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Abstract. One of the methods of force/moment exertion on micro beams is utilizing
piezoelectric actuators. In this paper, considering the e�ects of the piezoelectric actuator
on asymptotic stability achievement, the boundary control problem for the vibration of a
clamped-free micro-cantilever Timoshenko beam is addressed. To achieve this purpose, the
dynamic equations of the beam actuated by a piezoelectric layer laminated on one side of
the beam are extracted. The control law was implemented so that vibrations of the beam
could be decayed. This control law was achieved based on feedback of time derivatives of
boundary states of the beam. The obtained control was applied in the form of piezoelectric
voltage. To illustrate the impact of the proposed controller on the micro beam, the �nite-
element method and Timoshenko beam element were used, and then simulation operation
was performed. The simulation shows that not only does this control voltage reduce the
vibration of the beam, but also the mathematical proofs proposed in this article are precise
and implementable.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Nowadays, micro systems are one of the most useful
tools in science and technology that are given special
importance and status. The main function of these
systems is based on the deformation of a beam at micro
scale. Therefore, studying dynamic characteristics,
behavior and control of the micro beams is of great
signi�cance. For example, using micro beams in
Atomic Force Microscopy (AFM) [1], micro switches,
mass sensors, micro-accelerometers, micro mirrors, de-
termining a suitable position for construction at micro
scale, Grating Light Valves (GLV) [2], can be noted.

For deforming micro beams, a suitable actuator
is required. Among the most common actuators, elec-
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trostatic and piezoelectric actuators can be mentioned.
Electrostatic actuators have so many applications such
as Grating Light Valves (GLV) [2]. Another common
category of actuators is piezoelectric actuators which
are used for micro beams excitation. These actuators
are made of piezoelectric materials. One of the most
important properties of piezoelectric materials is their
deformations caused by applying electric potential
�eld. This property is used in piezoelectric actuators.
In this method, a piezoelectric layer is attached to the
micro beam. Since there is a constraint between this
layer and the micro beam, increasing the length of the
piezoelectric layer, due to applied voltage, will cause
bending and deformation on the beam [3]. This method
of stimulation is the basis of atomic force microscopy
and is considered as the most e�ective tool in surface
topography nowadays. The main application of this
tool is the study of surface properties and manipulation
of materials in nanoscale, surface modeling, assembling
nanoparticles, and their communication [4-6].
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Many studies on modeling micro beams and their
associated applications have been performed; Grating
Light Valves modeling is one example in which the
micro beam works by an electrostatic excitation [7],
and micro pump modeling is another instance where
the micro beam is used as a displacement creator
operator [8].

Many studies have been done in the �eld of micro
systems analysis which include the study of the ideal
micro beam model behavior [9,10] and that of vibration
analysis of beams [11,12].

In addition to the issues raised in the modeling
and analysis of micro beams, there have been com-
prehensive studies on control of beams. Based on
the application where the micro beam is used, the
target for the control of micro beam may change. For
example, if the beam is used as a micro switch, the
target would be the position control of the end of
beam [13]. Moreover, atomic force microscopy can be
considered as another example. Since the set of atomic
force microscopy works in their resonant mode, the
control objective is vibration control of the beam in
their resonant mode [14]. Another important objective
of control that is considerably signi�cant in the control
of micro beams is controlling the shape and position
of the beam. For example, this issue has particular
importance in the static atomic force microscopy [15].

Conventional control algorithms are usually suit-
able for controlling systems that have Ordinary Dif-
ferential Equations (ODE). Such algorithms are not
appropriate for continuum systems, such as beams and
membranes. For this purpose, governing equations
should be converted to ordinary di�erential equations
in the vibrational modes, and then they would be
controlled [3,16]. In contrast, in boundary control
algorithm, the system is considered as a Partial Di�er-
ential Equation (PDE) where the controller is applied
onto the boundary of the system and can change
the response by changing the boundary conditions of
the system [17-19]. In this method, the boundary
parameters are changed in such a way that the desirable
behavior of the system is achieved eventually [20-
25]. This method may have a variety of applications
in industry since the system is actuated only by
its boundary and the controller is used only by the
measured data from the boundary. For example, this
method has been used to control the 
exible marine
riser [26-28] and 
exible articulated wings on a Robotic
Aircraft [29].

