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Abstract. Rings are widely used in mechanical equipment, and their �tness may undergo
some damage under severe vibration. In these structures, functionally graded rings can be
used to optimize the resistance, energy consumption, and �tness. Due to their complexity,
the �nite-element analysis may be implemented using special elements. Enhancement of
accuracy and minimization of time consumption play an important role in the analysis of
these rings. In this study, a new cylindrical superelement for the FGM rings is designed and
implemented to facilitate the vibration analysis of the rings. The power-law distribution
is used for the modeling of the FGM rings in the thickness direction. Natural frequencies
and mode shapes are obtained, and results are compared with simple cases obtained from
analytical solution and conventional elements. Findings indicate that, considering a few
newly designed superelements, comparable results for simple cases in the reported literature
can be achieved.

© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

New advances in materials science have led to the
creation of new materials with interesting properties.
One of these materials is Functionally Graded Material
(FGM). FGM is a compound that is usually made
up of two components, mixing continuously. The
continuous mixing causes continuous variation in ma-
terial properties from one side to another. Continu-
ity in material properties can ultimately remove the
problems associated with boundaries in the laminated
composite. Many researches on rings, cylinders, and
FGM structures were carried out [1]. Likun Wang et
al. [2] investigated the vibration of piezoceramic rings
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using theoretical analysis, numerical simulation, and
experimental measurement. Mustapha [3] presented a
microstructure-dependent continuum model of a micro-
ring with functionally graded material composition in
the thickness direction. Loy et al. [4] used the Rayleigh-
Ritz method and Love's shell theory to obtain the
natural frequencies of simply supported FGM cylin-
drical shells. Shakeri et al. [5] presented the analysis
of thick hollow cylinder made of FGM under dynamic
loading. In this analysis, they assumed that FGM
cylinder is made of several isotropic layers. Asgari
and Akhlaghi [6] studied the natural frequency analysis
of the 2D-FGM thick hollow cylinder based on three-
dimensional elasticity equations. Yin et al. [7] inves-
tigated free vibration analysis of functionally graded
plates using isogeometric �nite-element method. Yu
et al. [8] presented geometrically nonlinear analysis
of homogeneous and non-homogeneous functionally
graded plates based on isogeometric analysis (IGA).
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In general, analytical methods have their own
limitations and are only able to solve some speci�c
problems. Therefore, numerical methods are used
for a wide range of problems, speci�cally the system
with nonlinear behavior. One of the most common
and e�cient numerical methods for solving complex
problems with no analytical solution is the Finite-
Element Method (FEM). In this method, the number
of elements is increased to obtain convergence and
improve accuracy of results. This work leads to an
increase in time and memory required for solving
problems. One of the attempts at improving the
e�ciency of the nonlinear problem simulation is the
implementation of superelements. Superelements have
speci�c shapes and features. They simplify the process
of modeling for particular structures. Due to the shape
of these elements, structures can be modelled with
fewer elements and high accuracy. Sarvi and Ahma-
dian [9] designed and implemented a new spherical
superelement used for static and dynamic problems.
Jiang and Olson [10] extended a superelement to the
nonlinear dynamic and static analyses of cylindrical
shells. Koko and Olson [11] studied vibration analysis
of sti�ened plates using a rectangular superelement.
Ju and Choo [12] applied the superelement approach
to a cable passing through multiple pulleys. Ahmadian
and Bonakdar [13] presented a new cylindrical superele-
ment formulation and its application to structural
analysis of laminated hollow cylinders. Taghvaeipour
et al. [14] used this superelement for the structural
analysis of functionally graded hollow cylinders. In
another e�ort by Ghorbani and Ahmadian [15], the
cylindrical superelement is developed and incorporated
continuity into slope to increase the accuracy of re-
sults.

