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Abstract. This study investigates static pull-in instability and frequency analysis of
circular and annular plates in electrical �eld. The plate is modelled based on the classical
plate theory with nonlinear Von K�arm�an strain-displacement �eld. The governing equation
of motion and boundary conditions were obtained using the Hamilton principle. For
this purpose, potential and kinetic energies and the results achieved through radial and
electrostatic forces were obtained. Governing partial di�erential equations were reduced to
ordinary di�erential equations by Galerkin's method. Then, static pull-in instabilities of
clamped circular and annular plates with clamped-clamped and clamped-simply supported
boundary conditions were analyzed by the arc-length continuation method. The e�ects of
rigid core, radial load, geometric nonlinearity, inner radius, and boundary conditions on
pull-in instability and frequency of the plate were studied.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Micro-Electro-Mechanical Systems (MEMS) consist of
micro-sized mechanical and electrical elements inte-
grated into a common silicon substrate. Due to high
frequency, lightweight, small-sized, and low-energy
consumption, MEMS are used widely in many �elds.
Di�erent types of actuation, such as thermal, magnetic,
piezoelectric, and electrostatic actuation, are employed
in MEMS. Nowadays, electrostatically actuated MEMS
play an important role in many industrial devices
such as sensors, microphones, micro-actuators, and
micro-pumps. One of the most important problems
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of these systems is nonlinear pull-in instability due
to the presence of electrostatic force, causing failure
of devices. Thus, the study and prediction of such
instability is necessary to the design of such systems.

Pull-in instability was observed experimentally by
Nathanson et al. [1] and Taylor [2]. This instability
appears when the electrostatic force goes beyond the
elastic restoring force of the structure; hence, the
substrate is touched [3]. The critical value of voltage
in which this instability occurs is represented as the
pull-in voltage. If the rate of voltage variation is
very low and negligible, inertia has nearly no e�ect on
the microstructure's behavior; accordingly, the pull-in
voltage is called the static pull-in voltage. However,
when the rate of voltage variation is considerable,
the e�ect of inertia has to be included. The pull-
in instability related to this situation is called the
dynamic pull-in instability; the critical value of voltage,
corresponding to the dynamic instability, is referred to
as the dynamic pull-in voltage [4].
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Static pull-in behaviors of di�erent structures of
MEMS is studied. In some studies, lumped models,
such as one-Degree-Of-Freedom (DOF) mass spring
system model [5,6], are used. There are some studies
on two DOFs lumped models [6-8]. In addition,
there are some studies on pull-in instability of micro-
beams [9-15]. Baghani et al. [16] studied the vibra-
tion of electrostatically actuated double-clamped and
simply-supported micro-beams using Variational Iter-
ation Method (VIM). Rahaeifard and Ahmadian [17]
investigated the static de
ection and pull-in instability
of electrostatically actuated micro cantilevers based
on the strain gradient theory. Gholami et al. [18]
studied the nonlinear pull-in instability of electro-
statically actuated micro-switches based on Mindlin's
strain gradient elasticity and the Timoshenko beam
theory. They solved the problem using the Generalized
Di�erential Quadrature (GDQ) method and the pseudo
arc-length continuation technique. Xiao et al. [19]
developed a size-dependent model for electrostatically
actuated micro-beam with piezoelectric layers attached
based on a modi�ed couple stress theory.

However, there are limited studies on membrane
and plate structures. There are some studies on pull-
in instability of rectangular plates, some of which are
described here. Srinivas [20] employed the classical
linear plate theory to study the static pull-in instability
of simply-supported rectangular plates. Mukherjee et
al. [21] investigated the pull-in instability of cantilever
plate using Finite-Element Method (FEM). Zhao et
al. [22] presented a reduced-order model of electrically
actuated square micro-plate. Their model accounts
for the electric-force nonlinearity and the mid-plane
stretching of the plate. They found linear un-damped
vibration modes numerically, using the hierarchical
FEM, which are applicable to a Galerkin approxima-
tion. Moghimi Zand et al. [23] developed a hybrid
Finite-Element Method (FEM) and Finite-Di�erence
Method (FDM) to investigate contact phenomenon in
micro-plates actuated by ramp voltages. They utilized
the hybrid FEM-FDM model to compute values of
contact time and dynamic behavior of rectangular
multi-layer micro-plates. Wang et al. [24] investigated
the e�ects of surface energy on the pull-in instability
of electrostatically actuated rectangular micro/nano-
plates based on the modi�ed couple stress theory.