In this paper, boundary control of a clamped-
free micro-cantilever Timoshenko beam with the aim
of vibration suppression is considered. The actuator is
a piezoelectric layer attached to the beam. Considering
the e�ects of piezoelectric actuator, a boundary control
is obtained which guarantees the asymptotic stability
of the system. In this case, it is assumed that the

piezoelectric layer is ideally attached to the beam.
In the second section, the dynamic equations of the
system are derived. In the third section, a linear
control law based on the theory of boundary control
is constructed to suppress the system vibration. In
the fourth section, Finite-Element Method (FEM) is
utilized for modeling the system. Simulation results
before and after applying the control law are presented
in the �fth section. Finally, conclusion is given in the
last section.

2. Model dynamics

A clamped-free micro-cantilever Timoshenko beam is
presented as the inspected beam to which a piezoelec-
tric layer is ideally attached. hb is the beam thickness,
hp is the piezoelectric thickness, L is the length of
beam, and b is the width of beam, as shown in Figure 1.

Kinetic energy, T , and strain energy, U , of beams
are achieved by Eqs. (1) and (2):

T =
1
2
Ls
0

�
Avt2 + C�t2

�
dx; (1)

U =
1
2
Ls
0

�
"33

bp

hp
u2 � k1�xu�D�x2

�B(�x � �)2
�
dx: (2)

Partial di�erential equations of Timoshenko beam with
a piezoelectric layer and boundary conditions obtained
from the Hamilton principle with a little modi�cation
are given in [16]. A modi�cation is made to the
equations, that is, no external force has been entered
into the system. The resulting equations are as follows:(

A�tt �B (�xx � �x) = 0
C�tt �D�xx �B (�x � �) = 0

(3)

8>>><>>>:
� (0) = 0
�x (1) = �k1

D u (t)
� (0) = 0
�x (1)� � (1) = 0

(4)

where x and t indicate the independent spatial and time
variables, respectively, �(x; t) represents the lateral

Figure 1. A schematic view of the beam with
piezoelectric actuator and some geometric parameters [16].
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Figure 2. The coordinate system and variables of
micro-cantilever Timoshenko beam [21].

de
ection, and �(x; t) denotes the rotation of line
elements along the centerline due to pure bending.
The parameters and variables of Timoshenko beam are
shown in Figure 2. Furthermore:8>>>>>><>>>>>>:

A = �phpbp + �bhbbb

B = 4
�
k
0pcp55hpbp + k

0bcb55hbbb
�

C = �pIp + �bIb

D = cp11Ip + cb11Ib

k1 = e13zpmbp

(5)

In Eqs. (3) and (4), subscripts x and t indicate deriva-
tives with respect to position and time. Moreover, in
Eq. (5), superscripts p and b indicate that the desired
parameter is related to the piezoelectric layer or beam;
zpm denotes the distance between the middle line of
the piezoelectric layer and neutral axis of the beam;
Ib and Ip denote the second moment of area of beam
and piezoelectric layer; �b and �p denote the density
of beam and piezoelectric layer, c11, c55, and e13 are
piezoelectric coe�cients, and k0 is the shape factor. For
the rectangular cross-section, the value of shape factor
will be obtained as follows [30]:

k0 =
10 (1 + �)
12 + 11�

; (6)

where � is the Poisson ratio.
u(t) is the piezoelectric voltage in boundary con-

dition (Eq. (4)) while, herein, it is the controlling force.
The voltage appears only in the boundary condition,
since it is assumed that the electrodes are attached
perfectly and consistently onto the piezoelectric layer.

The main goal is designing a boundary controller
for Timoshenko beam with the piezoelectric layer
whose equations have been obtained in this section.
In the next section, the boundary controller will be
designed.

3. Controller design

The purpose of designing a vibration suppression con-
troller is to stabilize vibrations of the system caused
by initial velocity or displacement of the micro beam.
Some conventional methods are available to design
a controller for a system whose governing equation
is partial di�erential equation; one of these methods
is to convert these equations into several ordinary
di�erential ones. In this case, practically, the main
model changes, some information derived from the
system may be lost, and the system is investigated only
in a few speci�c modes. In contrast, in the method
used in this paper, the controller is designed without
changing the equations of the system by considering the
Lyapunov theory and using boundary control method.