Cylindrical superelement in [15] is applied in this
paper. We cannot obtain many natural frequencies
and mode shapes in rings using a 16-node cylindrical
superelement. Therefore, in the current work, we
extend the number of nodes in [15] to 64 nodes.
Then, we illustrate the shape functions, the procedure
of extracting the mass, and element sti�ness matri-
ces. Homogeneous rings are analyzed, and results are
compared with analytical solution and conventional
elements in Abaqus. FGM rings are modelled based
on varying properties in the radial direction, and the
results are validated with conventional elements in
Abaqus.

2. Element de�nition

Herein, a 16-node cylindrical superelement in [13,15] is
introduced and extended to 64 nodes. A cylindrical
element with length 2L, inner radius r1, and outer
radius r2 is shown in Figure 1. As shown, there are

Figure 1. Superelement con�guration and coordinate
system.

64 nodes in each element distributed equally on both
sides.

The triple cylindrical coordinate (r���z) is used
to determine the position vector in the element, where
r, �, and z are radial, tangential, and axial coordinates,
respectively. The element intrinsic coordinates are
de�ned as follows [14]:8><>:� = 2r�b

a

 = �

� � 1
� = z

L

(1)

where:

a = r2 � r1; b = r2 + r1: (2)

Considering the limits for global coordinate (r���z):8><>:r1 � r � r2

0 � � � 2�
�l � z � l

(3)

implies:

�1 � �; �; 
 � 1: (4)

The following conditions are essential for the shape
functions of the cylindrical superelement [13].

The shape functions must be continuous and
di�erentiable.

The shape function corresponding to each node
must be one at that node and zero at other nodes.

Due to the cylindrical shape of the element, all
the shape functions must be periodic with respect to
tangential coordinate, �, with a period of 2�.

Satisfying the above-mentioned conditions, the
newly developed shape functions are as follows:
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N1
01 =

1
64

cos(4�
)(1 + cos(4�
))(1 + cos(2�
))

(1� cos(�
))(1� �)(2� 3� + �3);

N1
11 =

1
64

cos(4�
) (1 + cos(4�
)) (1 + cos(2�
))

(1� cos(�
)) (1� �)(1� � � �2 + �3);

N1 =
1
32

cos (4�
) (1 + cos (4�
)) (1 + cos (2�
))

(1� cos (�
)) (1� �)(1� �);

N1
02 =

1
64

sin(4�
) (1+sin(4�
))
�

1+sin(2�
+
�
4

)
�

�
1� sin(�
 +

3�
8

)
�

(1� �)(2� 3� + �3);

N1
12 =

1
64

sin(4�
) (1 + sin(4�
))
�

1 + sin(2�
 +
�
4

)
�

�
1� sin(�
 +

3�
8

)
�

(1� �)(1� � � �2 + �3);

N2 =
1
32

sin(4�
) (1 + sin(4�
))
�

1 + sin(2�
 +
�
4

)
�

�
1� sin(�
 +

3�
8

)
�

(1��)(1��);

N1
03 =� 1

64
cos(4�
) (1� cos(4�
)) (1 + sin(2�
))�

1� sin(�
 +
�
4

)
�

(1� �)(2� 3� + �3);

N1
13 =� 1

64
cos(4�
) (1� cos(4�
)) (1 + sin(2�
))�

1� sin(�
 +
�
4

)
�

(1� �)(1� � � �2 + �3);

N3 =� 1
32

cos(4�
) (1� cos(4�
)) (1 + sin(2�
))�
1� sin(�
 +

�
4

)
�

(1��)(1��);

N1
04 =� 1

64
sin(4�
) (1� sin(4�
))�

1� cos(2�
 +
�
4

)
��

1� sin(�
 +
�
8

)
�

(1� �)(2� 3� + �3);

N1
14 =� 1

64
sin(4�
) (1� sin(4�
))�

1� cos(2�
 +
�
4

)
��

1� sin(�
 +
�
8

)
�

(1� �)(1� � � �2 + �3);

N4 =� 1
32

sin(4�
) (1�sin(4�
))
�

1�cos(2�
+
�
4

)
�

�
1� sin(�
 +

�
8

)
�

(1��)(1��);