Annular and circular plates have been receiving
increasing interest in MEMS community, especially in
micro-pump applications [25]. Some researchers have
studied pull-in instability of circular plates. Wang
et al. [26] investigated the pull-in instability and
vibration of a pre-stressed circular electrostatically
actuated micro-plate, with consideration of the Casimir
force. They used von K�arm�an's nonlinear bending
theory of thin plates. For static deformation of the
plate, they obtained the pull-in parameters using the

shooting method and studied the small amplitude free
vibration with respect to the pre-deformed bending
con�guration. They examined the in
uences of various
parameters, such as the initial gap, thickness ratio,
Casimir e�ect, and pre-stress, on the pull-in insta-
bility behavior and natural frequency. Soleymani et
al. [27] studied the static pull-in instability of circular
micro-plate and the e�ect of residual stress on pull-
in parameters using �nite-di�erence method. In their
model, they employed linear bending theory of thin
plates and ignored the geometric nonlinearity. Nayfeh
et al. [28] presented reduced-order models to study
pull-in instability of beams, rectangular, and circular
plates.

In literature reviews, there are limited studies
on pull-in instability of annular plates, the e�ect of
rigid core, and in-plane force. Hence, in this work,
static pull-in behaviors of circular and annular plates
modelled are studied according to classical plate theory
using nonlinear von K�arm�an strain-displacement rela-
tion. This theory can account for large de
ection of
plate subjected to electrostatic force. By using arc-
length continuation method, the e�ects of di�erent
structural and geometrical parameters, radial force,
and rigid core on pull-in instability are studied. In
addition, the e�ects of electrostatic force, structural
and geometrical parameters on natural frequencies of
plate are determined.

In the following, at �rst, the formulation of
problem consisting of equation of motion and boundary
conditions is presented. Then, the solution and arc-
length continuation methods are described; results and
discussion of the obtained equation are given. Finally,
the last section concludes the paper.

2. Statement and formulation of the problem

The geometric structures of circular and annular plates
are shown in Figure 1. In Figure 1(a), a circular plate
of radius, R, and thickness, h, subjected to radial
load, Pr, is depicted, and Figure 1(b) shows a circular
plate with central rigid core. The circular plate has
radius, R, and inner radius of central core, b. The
plate is suspended above the in�nite ground plane with
an initial gap, d. A positive potential di�erence, V ,
between the two conductors causes the plate to de
ect.

According to the classic plate theory, the displace-
ment �eld of the plate can be stated in to the following
form [29]:

ur(r; �; z; t) = u(r; �; t)� z @w
@r

;

u�(r; �; z; t) = v(r; �; t)� z
r
@w
@�

;

uz(r; �; z; t) = w(r; �; t): (1)
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Figure 1. A schematic of electrostatically actuated plate: (a) Solid circular plate and (b) circular plate with central rigid
core.

Using Eq. (1) and von K�arm�an strain-displace-
ment relation and neglecting in-plane displacements,
the strain components are de�ned as follows [29]:
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The stress and strain relations for isotropic plate are
given as [29]:

�rr =
E

1� �2 (�rr + �"��
�
;

��� =
E

1� �2 (��� + ��rr); �r� = 2G�r� ; (3)

where G = E
2(1+�) .

The Hamilton principle is used to develop the
governing equations of motion. For this purpose, the
kinetic and potential energies of the system should be
obtained. The kinetics and strain energies of T and �
can be expressed respectively as follows [29]:

T =
1
2

x

0

h=2Z
�h=2

�( _u2
r+ _u2

�+ _u2
z)dzrdrd�+Tcore; (4)

� =
1
2

x

0

h=2Z
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(�rr�rr + ������ + �r�
r�)dzrdrd�;
(5)

where 
0 denotes the domain of the plate. In Eq. (4),
Tcore is the kinetic energy of rigid core that can be
expressed as [30]:

Tcore =
1
2
Mcore

�
@w
@t

�����
r=b

�2

: (6)

Due to symmetry in geometry, boundary and loading
conditions of the considered plate structure in Figure 1,
in the �rst mode of instability, the rigid core only has
transverse displacement and is not necessary to include
the e�ect of rotational kinetic energy of rigid core. The
work, Wp, of radial force, Pr, can be expressed as in
the following form [31]:

Wp =
x

0

Pr"rrrdrd�: (7)

The electrostatic force per unit area between two
conductive plates is given by [32]:

fes =
1
2

�V 2

(d� w)2 ; (8)

where V is the applied DC voltage. The work of
electrostatic force, Wfe, can be expressed as [33]:

Wfe =
x

0

feswrdrd�: (9)

Then, the total work is given as in the following form:

W = Wp +Wfe: (10)
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It is assumed that the plate has structural damping.
The work of distributed structural damping, Wc, can
be expressed as follows [33]:

Wc =
x

0

c
@w
@t
wrdrd�: (11)

By substituting Eqs. (4)-(11) into extended Hamilton
principle and setting the coe�cients of �w in the area
integrand equal to zero, equation of motion will be
obtained as follows (see the Appendix):
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where I0 = �h is the mass per unit area, and I2 = �h3

12
is the rotary inertia. Boundary conditions are:�
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where r1 and r2 are inner and outer radii, and �1 and �2
are the angles of circular sectors. For circular (annular)
plate, r1 = 0(b), r2 = R, �1 = 0, and �2 = 2�. Further,
Nrr, N��, and Nr� are in-plane forces and Mrr, M��,
and Mr� are out-of-plane moments known as the stress
resultants (see Figure 2). These terms are de�ned as
follows [29]:

Nrr =

h=2Z
�h=2

�rrdz; N�� =
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�h=2

���dz;

Nr� =

h=2Z
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�r�zdz: (14)

By substituting Eqs. (2) and (3) into Eq. (14), these

Figure 2. In-plane and out-of-plane forces and moments
on a plate element.
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forces and moments will be obtained as follows:
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Galerkin's method is used for discretizing partial dif-
ferential equation and discretizing them to a system
of coupled nonlinear Ordinary Di�erential Equations
(ODEs). In Galerkin's method, displacement is writ-
ten in terms of time-dependent generalized coordinate
and spatial (trial) function. The trial function must
satisfy all geometric and natural boundary conditions
of the problem. For the considered problem, natural
boundary conditions are nonlinear; hence, selecting
spatial function to satisfy these boundary conditions
is very hard. Hence, a better way to challenge
nonlinear natural boundary conditions is to include
the related work into the equation of motion. With
this strategy in inducing the work done by natural
boundary conditions into equation of motion, it is only
necessary for the trial function to satisfy geometric
boundary conditions.

According to Eq. (12), the equation of motion
has a fractional term of r�V 2

2(d�w)2 . Hence, to remedy
the complicated form of equation of motion, the whole
equation is multiplied by (d � w)2�wdr. Then, the
obtained equation is integrated into the whole region
of plate, and as previously described, for satisfying
natural boundary conditions, the work done by bound-
ary terms is added to the weighted residual form of
equation of motion. The following motion equation,
in terms of displacements, will be calculated. This
equation can be calculated by considering an axi-
symmetric solution:
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The following dimensionless variables are introduced:
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where D = Eh3

12(1��2) . The dimensionless nonlinear
governing equation of motion can be obtained in the
following form:
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As mentioned previously, in order to discretize partial
di�erential motion equation to a system of coupled
ODEs, Galerkin's method is used. In Galerkin's pro-
cedure, �w(�r; �t) can be written as follows:

�w(�r; �t) =
XN

j=1
qj(�t)�j(�r); (19)

where qj(�t) is the time-dependent generalized coordi-
nates, �j(�r) is the jth axisymmetric linear un-damped
mode shape of the 
at circular and annular plate, and
N represents the number of modes retained in the
solution. �j(�r) has the following general form [33].

�j(�r) =C1J0(�j�r) + C2Y0(�j�r)

+ C3I0(�j�r) + C4K0(�j�r): (20)

J0 and Y0 are Bessel functions of the �rst and seconds
kinds, respectively, and I0 and K0 are modi�ed Bessel
functions of the �rst and second kinds, respectively.
C1; : : : ; C4 and � are determined from boundary con-
ditions.

