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Abstract. This paper aims to introduce a proportion-preserving composite objective
function for multi-objective optimization, namely, PPCOF, and validate its e�ciency
through demonstrating its applicability to optimization of the kinetostatic performance of
planar parallel mechanisms. It exempts the user from both specifying preference factors and
conducting decision-making. It consists of two terms. The �rst one adds the normalized
objective functions up, where the extrema result from single-objective optimization. To
make the composite objective function steer the variations of the objective functions while
preserving rational proportions between them, as the main contribution of the paper, it
is sought that the normalized objective functions take closely similar values, to which end
they are juxtaposed inside a vector, which is then scaled such that its Euclidean norm-2
is equal to that of the vector of all ones with the same dimensions. Then, the second
term is constructed as the addition of penalty factors standing for the absolute value of the
di�erence between each element of the foregoing vector from 1. From the obtained results,
with considerably smaller computational cost, the PPCOF obtains an optimal solution that
is not dominated by any point from a set of Pareto-optimal solutions o�ered by NSGA-II.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Numerous industrial applications and analytical simu-
lative studies require dealing with nonlinear program-
ming intended to solve Multi-Objective Optimization
Problems (MOOP) due to the signi�cant roles they
play in making decisions leading to fair settlements
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between conicting criteria taken into account in the
design, planning, and control stages [1-5]. More
clearly, practical applications are usually aimed at
achieving more than one goal simultaneously, where
satisfying each objective to the greatest extent de-
mands ruining the performance or desirability in terms
of others. Overcoming the foregoing conict and
accomplishing an optimized solution that would result
in a reasonable compromise among the aforementioned
contradictory objectives is, in fact, the main goal,
hence the underlying challenge in the context of Multi-
Objective Optimization (MOO) [6-8]. One of the
fundamental questions as regards this issue is how,
and on what basis, to decide to which degree each
objective function's enhancement upon adjusting the
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optimization variables should be allowed to degrade
the others. In simpler terms, due to the fact that
MOO processes are mostly devised such that they could
handle real-life applications, which vary signi�cantly in
terms of both the proportions between the importance
and signi�cance ratings of the criteria and the scales
and units they are represented through, as long as
they are treated in the same manner, i.e. regardless
of the settings associated with the foregoing notions,
the inferences might be considerably, and practically
unacceptably, inauthentic. First, they may be sensitive
to the representations of the parameters, meaning that
the conclusion made is applicable only to the particular
case-study taken into account, but most likely, not to
others. Another drawback of the latter strategy is that
it ignores the signi�cance level of each objective, which
is, however, of paramount importance when it is put
into practice [9-11].

Many preference-based MOO algorithms are based
on combining all the criteria at hand through scalar-
izing them and coming up with a single criterion,
followed by performing Single-Objective Optimization
(SOO) as a special case of MOO, since it has basically
been deemed both mathematically and computation-
ally more manageable than MOO [12-14]. In other
words, for the sake of avoiding the aforementioned
de�ciencies and misinterpretations, the assumption has
been that the degree to which the signi�cance of each
objective function should a�ect the way the optimiza-
tion procedure is steered could be represented by a
weight, i.e. preference factor, having been determined
while also noticing the scale and unit utilized for
measuring and reporting the associated quantity.

On the other hand, Evolutionary Multi-objective
Optimization (EMO), as an Evolutionary Algo-
rithm (EA), is intended to deal with all the objectives
at once, which should stand higher chances of satisfying
all the objectives fairly and reliably [15-20]. The above
strategy results in a set of Pareto-optimal solutions,
being supposedly maximally wide in terms of every
objective, each pair among which o�ers a trade-o�
between the conicting criteria [11-21]. Accomplishing
maximally-spread multiple solutions was not guaran-
teed by traditional approaches, because of the demand
for more than once implementing the same algorithm
with di�erent settings [22-25].