N1
05 =

1
64

cos(4�
) (1 + cos(4�
)) (1� cos(2�
))

(1� sin(�
)) (1� �)(2� 3� + �3);

N1
15 =

1
64

cos(4�
) (1 + cos(4�
)) (1� cos(2�
))

(1� sin(�
)) (1� �)(1� � � �2 + �3);

N5 =
1
32

cos(4�
) (1 + cos(4�
)) (1� cos(2�
))

(1� sin(�
)) (1��)(1��);
N1

06 =
1
64

sin(4�
) (1+sin(4�
))
�

1�sin(2�
+
�
4

)
�

�
1 + cos(�
 +

3�
8

)
�

(1� �)(2� 3� + �3);

N1
16 =

1
64

sin(4�
) (1 + sin(4�
))
�

1� sin(2�
 +
�
4

)
�

�
1 + cos(�
 +

3�
8

)
�

(1� �)(1� � � �2 + �3);

N6 =
1
32

sin(4�
) (1 + sin(4�
))
�

1� sin(2�
 +
�
4

)
�

�
1 + cos(�
 +

3�
8

)
�

(1��)(1��);

N1
07 =� 1

64
cos(4�
) (1� cos(4�
)) (1� sin(2�
))�

1 + cos(�
 +
�
4

)
�

(1� �)(2� 3� + �3);

N1
17 =� 1

64
cos(4�
) (1� cos(4�
)) (1� sin(2�
))�

1 + cos(�
 +
�
4

)
�

(1� �)(1� � � �2 + �3);

N7 =� 1
32

cos(4�
) (1� cos(4�
)) (1� sin(2�
))�
1 + cos(�
 +

�
4

)
�

(1��)(1��);
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N1
08 =� 1

64
sin(4�
) (1� sin(4�
))�

1 + cos(2�
 +
�
4

)
��

1 + cos(�
 +
�
8

)
�

(1� �)(2� 3� + �3);

N1
18 =� 1

64
sin(4�
) (1� sin(4�
))�

1 + cos(2�
 +
�
4

)
��

1 + cos(�
 +
�
8

)
�

(1� �)(1� � � �2 + �3);

N8 =� 1
32

sin(4�
) (1�sin(4�
))
�

1+cos(2�
+
�
4

)
�

�
1 + cos(�
 +

�
8

)
�

(1��)(1� �);

N1
09 =

1
64

cos(4�
) (1 + cos(4�
)) (1 + cos(2�
))

(1 + cos(�
)) (1� �)(2� 3� + �3);

N1
19 =

1
64

cos(4�
) (1 + cos(4�
)) (1 + cos(2�
))

(1 + cos(�
)) (1� �)(1� � � �2 + �3);

N9 =
1
32

cos(4�
) (1 + cos(4�
)) (1 + cos(2�
))

(1 + cos(�
)) (1� �)(1��);

N1
010 =

1
64

sin(4�
) (1+sin(4�
))
�

1+sin(2�
+
�
4

)
�

�
1 + sin(�
 +

3�
8

)
�

(1� �)(2� 3� + �3);

N1
110 =

1
64

sin(4�
) (1 + sin(4�
))
�

1 + sin(2�
 +
�
4

)
�

�
1 + sin(�
 +

3�
8

)
�

(1� �)(1� � � �2 + �3);

N10 =
1
32

sin(4�
) (1 + sin(4�
))
�

1 + sin(2�
 +
�
4

)
�

�
1 + sin(�
 +

3�
8

)
�

(1��)(1��);

N1
011 =� 1

64
cos(4�
) (1� cos(4�
)) (1 + sin(2�
))�

1 + sin(�
 +
�
4

)
�

(1� �)(2� 3� + �3);

N1
111 =� 1

64
cos(4�
) (1� cos(4�
)) (1 + sin(2�
))�

1 + sin(�
 +
�
4

)
�

(1� �) (1� � � �2 + �3);