The following nonlinear system of ODEs can be
derived by substituting Eq. (19) into Eq. (18):
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with i = 1; :::; N ; in this equation, primes on � denote
derivatives with respect to r.
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Some necessary descriptions are required to solve
the equation of motion. Due to the application of elec-
trostatic force in MEMS, time response analysis needs
stringent convergence condition, and they are sti� for
time response analysis. Using arc length continuation
method can obviate the need for su�ciently small-time
steps. Moreover, by multiplying both sides of equation
into (d� w)2, the sti�ness of the equation is reduced.

Eq. (21) is a set of nonlinear coupled equations.
For solving nonlinear algebraic equations, most meth-
ods are iterative, such as continuation methods. These
methods are used to compute approximate solutions
for nonlinear systems with parameterized nonlinear
equations. In [34], a practical guide for performing pa-
rameter studies is introduced. Numerical continuation
is a tool to study how the behavior of a dynamical
system changes as a function of parameters. Path
following in combination with boundary value problem
solvers has an important role in the development of
dynamical systems [35]. Herein, the arc-length con-
tinuation method is used. In arc-length continuation
method, the continuation direction is tangent to the
solution branch.

To obtain de
ection-voltage curves for nonlinear
Eq. (21), the arc-length continuation procedure is used
according to Figure 3 [36,37].

Let the de
ection-voltage curve have the following
form:

F (u; �) = 0: (22)

In this method, the �rst step is to solve the system
of nonlinear equations of Eqs. (21) or (22) for �xed
values of system parameters and a very small value
of applied voltage. This starting point is used as
an initial guess to start the procedure of the arc-
length continuation method, until reaching the turning
point. At the turning point, the Jacobian determinant
of Eq. (22) with respect to u, i.e. @F=@u, is zero,
and it is necessary to reverse the direction of change
in parameter. With this procedure, the de
ection-
voltage curve can be obtained with su�cient accuracy,
i.e. good conformity between the results obtained by
continuation method and direct solution of ordinary
equations by numerical methods such as Runge-Kutta.

Figure 3. The de
ection-voltage curve [37].

Figure 4. Mode shapes of fully clamped circular plate.

In the following part, a brief discussion of required
linear mode shapes for Galerkin's method is presented.
First, fully clamped circular plate is considered. The
boundary conditions for clamped circular plate are:

�(1) = 0;
@�(1)
@�r

= 0; �(0) <1: (23)

The Bessel function of the second kind becomes in�nite
at r = 0; therefore, constants C2 and C4 must be zero.
Thus, Eq. (20) is simpli�ed to:

�(�r) = C1J0(��r) + C3I0(��r): (24)

By substituting Eq. (24) into Eq. (23), the mode shapes
of clamped circular plate can be obtained as follows:

�(�r) = J0(��r)� J0(�)
J0(�)

I0(��r): (25)

By applying the second condition of Eqs. (23) to (25)
and solving the obtained equation numerically, � can
be obtained. In this work, the MATLAB software is
used to obtain � and linear undamped mode. Some
mode shapes of clamped circular plate are plotted in
Figure 4.

The boundary conditions associated with the
annular plate clamped from inside and outside edges
are:

�(1) = 0;
@�
@�r

(1) = 0; �(�) = 0;
@�
@�r

(�) = 0;
(26)

where � = ri=R is the dimensionless inner radius.
For annular plate clamped from the inside edge and
simply supported from the outside edge, the boundary
conditions are:

�(1) = 0; Mr = D
�
@2�
@�r2 + �

1
r
@�
@�r

�����
�r=1

= 0;

�(�) = 0;
@�
@�r

(�) = 0: (27)
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Figure 5. Mode shapes of (a) clamped-clamped and (b)
clamped plates with simply supported inner and outer
edges on the annular plate; � = 0:1, � = 0:33.

By substituting Eq. (20) into Eqs. (26) and (27)
and numerically solving the obtained equations, the
linear un-damped mode shapes of clamped-clamped
and clamped-simple annular plates are determined.
Figure 5 shows mode shapes of annular plates with the
mentioned boundary conditions.