3.1. Boundary control
Knowing well-posedness of the closed-loop system has
great importance in this investigation, especially when
a boundary control is used for eliminating the system
vibration. Therefore, in this case, well-posedness of the
controlled clamped-free micro-cantilever Timoshenko
model should be investigated. To this end, semigroup
technique and operator theory should be used. After
that, the asymptotic stability of the closed-loop system
will be proved by utilizing the Lyapunov stability
method and LaSalle's invariant set theorem.

For boundary controller design and well-
posedness analysis of the controlled system, the PDEs
model of Eq. (3) should be obtained in the state-space
representation as follows:

Xt = [A]4�4X: (7)

In Eq. (7):

X =

2664 ��t�
�t

3775 ; (8)

[A] =

2664 0 1 0 0
a� 0 a� 0
0 0 0 1
b� 0 a� 0

3775 ; (9)

and in Eq. (9):8>>><>>>:
a� = B

A
@2

@x2

a� = �BA @
@x

b� = B
C

@
@x

b� = D
C

@2

@x2 � B
C

(10)

In Eq. (7), matrix A is de�ned as the PDE's operator
of the problem. To achieve our control target, a
proper functional space and its corresponding inner
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product should be de�ned due to the kinetic and strain
energies of the system represented in Eqs. (1) and (2).
The appropriate functional space for our problem in
occupying region 
 is chosen as follows:

V = H2(
)� L2(
)�H2(
)� L2(
);

where Lp(
) is a Lebesgue space (space of functions
with the property of [

R

 jf jpd�]

1
p < 1); Hk(
)

is a Hilbert space that addresses Sobolev space,
W k2(
), of functions W k2(
) � Hk(
)ff : D�f 2
L2(
); for all 0 � � � kg, where D�:f is the �th-order
weak derivative of function f [31]. The corresponding
inner product introduced in Hilbert space V has the
following form:

hY; Zi =
1
2
s



�
Aa2b2 + Ca4b4 +Da3xb3x

+B (a1x � a3) (b1x � b3)
�
d
; (11)

where Y = (a1; a2; a3; a4), Z = (b1; b2; b3; b4), and ai; bi
for i = 1; 2; :::; 4 are scalar-valued functions de�ned on

, where aj ; bj 2 H2(
); j = 1; 3; aj ; bj 2 L2(
);
j = 2; 4. Eq. (11) can be used to de�ne the mechanical
energy of closed-loop system. The target of this
investigation is to show that System (3), with boundary
conditions of Eq. (4), which appeared in the following
equation under boundary feedbacks, is well-posed and
has an asymptotic decay rate:

u (t) = ku�t (L) : (12)

In Eq. (12), ku is the controller gain and has a positive
value. This controller is applied to piezoelectric layer
as voltage to reduce vibrations of Timoshenko micro
beam.

The state space representation of the system in
Eqs. (3) and (4), under boundary controllers shown in
Eq. (12), is summarized as follows:8><>:Xt = [A]X

�0 : x = 0! � = �x = � = �x = 0
�L : x=L! �x (L)=�k1

D u (t) ; �x (L)=� (L) (13)

Considering operator A and boundary conditions of
the system in Eq. (13), the domain of operator A is
determined as: D(A) = H4

�0
(
) �H2(
) �H4

�0
(
) �

H2(
) and:

H4
�0

(
) =
�
f : f 2 H4 (
) ; f j�0 = fxj�0

	
: (14)

To illustrate well-posedness of the controlled system
expressed in Eq. (13), �rst, it should be demonstrated
that operator A is a dissipative operator.

Theorem 3.1. Linear operator A, whose domain is
de�ned in Eq. (14), is dissipative.

