26.38 45.73 49.25 582.29 571.83 569.00 2.83 0.50 526.36 4 5.47 571.83
25 691.02 726.26 27.18 31.24 57.37 62.01 698.43 670.02 665.52 4.5 0.68 614.74 55.28 670.02
30 775.88 818.04 32.42 37.69 65.75 T1.17 796.49 752.03 741.61 10.42 1.40 688.24 63.79 752.03

aDiff.: Difference; PPercen.: Percentage; “Perfor.: Performance.
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near-optimum solution. We take the best outcomes
of (Uc,0c¢,Up,0p,Y;, Xjogemi; AGV ) obtained by
ACO for each test problem as an initial solution and
input them into GA to make a Hybrid GA (HGA).
Similarly, to make a hybrid ACO (HACO), GA is
used to produce the best initial solutions. After
that, running both hybrid algorithms 15 times for
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Figure 9. ACO improvement trends for total cost, CPU
time, and power cost (Step 2).
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Figure 10. The total cost comparison of hybrid
algorithms (Step 3).

each test problems, the minimum total costs and the
detailed results of HACO are noted in Table 5. With
respect to Table 5, HACO is absolutely the better
hybrid algorithm. In addition, in terms of the total
cost, HACO’s improvement percentages over HGA’s
are 0.00, 1.01, 1.80, 4.06, and 5.58 (average: 2.49)
or 10, 15, 20, 25, and 30 jobs problems, respectively.
The comparison results by both hybrid algorithms
and the improvement trends are shown in Figures 10
and 11, respectively;

- Step 4: Determine the lower bound solution to the
model using HACO. To shed some light on the
solution given by the presented hybrid algorithms,
a required solution is compared with a lower bound.
The lower bound is determined by solving the re-
laxed problem [88]. In this study, we ignored pert
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Figure 11. The HACO total cost improvement over HGA

(Step 4).

percentage restriction and related costs. The lower
bounds for the relaxed model of all test problems
solved by an HACO are given in Table 5;

- Step 5: Compare the results of the HACO with
the lower bound in Step 4. Now, one can settle
the difference between the total costs of the hybrid
solution with the lower bound. The difference can
be concluded by:

Difference = total cost of hybrid solution

—lower bound. (22)

If the difference between the total costs obtained
by HACO and the lower bound is small, then the
difference among the proposed solution method and
the unknown optimal solution should be small and the
solution assumed by the proposed hybrid algorithm
turns out to be the near-optimal solution since it is
very close to the lower bound. If there is a large
difference between the two solutions though, then this
provides us with uncertainty about the effectiveness
of the hybrid algorithm. Consequently, it is better to
describe another comparison measure. The percentage
penalty is a well-known measure of performance that
is generally used. The percentage penalty is defined as
follows:

difference
lower bound

Percentage penalty = ( ) % 100%. (23)

Based on Eq. (23), if the percentage penalty measure is
low, then the actual percentage difference between the
solution obtained by HACO and the unknown optimal
solution should be low [88]. Table 5 encompasses the
comparison results of the proposed HACO with the
lower bound. Furthermore, Figure 12 shows HACO
percentage penalty of all test problems. Consistent
with the solutions stated in Table 5, the minimum,
maximum, and average percentage penalties are 0.22,
1.40, and 0.67, respectively. One can conclude that the
solution given by the proposed hybrid algorithm turns
out to be the near-optimal solution, because it is very
close to the lower bound.

2.00
1.80
1.60

1.40

1.20 Il
1.00
0.80

0.60 ///
0.40 p——

0.20

0.00

Percentage penalty%

10 jobs ' 15 jobs ' 20 jobs ' 25 jobs " 30 jobs

The number of jobs

Figure 12. The percentage penalty of lower bound over

HACO (Step 5).

7. Conclusions and future research

7.1. Contributions

In this paper, an energy-conscious Cell Scheduling
Problem (CSP) in a Flexibility Manufacturing System
(FMS) was developed. In comparison to the model
proposed by Abazari et al. [22] and Zhang et al. [42],
the model works on Time-Of-Use (TOU) electricity
tariffs and contains extra constraints such as total
electric energy consumption, setup time available on
each cell, part defect (pert) percentage, and the total
number of AGV. We proposed a 3-step hybrid meta-
heuristic method containing a Hybrid Ant Colony
Optimization (HACO) and Hybrid Genetic Algorithm
(HGA) to find a near-optimum solution to a Mixed
Integer Linear Programming (MILP) model. The
objective is to minimize the costs associated with
the under-utilized cost, over-utilized cost, setup times
cost, pert cost, process cost, and consumed power
cost. Since there were no standards obtainable in the
literature, a GA and an ACO were also developed
for the solution. For parameter tuning of algorithms,
we applied Taguchi experimental design method. In
addition, to improve the quality of the results obtained
by meta-heuristic algorithms, two hybrid algorithms
(HGA and HACO) were proposed to solve the model.
Furthermore, to confirm the proposed hybrid algorithm
which works well, its outcomes were matched to lower
bounds that were obtained by solving a relaxed model
when pert percentage restriction and related costs were
ignored using a HACO. Then, five numerical examples
were presented to demonstrate the application of the
proposed methodology. The results showed that the
proposed hybrid procedure is able to find better and
nearer-optimal solutions because they are very close to
their lower bounds.

7.2. Limaitations, theoretical, and managerial
implications

In this study, for decreasing difficulty in the model,

we ignored some issues and assumptions that we now

recommend them to be considered for future studies in

this area:
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Some of parameter of the model may be considered
either as fuzzy or random. In this case, the model
has either fuzzy or stochastic nature;

Other meta-heuristic algorithms, such as Differen-
tial Evolution (DE), Imperialist Competitive Al-
gorithm (ICA), and Particle Swarm Optimization
(PSO), may also be applied to solve the model;

Consideration of multiple objectives for optimiza-
tion;

Greenhouse gas (GHG) emissions can be added to
energy-efficient model;

Acceleration and deceleration of AGV movement
can be considered;

Different speeds of AGV movement with respect
to filled or emptiness can be take into account;

Automated storage and retrieval systems (AS/RS)
for CSP warehouse can be considered;

Sequence-Dependent Setup Time (SDST) can be
studied.
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