N11 =� 1
32

cos(4�
) (1� cos(4�
)) (1 + sin(2�
))�
1 + sin(�
 +

�
4

)
�

(1��)(1��);

N1
012 =� 1

64
sin(4�
) (1�sin(4�
))

�
1�cos(2�
+

�
4

)
�

�
1 + sin(�
 +

�
8

)
�

(1� �)(2� 3� + �3);

N1
112 =� 1

64
sin(4�
) (1�sin(4�
))

�
1�cos(2�
+

�
4

)
�

�
1 + sin(�
 +

�
8

)
�

(1� �)(1� � � �2 + �3);

N12 =� 1
32

sin(4�
) (1�sin(4�
))
�

1�cos(2�
+
�
4

)
�

�
1 + sin(�
 +

�
8

)
�

(1��)(1� �);

N1
013 =

1
64

cos(4�
) (1+cos(4�
)) (1�cos(2�
))

(1+sin(�
)) (1� �)(2� 3� + �3);

N1
113 =

1
64

cos(4�
) (1 + cos(4�
)) (1� cos(2�
))

(1 + sin(�
)) (1� �)(1� � � �2 + �3);

N13 =
1
32

cos(4�
) (1 + cos(4�
)) (1� cos(2�
))

(1 + sin(�
)) (1� �)(1� �);

N1
014 =

1
64

sin(4�
) (1+sin(4�
))
�

1�sin(2�
+
�
4

)
�

�
1� cos(�
 +

3�
8

)
�

(1� �)(2� 3� + �3);

N1
114 =

1
64

sin(4�
) (1 + sin(4�
))
�

1� sin(2�
 +
�
4

)
�

�
1� cos(�
 +

3�
8

)
�

(1� �)(1� � � �2 + �3);
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N14 =
1
32

sin(4�
) (1 + sin(4�
))
�

1� sin(2�
 +
�
4

)
�

�
1� cos(�
 +

3�
8

)
�

(1��)(1��);

N1
015 =� 1

64
cos(4�
) (1� cos(4�
)) (1� sin(2�
))�

1� cos(�
 +
�
4

)
�

(1� �)(2� 3� + �3);

N1
115 =� 1

64
cos(4�
) (1� cos(4�
)) (1� sin(2�
))�

1� cos(�
 +
�
4

)
�

(1� �)(1� � � �2 + �3);

N15 =� 1
32

cos(4�
) (1� cos(4�
)) (1� sin(2�
))�
1� cos(�
 +

�
4

)
�

(1��)(1��);

N1
016 =� 1

64
sin(4�
) (1�sin(4�
))

�
1+cos(2�
+

�
4

)
�

�
1� cos(�
 +

�
8

)
�

(1� �)(2� 3� + �3);

N1
116 =� 1

64
sin(4�
) (1� sin(4�
))�

1 + cos(2�
 +
�
4

)
��

1� cos(�
 +
�
8

)
�

(1� �)(1� � � �2 + �3);

N16 =� 1
32

sin(4�
) (1�sin(4�
))
�

1+cos(2�
+
�
4

)
�

�
1� cos(�
 +

�
8

)
�

(1� �)(1� �);

N1
017 =

1
64

cos(4�
) (1 + cos(4�
)) (1 + cos(2�
))

(1� cos(�
)) (1� �)(2 + 3� � �3);

N1
117 =

1
64

cos(4�
) (1 + cos(4�
)) (1 + cos(2�
))

(1� cos(�
)) (1� �)(�1� � + �2 + �3);

N17 =
1
32

cos(4�
) (1 + cos(4�
)) (1 + cos(2�
))

(1� cos(�
)) (1� �)(1 + �);

...