Proof. From the de�nition of the inner product in
Eq. (11), we have:

hX;XiV =
1
2
Ls
0

�
A�t2 + C�t2 +D�x2

+B(vx � �)2
�
dx = E (t) : (15)

The following result is achieved after applying the
time derivative to the above-mentioned positive de�-
nite function which can be considered as a Lyapunov
function:
d
dt
hX;Xi� =2hX;AXi� =

Ls
0

�
A�tt�t + C�t�tt

+D�x�xt +B (�x � �) (�xt � �t)
�
dx:
(16)

By replacing �tt and �tt from Eq. (3), we have:

hX;AXi� =
1
2
Ls
0

�
B�t (�xx � �x)

+ �t
�
D�xx +B�x �B�

�
+ +D�x�xt

+B�x�xt�B�x�t�B��xt+B��t
�
dx:
(17)

With arranging Eq. (17), we have:

hX;AXi� =
1
2
Ls
0

�
B [(�t�xx + vx�xt) + (��x�t � ��xt)]

+D (�t�xx + �x�xt)
�
dx: (18)

Performing some integration by parts, the following
results are achieved:

hX;AXi� =
1
2

[B�t�x �B�t�+D�x�t] jL0 ; (19)

hX;AXi� =
1
2

�
B�t (L) �x (L)�B�t (0) �x (0)

�B�t (L)� (L) +B�t (0)� (0)

+D�x (L)�t (L)�D�x (0)�t (0)
�
:
(20)

By applying the boundary conditions of Eq. (4), we
have:

hX;AXi� = �1
2
k1�t (L)u (t) : (21)

Finally, by applying boundary control laws of Eq. (12),
the following result can be obtained:
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hX;AXi� = �1
2
k1ku�t2 (L) : (22)

According to Eq. (22), it is concluded that hX;AXiV �
0 for the closed-loop system of Eq. (13). Thus, from
the de�nition of the dissipative operators [32], the proof
will be completed.�

Theorem 3.2. The operator (
I � A)�1 exists and
is continuous for any 
 > 0.

Proof. We consider the following equation:

(
I�A)X = X0: (23)

For demonstrating the existence of the operator (
I �
A)�1, it is su�cient to show that there is only one
solution to Eq. (23). By applying the result of
Theorem 3.1 illustrated in Eq. (22), we have:

h(
I �A)X;XiV = h
X;AXiV � hAX;XiV
= 
hX;XiV +

1
2
k1ku�t2 (L)

� 
hX;XiV = 
 kXk2V : (24)

With the above result, it is concluded that the bilinear
form a with the de�nition of a(u; �) = h(
I�A)u; vi is
coercive on the Hilbert space, V . Now, using the Lax-
Milgram theorem, one can easily prove that Eq. (23)
has a unique weak solution, and so the operator (
I �
A)�1 exists [33,34].

It is shown that the operator (
I � A)�1 is
bounded and, as given in [31], it will be continuous.
Thus, in order to complete the proof, it is su�cient
to show that the operator (
I � A)�1 is bounded. As
shown, Inequality (24) is attained from the dissipativity
of operator A. Now, one can conclude that:


 kXk2V � h(
I �A)X;XiV = hX0; Xi
� kX0kV kXkV ! kX0kV � 
kXkV : (25)

So, jjXjjV is bounded when jjX0jjV is bounded and the
proof is completed.�

Theorem 3.3. The set of Eq. (13), with the initial
condition X(t = 0) 2 D(A), is well-posed.

Proof. Since the closure of function space, D(A), is
H4(
) � H2(
) � H4(
) � H2(
) � V , it is clear
that D(A) is dense in V . It is evidential that range
of (
I � A), R(
I � A) = V is dense in V . Also,
according to Theorem 3.2, (
I � A) has a continuous
inverse (
I�A)�1 for any 
 > 0. Therefore, according
to the de�nition of resolving the set of an operator [32],

 is in the resolving set of operator A.

As shown in Theorem 3.1, it is demonstrated that
operator A is a dissipative operator. Therefore, based
on the Lumer-Phillips theorem [34], the system pre-
sented in Eq. (13), containing the boundary controllers
of Eq. (12), with any initial condition X(t = 0) 2
D(A), is well-posed.�

The asymptotic stability of the closed-loop system
is achieved using LaSalle's invariant set theorem, which
is based on the Lyapunov method. For this target, �rst,
it is required to show that the operator (
I � A)�1 is
compact for any 
 > 0 [35].

Theorem 3.4. The operator (
I � A)�1 is compact
for any 
 > 0.