For a circular plate with a central rigid core, the
boundary conditions are:

�(1) = 0;
@�
@�r

(1) = 0;
@�
@�r

(�b) = 0;

2�
�
@3�
@�r3 +

1
�r
@2�
@�r2 � 1

�r2
@�
@�r

�����
�r=�b

=
Mc

R�h
�!2�(�b); (28)

where �b = b=R is the dimensionless radius of rigid core.
Following the same mentioned procedure for obtaining

Figure 6. Mode shapes of clamped circular plate with
central rigid core, �b = 0:2, � = 0:34.

the mode shapes of previous boundary conditions, the
mode shape of this case can be calculated; however,
since it requires a lengthy calculation, it is ignored here.
Figure 6 shows mode shapes of clamped circular plate
with central rigid core for �b = 0:2.

3. Results and discussion

In this section, in order to compare the pull-in in-
stability of plate for di�erent boundary conditions,
Eq. (21) was solved for fully clamped circular plate,
clamped-clamped, and clamped-simply supported an-
nular plates. Since the inertia terms are not important
in static pull-in instability, for studding it, all time-
dependent terms of Eq. (21) are ignored. At �rst,
results of clamped circular plate were compared with
those presented in the literature; afterwards, static
pull-in behaviors of circular and annular plates with
di�erent inner radii and boundary conditions were
studied, and the e�ect of radial load on pull-in insta-
bility of plates was investigated. Then, the e�ect of
applied voltage on the fundamental natural frequency
of deformed plate at the state of equilibrium of the
plate was studied. The e�ect of rigid core on the pull-
in stability was also accurately studied.

3.1. Static pull-in behavior of circular and
annular plates

In this section, the static pull-in behaviors of circular
and annular plates were studied. To validate the
proposed model, the pull-in results of clamped circular
plate were compared with the results obtained in [38],
and the obtained equilibrium curve is shown in Fig-
ure 7. The geometric and material parameters of the
model were selected as Poisson's ratio (�) of 0.25, outer
radius (R) of 50 �m, thickness (h) of 3 �m, initial
gap of 0.894 �m, and permittivity of free space (�) of
8:85� 10�12 F/m.
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Figure 7. Equilibrium curve for clamped circular plate; comparison of (a) Ref. [38] and (b) the present work.

Figure 8. Equilibrium curves for (a) clamped-clamped, (b) simply supported from outside and clamped from inside
annular plate with convergence of �1 = 24, � = 0:1.

The saddle-node bifurcation points in Figure 7
show static pull-in instability in which stable and
unstable branches of solution coincide with each other.
The value of applied voltage corresponding to these
points is static pull-in voltage, and the slope of all
curves becomes in�nite at the pull-in point. As shown
in Figure 7, the results converge as the number of
modes increases; using six modes for discretizing in
Galerkin's procedure can be su�cient in order to obtain
accurate results. As seen in Figure 7, using the
proposed model with six modes, the estimated static
pull-in voltage is 14.2, while Vogl [38] reported 14.1
as the static pull-in voltage of the plate; this shows
the validity of the obtained equation and the proposed
solution method.

To study the behaviors of annular plates in elec-
trostatic �eld, at �rst, annular plate clamped from both
inner and outer radii is considered, and then static
behaviors of annular plates clamped from inner and
simply supported from outer radii were studied. For
this study, the geometric and material parameters of
annular plate were selected as Poisson's ratio (�) of

0.33, outer radius (R) of 50 �m, inner radius/outer
radius ratio (�) of 0.1, 0.3, and 0.5, thickness (h) of
1 �m, initial gap (d) of 2 �m, and permittivity of free
space (�) of 8:85� 10�12 F/m.

First, it is necessary to select an appropriate
number of mode shapes to describe the transverse
displacement. In order to determine the number of
modes to be retained in the Galerkin's procedure
and to obtain accurate results, a convergence study
was performed. By solving Eq. (21) for clamped-
clamped and clamped-simply supported annular plates
with � = 0:1 and �1 = 24, the pull-in behavior of
annular plates was obtained, as shown in Figure 8,
which demonstrates that using six modes is su�cient
to obtain accurate results of annular plate; therefore,
the following results were obtained by using six modes.

Now, after validating the equation of motion and
solution method and obtaining the required number
of mode shapes necessary for the Galerkin's method
of solution, e�ects of di�erent parameters on pull-
in instability were determined. Since more attention
is devoted to circular plate in the literature, herein,
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Figure 9. Equilibrium curves for annular plate with �1 = 24: (a) Clamped-clamped and (b) clamped-simply supported
plates; e�ect of inner radius.