N1
032 =� 1

64
sin(4�
) (1�sin(4�
))�

1+cos(2�
+
�
4

)
��

1� cos(�
 +
�
8

)
�

(1� �)(2 + 3� � �3);

N1
132 =� 1

64
sin(4�
) (1�sin(4�
))

�
1+cos(2�
+

�
4

)
�

�
1� cos(�
 +

�
8

)
�

(1� �)(�1� � + �2 + �3);

N32 =� 1
32

sin(4�
) (1�sin(4�
))
�

1+cos(2�
+
�
4

)
�

�
1� cos(�
 +

�
8

)
�

(1��)(1 + �);

N1
033 =

1
64

cos(4�
) (1 + cos(4�
)) (1 + cos(2�
))

(1� cos(�
)) (1 + �)(2� 3� + �3);

N1
133 =

1
64

cos(4�
) (1 + cos(4�
)) (1 + cos(2�
))

(1� cos(�
)) (1 + �)(1� � � �2 + �3);

N33 =
1
32

cos(4�
) (1 + cos(4�
)) (1 + cos(2�
))

(1� cos(�
)) (1 + �)(1� �);
...

N1
064 =� 1

64
sin(4�
) (1�sin(4�
))

�
1+cos(2�
+

�
4

)
�

�
1� cos(�
 +

�
8

)
�

(1 + �)(2 + 3� � �3);

N1
164 =� 1

64
sin(4�
) (1� sin(4�
))�

1 + cos(2�
 +
�
4

)
��

1� cos(�
 +
�
8

)
�

(1 + �)(�1� � + �2 + �3);

N64 =� 1
32

sin(4�
) (1� sin(4�
))�
1 + cos(2�
 +

�
4

)
��

1� cos(�
 +
�
8

)
�

(1 + �)(1 + �)(5): (5)

According to Eq. (5), the shape function corresponding
to each node gets the value of one at that node and
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zero at other nodes. For example, the �rst node with
intrinsic coordinates � = �1; � = �1; and 
 = �1 is
one in the �rst shape function and zero in the others.

3. Stress-strain relations

The displacement vector in this element is [13]:

u =
�
ur u� uz

�T : (6)

u is obtained using nodal displacement vector, q, and
the shape functions according to:

u = Nq: (7)

q and N can be obtained by Eqs. (8) and (9) as shown
in Box I.

Strain vector in cylindrical coordinate system is
de�ned as follows:

" = [ "r "� "z 
r� 
rz 
�z ]T : (10)

The strain-displacement relations can be stated in a
matrix form in the cylindrical coordinate as follows [16]:

" = Lu; (11)

where L is the operator matrix as follows:

L =

26666664
@
@r 0 0
1
r

1
r
@
@� 0

0 0 @
@z

1
r
@
@�

@
@r � 1

r 0
@
@z 0 @

@r
0 @

@z
1
r
@
@�

37777775 : (12)

By considering Eqs. (7) and (11), the strain vector
could be written as follows:

" = Bq; (13)

where B is obtained from:

B = LN: (14)

In cylindrical coordinate system, the stress vector is
de�ned as follows:

� = [ �r �� �z �r� �rz ��z ]T ; (15)

which is related to the strain vector according to the
following equation [16]:

� = D"; (16)

where D is the property matrix given by:

D =
E

1 + �

26666664
d e e 0 0 0
e d e 0 0 0
e e d 0 0 0
0 0 0 1

2 0 0
0 0 0 0 1

2 0
0 0 0 0 0 1

2

37777775 ;
e =

�
1� 2�

;

d =
1� �
1� 2�

; (17)

where � and E are Poisson's ratio and modulus of
elasticity, respectively.