Proof. It should be proved that the operator (
I �
A)�1 is bounded for any 
 > 0 [32]. This subject is
shown in the proof of Theorem 3.2. Also, it is obvious
that:

(
I �A)�1V 2 D (A) = D (A) : (26)

Since the closure of (
I �A)�1V is H4(
)�H2(
)�
H4(
)�H2(
) and this space is compactly embedded
in H2(
)� L2(
)�H2(
)� L2(
) [32], according to
Rellich-Kondrachov compact embedding theorem [32],
the compactness of the above-mentioned resolving set
is obtained and the proof will be completed.�

Now, the proof of the asymptotic stability of
the closed-loop system using LaSalle's invariant set
theorem would be performed.

Theorem 3.5. The states of the closed-loop system
of Eq. (13) with the boundary feedback control laws of
Eq. (12) will tend asymptotically toward zero.

Proof. We introduce the following Lyapunov func-
tional candidate, which is the mechanical energy of the
closed-loop system, E(t) = hX;XiV � 0. As shown in
the proof of Theorem 3.1, time derivative of the above
functional is derived as:

_E (t) = �k1ku�t2 (L) ; (27)

where the superimposed dot indicates di�erentiation
with respect to time t. One can easily see from
Eq. (27) that _E(t) � 0. Accordingly, function E(t)
admits the requirements of a Lyapunov function. At
this step, because of the compactness of resolving
(
I�A)�1 proved in Theorem 3.4, the LaSalle invariant
set theorem [35] gives the asymptotic decay rate of the
controlled states, and the proof will be completed.�

In this section, stability of the Timoshenko beam
with piezoelectric layer has been proved. Mathematical
proof is su�cient for showing the asymptotic stability
of the proposed controlled system. However, numerical
simulation has been presented to show the accuracy
and applicability of the proposed method.
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4. Finite-element model

This section discusses the issue of modeling the beam
by considering the Timoshenko beam element. It is
assumed that the element has two nodes, and each node
has the following variables:

[� �]:

� and � have the following polynomial forms:(
v = c1 + c2x
� = c3 + c4x

(28)

Eq. (28) can be written in a matrix form as in Eq. (29):

�
�
�

�
=
�
1 x 0 0
0 0 1 x

�2664c1c2c3
c4

3775 = gC = gh�1q

= g

26641 0 0 0
0 0 1 0
1 Le 0 0
0 0 1 Le

3775
�1 2664�1

�1
�2
�2

3775 = Nq: (29)

For obtaining constant parameters ci, i = 1; :::; 4; h
matrix in two points x = 0; Le is de�ned. In addition,
Le indicates the length of the beam element.

In Eq. (29), N is the shape function and will be
de�ned as in Eq. (30):

N=gh�1=
�
H1 0 H2 0
0 H1 0 H2

�
: (30)

Hi, i = 1; 2; is de�ned as in Eq. (31):(
H1 = 1� x

Le
H2 = x

Le

(31)

By using kinetic and strain energy of Systems (1) and
(2), and variational method [36], the mass, sti�ness,
and force matrices will be obtained as in Eqs. (32)-(34),
respectively:

Ke =
Les
0

(B1
TDB1 +B2

TBB2)dx; (32)

Me =
Les
0

(D1
TAD1 +D2

TCD2)dx; (33)

Fe =
Les
0
�1

2
k1UBT1 dx: (34)

As a result, Di and Bi; i = 1; 2, are:

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

B1 =
h
0 @

@x

i
N

B2 =
h
@
@x �1

i
N

D1 =
h
1 0

i
N

D2 =
h
0 1

i
N

(35)

By replacing and integrating matrices, Eqs. (36)-(38)
will be obtained as follows:

Ke =

26666666664

B
Le

B
2 � B

Le
B
2

B
2

D
Le + BLe

3 �B2 BLe
6 � D

Le

� B
Le �B2 B

Le �B2
B
2

BLe
6 � D

Le �B2 D
Le + BLe

3

37777777775
; (36)

Me =

2666666666666664

ALe 0 ALe 0

3 CLe 6 CLe

0 3 0 6
ALe 0 ALe 0

6 CLe 3 CLe

0 6 0 3

3777777777777775
; (37)

Fe =

2666666664
0

k1U
2

0

�k1U
2

3777777775 : (38)

Here, we assume that ten nodes for our system and
matrices M , K, and F will be obtained by assembling
the matrices given by Eqs. (36)-(38). Time evolution
of the system will be obtained by numerical integration
of Eq. (39) as follows:

[M ] f�qg+ [K] fqg = fFg : (39)

5. Simulation

In this section, the simulation operation with regard
to System (1) has been performed with boundary
condition in Eq. (2). A proper control gain obtained
from trial and error which has a suitable settling
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Table 1. Material properties of silicon dioxide for beam and PZT for actuator.

