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Abstract. This paper presents a �nite-element formulation for dynamic analysis of
orthotropic plates using two-variable Re�ned Plate Theory (RPT). Hamilton's principle is
employed to obtain the governing equations, and the semi-discrete approach is utilized for
solving the equations. After constructing spatial weak form equations, a 4-node rectangular
plate element with six Degrees Of Freedom (DOFs) per node is introduced for discretization
of the domain. An unconditionally stable implicit Newmark scheme is used for temporal
discretization. A MATLAB code with the capability of modelling both static and dynamic
plate problems with various boundary conditions is generated. Several numerical problems
are solved, and the obtained displacements and stresses are compared with the existing
results in the literature. The results demonstrate the accuracy, simplicity, and e�ciency of
the present method in dynamic analysis of plate problems.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Plates are structural elements commonly used in many
industrial applications, e.g. aerospace, marine, nuclear
industries, etc. They are classi�ed in the literature
as thin, moderately thick, or thick plate. The clas-
si�cation of a rectangular plate into one of the three
aforementioned categories is based on relation h=a : h
being the plate thickness and a being the shortest side
length.

In the framework of Classical Plate Theory
(CPT) [1], which is the simplest plate theory, the
results are unrealistic in the case of thick plates because
it does not take into account shear deformation e�ects.
First-order Shear Deformation plate Theory (FSDT)
presented by Mindlin [2] and Reissner [3] considers
the shear e�ects in its formulation, but it needs a
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shear correction factor to re�ne the overestimated shear
strain energy of the plate. Another drawback to this
theory is the constant transverse shear stress across
the plate thickness which is inconsistent with stress-
free conditions on the plate surfaces. Higher-order
Shear Deformation Theories (HSDTs) were developed
using more unknown variables in their formulations to
overcome shortcomings of CPT and FSDT [4-10].

Recently, several simple and e�cient HSDTs
have been proposed and employed in study of various
structures such as functionally graded, laminated, and
sandwich plates and shells [11-13]. In 2002, Shimpi [13]
presented a simple HSDT called two-variable Re�ned
Plate Theory (RPT), which involves only two unknown
functions. He separated the transverse de
ection into
the shear and bending parts which resulted in two
uncoupled governing equations for bending analysis of
isotropic plates. The two-variable re�ned plate theory,
which can be used for thin and thick plates, predicts
parabolic variation of transverse shear stresses across
the plate thickness and does not need shear correction
factor. In this theory, zero traction conditions are



814 J. Rouzegar and M. Sayedain/Scientia Iranica, Transactions B: Mechanical Engineering 25 (2018) 813{823

satis�ed on the plate surfaces. This theory was
rapidly developed and extended to various applications.
In 2006, Shimpi and Patel [14] employed this this
method for analysis of orthotropic plates. In 2009,
Kim et al. [15] extended the application of this the-
ory to analysis of laminated composite plate. They
investigated the bending of antisymmetric cross-ply
and angle-ply laminates using Navier solution. In
2012, Thai and Kim [16] used the two-variable re�ned
plate theory, Levy-type solution procedure, and state
space concept to obtain a closed-form solution for
orthotropic rectangular plates with two opposite edges
simply supported and the other two edges having
arbitrary boundary conditions. Rouzegar and Abdoli
presented �nite-element formulations for free vibra-
tion [17] and buckling [18] analysis of isotropic and
orthotropic plates using this theory. By adding two
in-plane displacements to this theory, a four-variable
re�ned plate theory was introduced. Rouzegar and
Abad employed this theory for bending [19] and free
vibration [20] analysis of cross-ply laminated plates
integrated with piezoelectric layers. Rouzegar and
Gholami [21] studied the non-linear bending analysis of
rectangular plates by four-variable re�ned plate theory
and Dynamic relaxation method.