4. Element sti�ness and mass matrices

Element sti�ness and mass matrices should be in-
tegrated on the volume of element. In cylindrical
coordinate (r � � � z), in�nitesimal volume, d�, can
be expressed as follows:

d�global = rdrd�dz: (18)

In the local coordinate, in�nitesimal volume, d�, can
be expressed as follows:

d�local =
1
2

det (J) (a� + b)d�d
d�; (19)

where J is the Jacobian matrix and is calculated as
follows:

J =

264 @r
@�

@�
@�

@z
@�

@r
@


@�
@


@z
@


@r
@�

@�
@�

@z
@�

375 =

24 a
2 0 0
0 � 0
0 0 l

35 ; (20)

q =
�
u1r

@u1r

@z
u1�

@u1�

@z
u1z :::u64r

@u64r

@z
u64�

@u64�

@z
u64z

�T
; (8)

N =

24 N1
01 N1

11 0 0 0 � � � N1
064 N1

164 0 0 0
0 0 N1

01 N1
11 0 � � � 0 0 N1

064 N1
164 0

0 0 0 0 N1 � � � 0 0 0 0 N64

35 ; (9)

in which Ni represents the shape functions.
Box I
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which has the determinant:

det (J) =
�al
2
: (21)

The element sti�ness and mass matrices are de�ned as
follows [17]:

Ke =
Z
V e

BTDBd�; (22)

Me =
Z
V e

NT �Nd�: (23)

Using Eqs. (19) and (21), we get:

Ke =
1Z
�1

1Z
�1

1Z
�1

BTDB
la�
4

(a� + b)d�d�d
; (24)

Me =
1Z
�1

1Z
�1

1Z
�1

NT �N
la�
4

(a� + b)d�d�d
: (25)

5. Modeling of FGM

Properties of the functionally graded materials change
smoothly with their position. For FG rings considered
in this work, the properties are only a function of radial
position and stay constant relative to longitudinal and
angular directions. Many relations are available to
describe the changing properties of functionally graded
materials, and the following relation is assumed in this
study [14]:

P (r) = (Pm � Pc)
�
r � ri
ro � ri

�n
+ Pc; (26)

where P (r) is the property of FGM which can be phys-
ical properties such as modulus of elasticity, Poisson's
ratio, thermal conductivity, density, etc. Pc (ceramic)
and Pm (metal) are the properties of the inner and
outer parts of the ring, respectively. n is gradient index,
and ri and ro are inner and outer radii, respectively.
Through substituting modulus of elasticity, Poisson's
ratio, and density of materials into Eq. (26) and using
Eqs. (17), (24), and (25), the FG ring can be modeled.

6. Modal analysis

The equation of motion for an undamped multi degree
of freedom system is de�ned as follows [14]:

M �q +Kq = 0; (27)

where q is the global degree of freedom vector, and K
and M are sti�ness and mass matrices, respectively.

Vibrating the system in one of the mode shapes,
'i, leads to a simple harmonic motion with the
corresponding natural frequency, !i, which could be
expressed as:

q = Qi sin(!it); (28)

whereQi is the amplitude vector. Substituting Eq. (28)
into Eq. (27) yields:

(�M!i2 +K)Qi = 0: (29)

To �nd a nontrivial solution to the above equation, the
determinant of the coe�cient matrix should be 0:���M!i2 +K

�� = 0: (30)

Premultiplying the equation by M�1 and de�ning D =
M�1 �K, �i = !2

i results in:

jD � I�ij = 0: (31)

Solving the eigenvalue problem in Eq. (31) yields
eigenvalues and eigenvectors of D, which are the square
of natural frequencies and the mode and shapes of the
system, respectively.

7. Example

Consider a FGM free ring with thickness of L =
0:01 m, inner radius = 0.05 m, outer radius = 0.052 m,
inner material = Si3N4, and outer material = stainless
steel (SUS304) whose material properties are given in
Table 1.

The ring is modelled with 6 cylindrical superele-
ments in the radial direction according to the result
of Figure 5. Initially, let the ring be homogeneous,
only ceramic or only metal (n = 1, 0 in Eq. (26)).
The �rst three natural frequencies obtained using
superelement for in-plane 
exural vibrations of ring
are compared with those obtained from Abaqus and
analytical solution in ref [1] in Tables 2 and 3.

The �rst three mode shapes of the ring are shown
in Figures 2 to 4.

Assume that the properties vary from the inner to
outer surfaces linearly (n = 1): The �rst three natural
frequencies obtained from superelement are compared
with those obtained from Abaqus in Table 4.