Although EMO processes mostly result in a set
of solutions, even if it is distributed in the best
manner possible, practically, a single solution has to
be determined and utilized. In other words, each point
from the set of solutions stands for a speci�c order of
the signi�cances of the objectives taken into account,
where it is left to the user's taste or discretion to
decide which one would best satisfy the requirements
in a real-world context, perhaps di�ering considerably
from case to case. This gives rise to a demand for

decision-making algorithms [26] to succeed them [27-
29], which are prone to subjectivity, and have to be
conducted in a qualitative, rather than quantitative,
manner, in order to opt for the solution that would
best suit the particular conditions associated with the
application [30-33].

Although EMO algorithms bring about the ad-
vantage of leaving various solution options at one's
disposal, in fact, it can be asserted that they su�er from
the lack of immediate practical importance, since there
is no solid, standard procedure through which the �nal
decision could be made. To be more clear, the fact that
they demand performing decision-making processes on
the basis of higher-level information, which is particular
to the use-case, makes them fundamentally insu�cient,
in that the user is exposed to uncertainty regarding
the optimality of the choice. Not only is the foregoing
higher-level information usually debatable and math-
ematically unmeasurable, but also a common, more
awkward challenge is that, often times, a user hardly
possesses enough knowledge, experience, or expertise
to provide it.

There are numerous EMO methods proposed and
implemented in the literature, such as the Pareto-
solutions-based approach known as Non-dominated
Sorting Genetic Algorithm-II (NSGA-II) in [20], all
of which entail the aforementioned de�ciency, namely,
the fact that they necessitate the use of decision-
makers to decide on the best possible solution. On
the other hand, as stated before, preference-based
algorithms devised for such a purpose su�er from sub-
jectivity and qualitativeness. This paper is intended
to circumvent the shortcomings of evolutionary and
preference-based viewpoints simultaneously through
introducing a Proportion-Preserving Composite Ob-
jective Function (PPCOF) which suggests a robust,
realistic criterion for the search process, which can
be performed using an arbitrary SOO approach. On
top of the fact that the decision-making process is not
required anymore by the PPCOF, it brings about the
advantage that upon obtaining the knowledge of the
rational proportions of the objective functions to each
other, a logical trade-o� between them is ensured by
maintaining the same proportions, since the PPCOF
guides the optimization procedure such that all of them
are satis�ed to a closely similar extent and located
in normally desirable intervals within the decision
variables space.

The aforementioned knowledge, i.e. information
on the desired proportions of the objective functions
to each other, is obtained through SOO processes
considering each individual separately, rather than
using the nominal extrema. The latter guarantees that
the proportions are determined neither subjectively
nor qualitatively, which are enforced by the PPCOF
via normalizing each objective function based on the
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aforesaid extrema, i.e. the ones found through SOO
procedures as well as introducing penalty factors de-
manding that the normalized objective functions take
quite similar vales in the end. By PPCOF, this
requirement is given the same priority as the main
concept of optimization, i.e. the desire for the objective
functions themselves getting as close to their optimal
values as possible.

The PPCOF makes the optimization algorithm
search through all the possibilities and suggests a
de�nitive best solution. Through normalizing each
objective function based on its practical extrema and
incorporating penalty factors standing for the di�er-
ences between them, it is guaranteed that they are
all deemed to have the same level of importance, and
the best solution returned is in line with the ideal
vector, which is constructed by juxtaposing the ideal
values each of which would take in the absence of
the others. Noticing that, as aforementioned, in most
practical contexts, di�erent objective functions are
reported in non-homogeneous units or with di�erent
scales, using the foregoing strategy, the e�ect of these
complications is overcome, and the composite objective
function is made robust against the changes of the
scales by which the objective functions are represented,
and each of them plays a role as signi�cant as the
others in guiding the algorithm through the search
process. Besides, the practical reliability of the PPCOF
is demonstrated via applying it to a use-case, namely,
the MOO of the point-displacement and rotational
kinematic sensitivity [34,35] and workspace of eight
Planar Parallel Mechanisms (PPMs), and comparing
its e�ciency with that of NSGA-II, which has been
implemented on the same case-study in [36].