The practical and typically complicated problems
could be solved in an approximate manner employ-
ing various numerical approaches, such as �nite-layer
method, collocation method, �nite-element method,
�nite strip method, and meshless methods. Among dif-
ferent numerical approaches, Finite-Element Method
(FEM) is an e�cient and attractive technique estab-
lished in the 1940's. Recently, some investigations
have been performed on isogeometric �nite-element
approach utilizing shear deformation plate theories.
Nguyen-Xuan et al. [22] employed isogeometric �nite-
element method with a re�ned plate theory for static,
free vibration and buckling analysis of FG plates.
Thai et al. [23] presented a generalized shear deforma-
tion theory for static, dynamic and buckling analysis
of isotropic and sandwich FG plates. An inverse
trigonometric shear deformation theory along with an
isogeometric approach was employed in this study.
Nguyen and Nguyen-Xuan [24] presented an isoge-
ometric �nite-element approach to three-dimensional
static and dynamic analyses of FG plates. Nguyen
et al. [25] introduced a novel uni�ed framework on
HSDTs for the modeling and analysis of laminated
composite plates. They found that the proposed
formulation with a polynomial form can theoretically
cover all existing HSDTs models and is thus su�cient
to describe the nonlinear and parabolic variations of
transverse shear stress. Nguyen et al. [26] presented an
isogeometric �nite-element formulation based on B�ezier
extraction of the non-uniform rational B-splines in
combination with a generalized unconstrained higher-

order shear deformation theory for laminated compos-
ite plates.

Previous researches on two-variable re�ned plate
theory are mostly focused on analytical solutions to
some plate problems with speci�c geometry, loading
and boundary conditions. A new �nite-element formu-
lation of shear deformation plate was introduced by Pa-
tel and Shimpi [27]. Katori and Okada [28] developed
a �nite-element formulation based on the re�ned plate
theory using triangular and quadrilateral elements for
discretization of the domain. Recently, Rouzegar and
Abdoli [29] presented a �nite-element formulation for
static analysis of isotropic and orthotropic plates using
a two-variable re�ned plate theory.

Although dynamic analysis of plate structures is
the subject of a large number of research works, there
are still some hypotheses either not introduced or not
su�ciently tested. In this study, a new �nite-element
formulation based on the two-variable re�ned plate
theory is developed for dynamic analysis of isotropic
and orthotropic plates. The semi-discrete method is
used to simulate the dynamic behavior of problems,
and an implicit Newmark scheme is employed for
temporal discretization. The performance of the code
in simulation of isotropic and orthotropic plates under
static and dynamic loadings is proved by solving several
benchmark problems.

2. Theory of problem

2.1. Two-variable re�ned plate theory
Consider a homogeneous, orthotropic, thick elastic
plate of thickness, h, which is subjected to a transverse
dynamic load, q(x; y; t), per unit area. According to
Figure 1, axes x, y, and z are the Cartesian coordinate
systems located at the corner of the plate.

Based on two-variable re�ned plate theory, the
displacement �eld is assumed as follows [13]:

u(x; y; z; t) = �z @wb
@x
� f(z)

@ws
@x

;

v(x; y; z; t) = �z @wb
@y
� f(z)

@ws
@y

;

w(x; y; t) = wb(x; y; t) + ws(x; y; t); (1)

Figure 1. Geometry and coordinate system of the
problem.
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where u and v are the displacements in x and y direc-
tions, wb and ws are bending and shear components of
transverse displacement w, and:

f(z) = �z
4

+
5z
3

� z
h

�2
: (2)

Regarding the assumption of small displacements, the
in�nitesimal strain components are obtained as follows:

"x = z�bx + f(z)�sx;

"y = z�by + f(z)�sy;


xy = z�bxy + f(z)�sxy;


yz = g(z)
syz;


xz = g(z)
sxz;

"z = 0; (3a)

where:

�bx = �@2wb
@x2 ; �sx = �@2ws

@x2 ;

�by = �@2wb
@y2 ; �sy = �@2ws

@y2 ;

�bxy = �2
@2wb
@x@y

; �sxy = �2
@2ws
@x@y

;


sxz =
@ws
@x

; 
syz =
@ws
@y

;

g(z) = 1� df(z)
dz

=
�

5
4
� 5
� z
h

�2
�
: (3b)

Neglecting normal stress, �z, the other stress com-
ponents for orthotropic plate are obtained by the
following constitutive relations:8>>>><>>>>:

�x
�y
�xy
�yz
�zx

9>>>>=>>>>; =

266664
Q11 Q12 0 0 0
Q12 Q22 0 0 0

0 0 Q66 0 0
0 0 0 Q44 0
0 0 0 0 Q55

377775
8>>>><>>>>:

"x
"y

xy

yz

zx

9>>>>=>>>>; : (4)

where:

Q11 =
E1

1� �12�21
;

Q12 =
�12E2

1� �12�21
=

�21E2

1� �12�21
;

Q22 =
E2

1� �12�21
; Q44 = G23;

Q55 = G31; Q66 = G12; (5)

where E1, E2, G12, G23, and G31 are elastic moduli,
and �12 and �21 are Poisson's ratios.

2.2. Governing equations for dynamic
problems

The governing equations and boundary conditions are
obtained using Hamilton's principle:

0 =
t2Z
t1

�(T ��)dt: (6)

Total potential energy of the plate, �, is the sum of
strain energy and work done by external loads:

� =
Z z=h=2

z=�h=2

Z y=b

y=0

Z x=a

x=0

1
2
�
�x"x + �y"y + �xy
xy

+ �yz
yz + �zx
zx
�
dxdydz +

aZ
0

bZ
0

qwdxdy;
(7)

where q is the normal external pressure applied onto
the top surface of plate. Total kinetic energy of the
plate (T ) can be written as follows:

T =
Z z=h=2

z=�h=2

Z y=b

y=0

Z x=a

x=0

1
2
�
��

@u
@t

�2

+
�
@v
@t

�2

+
�
@w
@t

�2�
dxdydz: (8)

By substituting stress, strain, and displacement �elds
into Eqs. (6)-(8) and taking into account the indepen-
dent variations of wb and ws, the governing di�erential
equations are obtained as follows:

D11
@4wb
@x4 + 2(D12 + 2D66)

@4wb
@x2@y2 +D22

@4wb
@y4

� �h3

12
@2

@t2
(r2wb)+�h(

@2wb
@t2

+
@2ws
@t2

)=q;
(9)

1
84

�
D11

@4ws
@x4 + 2(D12 + 2D66)

@4ws
@x2@y2 +D22

@4ws
@y4

�
�
�
A55

@2ws
@x2 +A44

@2ws
@y2

�
� �h3

1008
@2

@t2
(r2ws)

+�h
�
@2wb
@t2

+
@2ws
@t2

�
= q; (10)
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where D11, D22, D12, D66, A44, and A55 are material
sti�nesses of the plate:

D11 =
Q11h3

12
; D22 =

Q22h3

12
;

D12 =
Q12h3

12
; D66 =

Q66h3

12
;

A44 =
5Q44h

6
; A55 =

5Q55h
6

: (11)

2.3. Finite-element formulation for dynamic
problems

Appling the Hamilton's principle for a plate element
with volume, ve, and mid-plane surface, 
e, the
following equation will be obtained:

1
2

Z
ve

�
��

@u
@t

�2

+
�
@v
@t

�2

+
�
@w
@t

�2�
dv

�1
2

Z
ve

�(�xx"xx+�yy"yy + �xy
xy

+�xz
xz + �yz
yz)dv �
Z

e

q�wdxdy

�
I
�e

�
�Mnn

@�w
@n

+ Vn�w
�
ds = 0; (12)

where Vn and Mnn are the e�ective shear force and
bending moment, respectively. Substituting the stress
and strain and displacements �elds into Eq. (12), we
will have:

�(T � U) =
�h3

12

Z

e

�
@3wb
@x@t2

@�wb
@x

+
@3wb
@y@t2

@�wb
@y

�
dxdy

+
�h3

1008

Z

e

�
@3ws
@x@t2

@�ws
@x

+
@3ws
@y@t2

@�ws
@y

�
dxdy

+
Z

e

��
D11

@2wb
@x2 +D12

@2wb
@y2

�
@2�wb
@x2

+
�
D12

@2wb
@x2 +D22

@2wb
@y2

�
@2�wb
@y2

+ 4D66
@2wb
@x@y

@2�wb
@x@y

�
dxdy

+
Z

e

�
1
84

��
D11

@2ws
@x2 +D12

@2ws
@y2

�
@2�ws
@x2

+
�
D12

@2ws
@x2 +D22

@2ws
@y2

�
@2�ws
@y2

+ 4D66
@2ws
@x@y

@2�ws
@x@y

�
+
�
A44

@ws
@x

@�ws
@x

+A55
@ws
@y

@�ws
@y

��
dxdy + �h

Z

e

�
@
@t

�
�wb

+ �ws
��

@wb
@t

+
@ws
@t

��
dxdy

�
Z

e

q�(wb + ws)dxdy +
I
�e

�
�Mnn

@� (wb + ws)
@n

+ Vn�(wb + ws)
�
ds: (13)

The weak form of governing equations is obtained by
equating variation of sum of kinetic and total potential
energies to zero:Z


e

�
I0(�wb)

T ::wb + I2(D1�wb)
T (D1

::wb) + I0(�ws)
T ::ws

+
I2
84

(D1�ws)
T (D1

::ws)
�
dxdy

+
Z

e

�
I0(

::wb +
::ws)�(wb + ws)

�
dxdy

+
Z

e

��
(D2�wb)

TD(D2wb)
�

+
�

1
84

(D2�ws)
TD(D2ws)

+ (D1�ws)
TA(D1ws)

��
dxdy

�
Z

e

h
�(wb + ws)

T q
i
dxdy

�
I
�e

�
�
�
�(@(wb + ws)

@n

�T
Mnn

+ [�(wb + ws)]
TVn

�
ds = 0;

(14)

in which I0, I2, A, D, D1, and D2 are:

I0 = �h; I2 =
�h3

12
;
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A =
�
A44 0
0 A55

�
; D =

24D11 D12 0
D12 D22 0

0 0 D66

35 ;
D1 =

h
@
@x

@
@y

iT
; D2 =

h
@2

@x2
@2

@y2 2 @2

@x@y

iT
:
(15)

In each element, the bending and shear components of
transverse displacement are computed as follows:

wb(x; y) =
nX
j=1

�b
j'j (x; y) = NT�b;

ws(x; y) =
nX
j=1

�s
j'j (x; y) = NT�s; (16)

where �b, �s, 'j , and N are bending DOFs, shear
DOFs, interpolating functions, and shape functions,
respectively. The two-variable RPT �nite-element
equations are obtained by substituting Eq. (16) into
Eq. (14):

�
M11 M12

M12 M22

�8>><>>:
::
�b
::
�s

9>>=>>;+
�
K11 0

0 K22

��
�b
�s

�

=
�
F
F

�
; (17)

where:

K11 =
Z

e

(B2
TDB2)dxdy;

K22 =
Z

e

�
1
84
B2

TDB2 +B1
TAB1

�
dxdy;

M11 =
Z

e

�
I0NNT + I2B1

TB1
�
dxdy;

M22 =
Z

e

�
I0NNT +

I2
84
B1

TB1

�
dxdy;

M12 =
Z

e

�
I0NNT � dxdy;

F =
Z

e

Nqdxdy�
I
�e

�
@N
@n

Mnn+
@N
@s

Mns+NQn
�
;

(18)

where B1 and B2 are:

B1 = D1N; B2 = D2N: (19)

2.4. Linear rectangular element
A non-conforming four-node rectangular element with
the following six degrees of freedom per node is de�ned
for discretizing the plate domain:

DOFs :
n
wb @wb

@x
@wb
@y ws @ws

@x
@ws
@y

o
: (20)

If abe and ase denote elemental bending and shear DOFs
and abi and asi denote bending and shear nodal DOFs,
we can write that:

abe =

8>><>>:
aib
ajb
akb
alb

9>>=>>; where : abi =

8<: wb
@wb/@y�@wb/@x

9=; ;

ase =

8>><>>:
ais
ajs
aks
als

9>>=>>; where: asi =

8<: ws
@ws/@y�@ws/@x

9=; : (21)