To investigate the convergence of the results,
number of cylindrical superelement in the radial di-
rection is increased for the case of n = 1. Findings

Table 1. Material properties of FGM.

Properties Si3N4 Stainless steel (SUS304)

E (GPa) 315.7 207.8
� 0.24 0.318

� kg/m3) 2370 8166
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Table 2. The �rst three natural frequencies for n = 0 (SUS304).

Method Relative errorb

Superelement (6)a Abaqus (10000) Ref. [1] Superelement Abaqus

The �rst natural frequency (Hz) 479 474 478 0.21% 0.84%
The second natural frequency (Hz) 1355 1340 1353 0.15% 0.96%
The third natural frequency (Hz) 2596 2566 2593 0.12% 1.04%

a The number indicates the number of elements; b With respect to the analytical method [1].

Table 3. The �rst three natural frequencies for n =1 (Si3N4).

Method Relative errorb

Superelement (6)a Abaqus (10000) Ref. [1] Superelement Abaqus

The �rst natural frequency (Hz) 1095 1082 1094 0.09% 1.1%
The second natural frequency (Hz) 3094 3052 3095 0.03% 1.39%
The third natural frequency (Hz) 5928 5846 5934 0.1% 1.48%

a The number indicates the number of elements; b With respect to the analytical method [1].

indicate that six superelements are su�cient for rela-
tively accurate result. Figure 5 presents convergence
of the �rst natural frequency for di�erent number of
layers.

It is clear that using six superelements results in

Figure 2. The �rst mode shape.

Figure 3. The second mode shape.

good convergence with 0.2% accuracy. The e�ect of
gradient index n on natural frequencies is presented in
Figures 6-8.

It can be observed that natural frequency in-
creases as n increases due to higher volume fraction
of ceramic with larger sti�ness and lower density with
respect to metal.

Figures 9-11 depict the �rst three natural frequen-
cies at di�erent values of the ratio of thickness to radius
(h=ri) for di�erent n.

It is clear that as the ratio of thickness to radius
increases, the natural frequency also increases.

Natural frequencies of rings obtained using su-
perelement, Abaqus software, and analytical solution
for n = 0 (metal), n = 1 (ceramic), and n = 1
(FGM) are presented in Tables 2-4. Findings indicate
that it is highly possible to predict the results within
0.21% error with the application of six superelements,
while the predicted error will be 1.48% with respect
to analytical solution using 10000 elements through
Abaqus software.

Figure 4. The third mode shape.
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Table 4. The �rst three natural frequencies for n = 1.

Method
Superelement Abaqus Relative errora

The �rst natural frequency (Hz) 666 661 0.76%
The second natural frequency (Hz) 1884 1871 0.69%
The third natural frequency (Hz) 3611 3585 0.73%

a With respect to Abaqus

8. Conclusion

In this paper, a 64-node cylindrical superelement is de-
veloped, and vibration analysis of functionally graded
rings using newly designed cylindrical superelement is

Figure 5. The �rst natural frequency for di�erent
number of layers and n = 1.

Figure 6. The �rst natural frequency for di�erent values
of n.

Figure 7. The second natural frequency for di�erent
values of n.

Figure 8. The third natural frequency for di�erent values
of n.

Figure 9. The �rst natural frequency for di�erent values
of h=ri and n.

Figure 10. The second natural frequency for di�erent
values of h=ri and n.
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Figure 11. The third natural frequency for di�erent
values of h=ri and n.

performed. The power-law distribution is assumed
in the thickness direction for FGM ring. Vibration
analysis of rings is performed using superelement as
well as conventional �nite-element method. Findings
indicate that the application of only six superelements
to the rings brings about the same results as the con-
ventional �nite-element method with 10000 elements
does. Saving in computational time using superelement
could be nearly 0.01, being much lower than that using
conventional method. For simple uniform rings, the
comparison of the obtained natural frequency using six
superelements with analytical solution results in 0.21%
error.
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