The remainder of this paper is organized as
follows. First, the notion of MOO is described, being
followed by a review of the existing methods aimed
at solving MOOPs. Then, the PPCOF is intro-
duced, and mathematically expressed. Afterward, the
speci�cations of the case-study utilized for validating
the PPCOF are discussed. Next, the case-study is
implemented using Di�erential Evolution (DE) [37],
and the results are presented along with discussion
as to how they would demonstrate the e�ciency of
the PPCOF. Finally, the paper is concluded through
summarizing the content.

2. Overview of MOO

In this section, the basic structure of common MOO
algorithms is reviewed, which requires de�ning a col-
lection of basic conceptual and mathematical termi-
nologies, being presented as follows.

As per the normal practice, which is also under-
standable from the mathematical nature of the prob-
lem, a multi-objective optimization procedure should

be based on a multi-dimensional space, which is called
the objective space [11]. The foregoing space often does
not make geometric sense.

Following a notation similar to that of [11], upon
denoting the above multi-dimensional space as Z, for
each n-dimensional solution vector x to the MOOP,
a point corresponding to it can be found in the m-
dimensional objective space, such that:

f (x) = z =
�
z1 z2 : : : zm

�T ; (1)

where the search takes place in the n-dimensional
decision variables space, and the preference factors are
juxtaposed inside preference vector w, such that:

w =
�
w1 w2 : : : wm

�T ; (2)

where wi, i = 1; 2; : : : ;m, ith represents the preference
factor associated with the ith objective function.

By means of �nding optimal solution x�i , i =
1; 2; : : : ;m, to the SOO procedure optimizing the ith
objective function, namely, fi, one could de�ne the
ideal vector z�, such that:

z� = f� =
�
f�1 f�2 : : : f�m

�T ; (3)

where f�i = fi (x�i ). More clearly, x�i is the solution
to the following Single-Objective Optimization Prob-
lem (SOOP):

Minimize fi (x) ;

subject to x 2 S: (4)

in which S denotes the decision variables space.
Obviously, the ideal vector does not exist in the

objective space, i.e. z� =2 S, since otherwise, there
would not be any conict between the objectives, i.e.
they could all be satis�ed to the greatest extent at the
same time, and the solution to all the SOOPs would
be the same, in which case the fundamental notion
of MOOPs would be violated. Nevertheless, an ideal
solution to the MOOP would be the one as close as
possible to the ideal vector, which is the underlying
hypothesis of the PPCOF as well, being described
thoroughly, both mathematically and conceptually, in
the upcoming sections.

Other sorts of objective vectors may also be
de�ned for di�erent purposes. For example, the Nadir
objective vector [38], znad, which consists of the highest
values the objectives could take inside the Pareto-
optimal space (not to be confused with the whole
objective space), is aimed at normalizing the objective
space within a subspace de�ned on the basis of the
ideal vector, i.e. the minimal values the objectives
could take, as the lower bound and the worst values,
on the other hand, as the upper bound. The latter,
using the preceding notation consistently, could be
mathematically expressed as follows:
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fnad
i =

fi � f�i
znad
i � f�i ; i = 1; 2; : : : ;m; (5)

where fnad
i is the ith Nadir objective function. More-

over, in the above relation, znad
i is the highest value

that the ith objective function could take. In other
words,

�
znad�

(i) = znad
i .

It should be noted that most MOO methods are
based on determining the dominance of each solution
vector over the others while searching for the optimal
one through a de�nite population [39,40]. The concept
of dominance, in the context of this paper, is de�ned
such that each element of the dominant vector is not
worse than the corresponding element in the other one,
where at least one element from the dominant vector
must be preferable to its counterpart.