The shape functions for discretizing bending and shear
components of transvers de
ection are de�ned as fol-
lows [30]:

NT = ['e1 '
e
2 '

e
3 ::: '

e
12];

'ei = gi1 (i = 1; 4; 7; 10);

where:

gi1 =
1
8

(1 + �0)(1 + �0)(2 + �0 + �0 � �2 � �2);

'ei = gi2 (i = 2; 5; 8; 11);

where:

gi2 =
1
8
�1(�0 � 1)(1 + �0)(1 + �0)2;

'ei = gi3 (i = 3; 6; 9; 12);

where:

gi3 =
1
8
�1(�0 � 1)(1 + �0)(1 + �0)2;

� =
(x� xc)

a
; �=(y � yc)/b; �0 = ��i; �=��i:

(22)

As illustrated in Figure 2, a and b are half-width
and half-length of element, and xc and yc are the
coordinates of the mid-point of the element.
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Figure 2. Rectangular plate element.

2.5. Newmark formulation for temporal
discretization

By ignoring the damping e�ects, the following hyper-
bolic di�erential equation can be written for elastody-
namic behavior of many engineering structures:

M
d2u
dt2

+Ku = F; (23)

where M and K are the mass and sti�ness matrices,
respectively, and F is the external force vector. The
dynamic response of structure is solved using the well-
known Newmark-beta method. The constant average
acceleration method, which is unconditionally stable
for linear problems, is adopted in this research [31].

3. Results and discussions

A FE code based on the presented formulation is
generated using MATLAB software. Some benchmark
problems are solved by the code, and the obtained
results are compared with the existing results in the
literature.

Example 1. Consider a simply supported square
plate subjected to a uniformly distributed load of
p0 = 10 lbf/ft2 which is suddenly applied to plate
and remains constant during time. The material and
geometric parameters are considered as:

Young's modulus E = 10� 106 psi,
Poisson's ratio � = 0:23,
Weight density � = 157:5 lb/ft3,
Thickness h = 0:25 in, side length,
Width a = b = 8 ft.

The static response of plate can be obtained
analytically using Navier solution. In this method, two
trigonometric series are used for independent variables
wb and ws as in Eqs. (24) and (25):

wb(x; y) =
1X
m=1

1X
n=1

wbmn sin
�m�x

a

�
sin
�n�y

b

�
; (24)

ws(x; y) =
1X
m=1

1X
n=1

wsmn sin
�m�x

a

�
sin
�n�y

b

�
: (25)

These expressions satisfy boundary conditions, auto-
matically. The distributed load is estimated as double
Fourier expansion series according to Eq. (26):

q(x; y) =
1X
m=1

1X
n=1

qmn sin(
m�x
a

) sin(
n�y
b

): (26)

Coe�cient qmn is obtained by:

qmn =
aZ

0

bZ
0

q(x; y) sin(
m�x
a

) sin(
n�y
b

)dxdy: (27)

By substituting displacement and load functions into
governing Eqs. (9) and (10), the following relations are
obtained:

wbmn =
qmn

D�4(m2=a2 + n2=b2)2 ; (28)

wsmn =

qmn
D�4

84 (m2=a2+n2=b2)2+ 5Gh�2

6 (m2=a2+n2=b2)
;
(29)

where D and G are de�ned as follows:

D =
Eh3

12(1� �2)
; G =

E
2(1 + �)

: (30)

Static displacement of central point of plate can be
obtained analytically by substituting Eqs. (28) and (29)
into Eqs. (24) and (25) and taking into account suf-
�cient number of terms of series to ful�ll converged
result:

w(4; 4) = wb(4; 4) + ws(4; 4) = 1:7869 + :00000622

= 1:7869062 in: (31)

The static analysis of problem is also performed by
Static FF-RPT code. The e�ect of number of elements
on central de
ection of the plate is investigated in
Table 1. By increasing the number of elements, the
obtained results converge to analytical value. Accord-
ing to this table, considering 10 elements in each plate
side is su�cient to achieve converged result.