Figure 10. The e�ect of geometric nonlinearity on equilibrium curve for (a) clamped-clamped annular plate with � = 0:1
and (b) fully clamped circular plate.

the main priority is given to annular plate. Results
of clamped-clamped and clamped-simply supported
annular plates with di�erent inner radii are presented
in Figure 9.

The lower branch of the obtained equilibrium
curve is stable, while the upper branch is unstable.
At pull-in point, a jump in the transverse de
ection
of plate will occur, and system will settle to its upper
stable equilibrium curve (which is not shown in this
�gure). The distance between unstable and stable
branches of equilibrium curve shows the margin of
stability, since the greater the distance, the greater
the margin of safety. As expected, the pull-in voltage
of clamped plate is greater than that of clamped-
simply supported plate. Figure 9 demonstrates that
by increasing the inner radius of annular plate, pull-in
voltage develops in bigger voltages and the static pull-
in voltage increases due to an increase in sti�ness of
plate.

In order to study the e�ect of geometric non-
linearity on the pull-in parameters, the dimensionless

Table 1. Static pull-in parameters of clamped-clamped
annular plates with di�erent geometric nonlinearity
coe�cients.

� �1 �2V 2 �Wmax

0.1

12 119.1 0.3942
18 125.1 0.3876
24 129.9 0.3794
30 133.9 0.3711

0.3

12 366 0.4545
18 402.2 0.4544
24 433.5 0.4487
30 460.8 0.4413

de
ection of plate versus applied voltage was plot-
ted for di�erent geometric nonlinearity coe�cients in
Figure 10. This �gure shows equilibrium curves for
fully clamped circular and clamped-clamped annular
plates with � = 0:1 and equilibrium curves for di�erent
geometric nonlinearities. Results of other cases are
presented in Table 1.
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As seen in Table 1, by increasing �1, the static
pull-in voltage increases while the de
ection in pull-in
voltage decreases.

3.2. E�ect of radial load on pull-in behaviors
of circular and annular plates

In this section, by applying tensile and compressive
radial forces to circular and annular plates, the e�ects
of these forces on pull-in parameters are studied. In-

uences of the radial force on the static pull-in voltage
of circular plate with speci�cations, as mentioned in
Figure 7, are depicted in Figure 11 for clamped circular
plate. Dimensionless applied loads ( �Pr) are written on
each curve. Negative numbers show compressive load,
and positive ones show tensile load. As known from
elasticity and vibration studies, tensile load increases
sti�ness, while compressive load decreases sti�ness;

Figure 11. The e�ect of radial load of equilibrium curve
for clamped circular plate.

accordingly, pull-in voltages increase for tensile load
and decreases for compressive load.

From this �gure, it can be understood that the
variation of pull-in voltage with radial load is very
much, while maximum de
ection at the pull-in point
has small variation with radial load.

In Figure 12, equilibrium curves for clamped-
clamped and clamped-simply supported annular plates
with � = 0:1 and �1 = 24 under di�erent radial loads
are shown. In this case, since annular plate has greater
sti�ness with respect to circular plate, it has greater
pull-in voltages.

Results of annular plates with �1 = 24 and
di�erent values of � under various radial loads are
presented in Tables 2 and 3.

As shown in Figures 11 and 12 and Tables 2
and 3, by increasing tensile radial force, the sti�ness of
plate increases; thus, the static pull-in voltage of plate
increases, while an increase in the value of compressive
radial force has softening e�ect on system and decreases
the sti�ness, which, accordingly, decreases the static
pull-in voltage of plate.

3.3. Pull-in behavior of circular plate with the
central rigid core

In this section, the static pull-in behavior of circular
plate with the central rigid core is studied. The
geometric and material parameters of circular plate and
rigid core are mentioned in Table 4.

Similar to the previous cases, at �rst, the con-
vergence of the solution of a clamped circular plate
with the central rigid core is examined in terms of the
di�erent number of mode shapes. The obtained result
is shown in Figure 13. From this �gure, it is clear that
four mode shapes are su�cient for the convergence of
solution.

According to the results shown for circular and
annular plate, since the form of equilibrium curve

Figure 12. The e�ect of radial load on equilibrium curve for annular plate with � = 0:1 and �1 = 24: (a)
Clamped-clamped, and (b) clamped-simply supported plates.
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Table 2. The e�ect of radial load on static pull-in voltages of clamped-simply annular plates with �1 = 24.