Material
SiO2 PZT

Density (�) (kg/m3) 2200 7700
Poisson coe�cient (�) 0.17 0.31

Young modulus of elasticity (E) (GPa) 73 71
Piezoelectric constants (10-12 C/N) { d31 = 175

d33 = 400
d55 = 580

Relative permittivity 3.9 1700

time and transient response is considered as ku = 0:2.
It should be mentioned that by increasing the value
of controller gain, vibrations of the beam decrease
rapidly; however, it causes numerical problems due
to sti�ness of equations and severe slopes in velocity
and displacement variables, which a�ect the simulation
results. Indeed, ku = 0:2 is the most suitable gain,
which can be utilized in our simulations without any
numerical di�culty. A silicon dioxide micro cantilever
with a PZT layer laminated on one of its side is
considered as a case study. The physical characteristics
of the beam and piezoelectric layer can be found in
Table 1 [2,16,37]. According to Table 1:

e13 =
3X
1

d3ic1i = �3:621 C/m2: (40)

The geometry of the piezoelectric layer and beam is
given in Table 2 [16].

Using the following de�nitions of parameters, the

Table 2. Geometrical dimensions of beam and
piezoelectric layer (all in �m).

Beam length (L) 90
Beam thickness (hb) 10

Beam width (bb) 30
Piezoelectric thickness (hp) 10

Piezoelectric width (bp) 30

governing equation of the system will become non-
dimensionalized:8>>>>>>><>>>>>>>:

~x = x
L ~�b = �b

�b ~e13 = e13
e13

~L = L
L ~�p = �p

�b ~c1 = c1
�bL2!1

~b = b
L

~Ib = Ib
L4 ~c2 = c2

�bL2!1ehp = hp
L

~Ip = Ip
L4 ~u = ue13

�bL3!2
1

~hb = hb
L ~cij = cij

�bL2!2
1

~t = t!1

(41)

Considering that there are ten nodes in the beam and
utilizing the information available in Tables 1 and 2, 40
ordinary di�erential equations should be numerically
solved at the same time. At �rst, it is assumed that no
force enters to the system, and in Eq. (39), F matrix
is set to zero. The micro beam behavior is shown
in Figure 3. Then, it is assumed that the system
is closed loop, and there is controlling force on the
beam obtained from the piezo-electric actuator. The
behavior is shown in Figure 4. The control signal is
used as the piezoelectric voltage shown in Figure 5.

As it is clear, after applying the control action,
vibrations of the system are suppressed and the system
becomes asymptotically stable.

6. Conclusion

In this paper, the governing partial di�erential equa-
tions and corresponding boundary conditions of micro-

Figure 3. Open-loop response of the micro beam: (a) Lateral de
ection �(x; t) and (b) rotation of line elements along the
centerline �(x; t).
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Figure 4. Closed-loop response of the micro beam: (a) Lateral de
ection �(x; t) and (b) rotation of line elements along
the centerline �(x; t).

Figure 5. Control voltage u(t) = ku�t(L).

cantilever Timoshenko beams were obtained. Trans-
verse vibration of the micro beam was stabilized by
designing proper boundary control laws. This control
law was achieved from the feedback of time deriva-
tives of boundary states of the beam. The obtained
control was applied in the form of voltage of the
piezoelectric actuator. Boundary stabilization was
investigated using the Lyapunov stability method and
LaSalle's invariant set theorem. To demonstrate the
performance of the designed controllers via numerical
simulation, the �nite-element method was used to
simulate the open-loop and closed-loop systems. In the
FEM, the Timoshenko beam element was used. At the
end, computer simulation results veri�ed the achieved
theoretical results of this work.
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