The dynamic response of the plate under pre-
scribed loading is performed using Dynamic FE-RPT
code. The computational time is considered 0.15 s
which is divided into 1500 time steps of 0.1 ms; the
obtained transverse de
ection of central point of the
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Table 1. Convergence study for Example 1.

Mesh design w (in)

2� 2 1.248
4� 4 1.531
6� 6 1.684
8� 8 1.722

10� 10 1.734
12� 12 1.736

Figure 3. Comparison of central de
ection of square
plate subjected to uniform loading.

plate is shown in Figure 3. It is seen that the results
of the presented formulation are in good agreement
with those of �nite strip method reported in [32], and
the maximum di�erence between these two methods
is less than 10%. Furthermore, as expected, for
the applied loading, the dynamic response of plate
oscillates between 0 and twice the static value.

Example 2. Consider a simply supported rectangu-
lar plate under uniformly distributed patch load of p0 =
0:01 psi, as shown in Figure 4. The load is suddenly
applied to the patch area and remains constant during
applied time. The geometry and material parameters
are considered as:

Figure 4. Rectangular plate subjected to suddenly
applied patch load [32].

Figure 5. Time history of de
ection of central point of
rectangular plate subjected to suddenly applied patch
load.

Young's modulus E = 1 lb/in2,
Poisson's ratio � = 0:3,
Mass density � = 1 lb.sec2/in4,
Thickness h = 0:2in.

Figure 5 compares the time history of transverse
de
ection of central point of the plate obtained by
the proposed Dynamic FE-RPT formulation with the
result of �nite strip method, and good agreement is
observed between the results of two methods. The
analysis is performed by considering time step of 1 ms,
and each plate side is discretized into 10 elements.

Example 3. A simply supported rectangular plate
of (60 in � 40 in � 1 in) with material properties
of E = 30 � 106 psi, � = 0:3, and � = 0:00073
lb.sec2/in4 is considered. The plate is subjected to
a uniform pressure having triangular time variations
as shown in Figure 6(a). The dynamic response
of the plate is obtained using the dynamic FE-RPT
code considering a time step of 0.01 ms. Due to
the symmetry of geometry and loading, half plate is
discretized by a mesh of 12 � 8: Figure 6(b) compares
the obtained dynamic response of plate with the results
of boundary element method reported in [33], showing
good agreement between the results.

Figure 6. Central de
ection of rectangular plate
subjected to a uniform pressure having triangular time
variation.
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Table 2. Material properties of orthotropic plate.

E1 (GPa) E2=E1 G12=E1 G13=E1 G23=E1 �12 �21 � (kg/m3)

200 0.525 0.26293 0.15991 0.26293 0.44026 0.23124 7860

Figure 7. Time variation of air blast pressure acting on a
square plate [34].

Figure 8. Time history of central de
ection of square
plate subjected to air blast.

Example 4. A square plate with length of 508 mm,
thickness of 3.4 mm, and material properties of E =
206:84 GPa, � = 0:3, and � = 7900 kg/m3 is
considered. All edges are clamped, and the plate is
subjected to air blast pressure shown in Figure 7. The
obtained time history of central de
ection of plate
is compared with experimental [34] and �nite strip
method [32] results in Figure 8, where good agreement
is observed between the results. A mesh of 12 � 12 is
used for discretization of half plate, and time step is
set to 0.01 ms.

3.1. Parametric study
In this section, an orthotropic plate under uniformly
distributed loading with various boundary conditions,
including fully simply support (SSSS), fully clamp
(CCCC), and simply-clamp (SSCC), is considered, and
e�ects of di�erent parameters, such as aspect ratios,
orthotropy ratio (E1=E2), and thickness ratio, are
studied on normalized transverse de
ections, in-plane
normal stresses, and transverse shear stresses. The

Figure 9. Normalized central de
ection of orthotropic
plate considering di�erent thickness ratios, where a=b = 1.