Radial load
Dimensionless

radial load
( �Pr)

Dimensionless
pull-in voltage

(�2V 2)

Max dimensionless
de
ection
(Wmax=d)

� = 0:1 � = 0:3 � = 0:1 � = 0:3

Compressive
{30 68.58 347 0.3849 0.4608
{20 90.31 376 0.3827 0.4569
{10 110.7 404.8 0.381 0.4535
0 129.9 433.5 0.379 0.4487

Tensile
10 148.2 462 0.3772 0.4447
20 165.6 490.4 0.3754 0.4407
30 182.4 518.7 0.3742 0.4367

Table 3. The e�ect of radial load on static pull-in voltages of clamped-simply supported annular plates with �1 = 24.

Radial load
Dimensionless

radial load
( �Pr)

Dimensionless
pull-in voltage

(�2V 2)

Max dimensionless
de
ection
(Wmax=d)

� = 0:1 � = 0:3 � = 0:1 � = 0:3

Compressive
{15 73.45 408.1 0.4646 0.6889
{10 83.99 426.1 0.4625 0.6881
{5 94.41 444 0.4604 0.6873
0 104.7 462 0.4584 0.6865

Tensile

5 114.9 480 0.4564 0.6857
10 125 498 0.4544 0.6849
15 135 516.1 0.4524 0.6841
20 144.9 534.1 0.4505 0.6832

Table 4. The geometric and material parameters of
circular plate with the central rigid core.

Parameters Values

Radius of plate (R) 50 �m
Radius of core (b) 20 �m
Thickness of plate (h) 1 �m
Thickness of core (hc) 2 �m
Initial gap (d) 2 �m
Density of plate (�) 2700 kg/m3

Density of core (�c) 7800 kg/m3

Poisson's ratio (�) 0.34

is similar in di�erent cases, herein, only one case is
examined. Figure 14 represents the results determined
for clamped solid circular and clamped circular plates
with central rigid mass.

As shown in Figure 14, the attachment of rigid
core to di�erent radius ratios has di�erent e�ects on
pull-in voltage. Generally, due to the attachment
of rigid core, there is a reduction in the sti�ness of
plate. Hence, due to the reduction in the sti�ness of
structure, pull-in voltage reduces, which is the reason
for the reduction in pull-in voltage in b=R = 0:1 and

Figure 13. Equilibrium curves for clamped circular plate
with the central rigid core with the convergence of
�1 = 24, b=R = 0:2.

b=R = 0:15. However, this trend is not monotone with
an increase in the radius of rigid core. In circular
plate without rigid core, the de
ection at the center
of rigid core increases with applied voltage with no
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Figure 14. Comparison of equilibrium curves for clamped
circular and circular plates with the central rigid core;
�1 = 24.

limitation on it, since the whole structure has the same
deformation. However, when the rigid core is attached
to plate, there is limitation on the de
ection at the
center point, since all points in the domain of rigid core
have the same displacement. The limitation on the
displacement of the rigid core will be more stringent
with an increase in the de
ection of plate. Hence,
although the plate with a rigid core has lower sti�ness
at its �rst initial shape, its rigidity will continuously
increase with the de
ection at center. This is the reason
for an increase in pull-in voltage for b=R = 0:2.

3.4. Natural frequencies of plate in the
electrostatic �eld

When the plate is de
ected, the natural frequencies
change correspondingly. With the increase in applied
voltage, the sti�ness of plate reduces continuously,
until the sti�ness in the �rst mode of pull-in instabil-
ity becomes zero in pull-in voltage, and the natural
frequency becomes zero, accordingly. Hence, in the
following, reduction in the natural frequency of this
deformed plate at every de
ection shape of plate due
to electrostatic force is determined. To study the
linear natural frequency of vibration, it is necessary
to linearize the plate equations of motion around the
de
ected position.

Figures 15-17 show the variation of fundamental
natural frequency of the de
ected plate, normalized
with respect to the natural frequency at the unreformed
state along with the variation in the electrostatic load
for di�erent ratios of �1 (i.e. the geometric nonlinearity
term); the radius ratio of � is considered, too.