Figure 10. Normalized central stress, ��x, of orthotropic
plate considering di�erent thickness ratios, where a=b = 1.

analyses are performed using a mesh of 10 � 10 for
the half plate and a time step of 0.01 ms. Material
properties are chosen according to Table 2, and the
following normalized parameters are introduced as
follows:

�w = wQ11/hq0; ��x = �x/q0;

��y = �y/q0; ��xz = �xz/q0: (32)

Figures 9 and 10 show the normalized transverse
de
ection and normal stress of plate for di�erent thick-
ness ratios. As seen, the dynamic responses oscillate
between zero and twice the static values, and the
increment of the thickness ratio increases the sti�ness
of plate, which results in the increase of frequency and
decrease of amplitude of results.

The e�ect of boundary condition on normalized
transverse de
ection and shear stress is investigated,
as shown in Figures 11 and 12. As expected, by
changing boundary conditions from fully simply sup-
ported to fully clamped and, consequently, increasing
the constraints on plate, the amplitude and frequency
of results decrease and increase, respectively.
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Figure 11. Normalized central de
ection of orthotropic
plate considering di�erent boundary conditions, where
h=a = 0:1 and a=b = 1.

Figure 12. Normalized central out-of-plane shear stress,
��xz, of orthotropic plate considering di�erent boundary
conditions, where h=a = 0:1 and a=b = 1.

Figure 13. Normalized central de
ection of orthotropic
plate considering di�erent aspect ratios, where h=a = 0:1.

In Figures 13-15, e�ects of plate aspect ratio on
normalized de
ections and stresses are studied. Param-
eter a is constant in all analyses; by increasing a=b ratio
and, consequently, decreasing the plate dimension (b),
frequency and amplitude of results obviously increase
and decrease, respectively.

The e�ect of orthotropy ratio (E1=E2) is inves-
tigated on dynamic response of plate in Figures 16
and 17. Parameter E1 is kept constant in all anal-

Figure 14. Normalized central normal stress, ��x, of
orthotropic plate considering di�erent aspect ratios, where
h=a = 0:1.

Figure 15. Normalized central out-of-plane shear stress,
��xz, of orthotropic plate considering di�erent aspect
ratios, where h=a = 0:1.

Figure 16. Normalized central de
ection of orthotropic
plate considering di�erent orthotropy ratios, where
h=a = 0:1 and a=b = 1.

yses. Therefore, by increasing E1=E2 ratio, E2 and,
consequently, the overall sti�ness of structure decrease;
moreover, frequency and amplitude of ��x and ��xz
decrease and increase, respectively.

4. Conclusion

In this study a �nite-element formulation for dynamic
analysis of isotropic and orthotropic plates is developed
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Figure 17. Normalized central out-of-plane shear stress,
��xz, of orthotropic plate considering di�erent orthotropy
ratios, where h=a = 0:1 and a=b = 1.

using the two-variable re�ned plate theory. This
theory, which can be used for both thin and thick
plates, predicts parabolic variation of transverse shear
stresses across the plate thickness. In comparison with
FSDT with three unknown parameters and the HSDTs
with more than three parameters, this theory has only
two parameters; therefore, the simplicity and accuracy
are the main features of the present formulation. The
main novelty of this work is constructing a dynamic
�nite-element model based on the two-variable re�ned
plate theory for analysis of plate problems.

After constructing weak-form equations using the
Hamilton's principle, a new 4-node rectangular plate
element with six degrees of freedom at each node is
introduced for discretization of the domains. The semi-
discrete approach is adopted to deal with the dynamic
analysis, and an unconditionally stable implicit New-
mark scheme is used for temporal discretization. The
e�ciency and accuracy of the presented formulation
are proved by solving some benchmark isotropic and
orthotropic plate problems. The obtained results are
in good agreement with analytical solutions of common
plate theories. Moreover, the e�ects of aspect ratio,
thickness-to-side ratio, material properties and type
of boundary conditions on de
ections and stresses are
investigated.

The results show that the two-variable re�ned
plate theory is simple and e�cient in comparison with
previous higher-order shear deformation plate theories;
moreover, the present �nite-element formulation can be
a very useful tool for simulation of both thin and thick
plate problems under static and dynamic loadings. The
present study can be extended to other plate structures,
such as functionally graded, laminated composite, and
smart plates.
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