As shown in Figures 15-17, for low values of �1,
when electrostatic load increases, the fundamental nat-
ural frequency decreases and approaches zero as pull-

Figure 15. Fundamental natural frequency of de
ected
clamped circular plate versus applied voltage for various
values of �1.

in develops. For high values of �1, the fundamental
natural frequency �rst increases with electrostatic load
due to strain hardening, and then decreases and ap-
proaches zero. In clamped-circular plate, the sti�ness
monotony decreases with an increase in applied voltage
and, accordingly, natural frequency decreases. For
annular plate with smaller inner radius, the condition
is the same, while, for higher values of inner radius, the
fundamental frequency of plate increases at �rst since
there is limitation on the transverse displacement of the
plate; �nally, at higher values of applied pull-in voltage,
zero frequency occurs. Due to limitation on the
transverse displacement of annular plate with a bigger
inner radius, when the value of �1 is increased, there is
a pronounced hardening e�ect for higher values of �1
and �, and natural frequency increases accordingly in
some frequency ranges of applied voltage.

4. Conclusion

In this paper, the static pull-in behavior and natural
frequency of vibration for electrostatically actuated
circular and annular plates were investigated. It was
found that increasing the tensile radial force increases
the pull-in voltage, and increasing the compressive
radial force decreases it. Moreover, results showed that
increasing the inner radius of annular plates causes an
increase in the static pull-in voltage; by increasing ge-
ometric nonlinearity, pull-in voltage develops in bigger
voltage. Subsequently, the e�ect of applied voltage on
fundamental natural frequency of de
ected plates was
investigated. Results showed that by increasing applied
voltage, the fundamental natural frequency decreases
and approaches zero as pull-in voltage develops. The
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Figure 16. Fundamental natural frequency of de
ected clamped-clamped annular plate with various values of �1: (a)
� = 0:1, and (b) � = 0:3.

Figure 17. Fundamental natural frequency of de
ected clamped-simply supported annular plate for various �1: (a)
� = 0:1, and (b) � = 0:3.

obtained results show that variations of di�erent pa-
rameters have great in
uence on pull-in voltage and
small in
uence on de
ection at pulling point. This
means that de
ection at the pull-in condition is nearly
the same for di�erent parameters of a plate and is more
in
uenced by the boundary condition with respect to
other parameters of system.

NOMENCLATURE
R Radius of the plate
h Thickness of the plate
d Gap between two electrodes
b Radius of rigid core
hc Thickness of rigid core
Mcore Mass of rigid core
" The dielectric constant of the gap

medium

t Time
E Young's modulus
w Transverse displacement of neutral

axes in the z direction
u; v In-plane displacements
I2 Rotary inertia
�w Dimensionless transverse displacement
D The 
exural rigidity of plate
�1 Geometric structural nonlinearity

parameter
Id Related to the radius of gyration
Nrr; N��;
Nr� In-plane forces
T The kinetic energy
Tcore The kinetic energy of rigid core
� Poisson's ratio
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� Mass density of the plate
�c Mass density of rigid core
G Shear modulus
� Variational operator
Pr Radial force per length
fes Electrostatic force per unit area
c Damping coe�cient
V Applied voltage
ur; u�; uz Displacements in the r, �, and z

directions
I0 Mass per unit area
�V Dimensionless voltage
�r Dimensionless radius
�t Dimensionless time
�2 Electrostatic force parameter
�Pr Dimensionless radial load
Mrr;M��;
Mr� Out of plane moments
II The strain energy

0 Domain of the plate
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Appendix A

In this appendix, by employing extended Hamilton's
principle, Eq. (12) will be obtained. Extended Hamil-
ton's principle is given as follows [29]:

t2Z
t1

(��� �W � �T )dt = 0: (A.1)

By substituting Eqs. (4)-(11) into Eq. (A.1), the
extended Hamilton's principle can be written as:
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(A.2)

By using terms de�ned in Eq. (14), the variations of the
kinetics and strain energy can be written as follows:
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By substituting Eqs. (A.3) and (A.4) into Eq. (A.2),
we obtain:
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By integrating Eq. (A.5) by parts in space and time
to relive �w from any di�erentiations, it is found that
each individual term simpli�es as follows:x
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By substituting Eqs. (A.6)-(A.17) into Eq. (A.5)
and setting each of the coe�cients of in the area
integrand equal to zero, the �nal form of equation of
motion and boundary conditions will be obtained as
Eqs. (12) and (13).
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