In mathematical terms, if x1 and x2 are members
of the decision variables space, then the dominance
of x1 over x2, i.e. x1 / x2, means that the following
conditions must hold:

8i; i 2 f1; 2; : : : ;mg =) fi (x1) � fi (x2) ; (6)

and:

9i (i 2 f1; 2; : : : ;mg ^ fi (x1) � fi (x2)) ; (7)

where signs � and � stand for element-wise compar-
ison. It should be noted that the above relations do
not necessarily hold between every pair of solutions,
i.e. the pair may be non-dominant to each other.

Thus, noticing that dominating other solutions
means being \better" from optimization point of view,
the �nal goal of any MOOP is to try to �nd the
non-dominated solution. More clearly, the best solu-
tion is the one that is not dominated by, i.e. inferior to,
any other solution.

Based on the above de�nition of dominance, the
set of Pareto-optimal solutions to an MOOP with a
�nite decision variables space should be the minimal
collection within which one is no longer able to derive
any preference. Besides, it has to contain all the
solutions necessary for dominating the rest of the
decision variables space. In formal words, the Pareto-
optimal solutions set:

� Must consist of solutions, each pair of which does
not satisfy any dominance relation;

� Contain at least one solution that dominates it for
every solution outside it.

Mathematically, the set of Pareto-optimal solu-
tions, P = fx1;x2 : : : ;xpg, is de�ned based on two
constraints as follows:

8i8j; i 2 f1; 2; : : : ; pg ^ j 2 f1; 2; : : : ; pg ^ i 6= j

=) xi 6 xj ^ xj 7 xi; (8)

and:

8xi; xi 2 S ^ xi =2 P=)9xj (xj 2 P ^ xj / xi) :
(9)

The manner through which the set of non-dominated
solutions is found should be chosen based on the
speci�cations of the MOOP under study, for which
various strategies have been suggested in the literature.

As an instance, �nding the best non-dominated
front has been investigated in [41], which determines
the target non-dominated set of solutions by means
of comparing the elements in the existing set with
all the others and updating the set iteratively, upon
replacing the elements by the ones that dominate
them, but are not included in the set heretofore, along
with assimilating the outsider elements that are not
dominated by any element already included in the set.

Sorting algorithms for �nding non-dominated sets
of solutions [42], on the other hand, follows the above
procedure by excluding the member elements of the
best non-dominated solution set and applying the same
process to the rest, resulting in a second non-dominated
front. Next, the latter front is excluded, and the same
thing is implemented on the remaining solutions, in
order to �nd the third non-dominated front. This
process is iterated until the worst non-dominated front
is found, and every solution is categorized into one of
the designated classes, i.e. assigned to a non-dominated
front.

3. Review of the existing literature on MOO
methods

In this section, the methods proposed for the pur-
pose of solving MOOPs are broadly categorized and
explained. As aforementioned, MOO procedures, from
a wide perspective, could be classi�ed into two sorts,
namely, preference-based and evolutionary ones. In
what follows, examples of the latter types of MOO
algorithms will be reviewed and briey discussed.

EMO techniques make use of search algorithms
looking for non-dominated solutions, reviewed in the
previous section. NSGA-II is a well-known example of
the foregoing type, which employs an elitist principle,
along with a diversity-preserving mechanism. With the
aid of basic Genetic Algorithm (GA) [14] operators, it
produces the o�spring population based on the parent
population, then merged and classi�ed through non-
dominated sorting. The non-dominated fronts are next
used to �ll a new population, where by the time that
there is not enough room to accommodate all the
members of the current front, the ones kept in are
those preserving the diversity as much as possible,
according to a metric called croding distance [43].
Afterward, a crowding tournament selection operator
is applied, which checks two conditions, namely a
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non-domination rank and a normalized search space
around each solution. The former is responsible for
determining a preference between the given arguments
based on the non-dominated front they belong to,
and the latter prevents solutions from the same front,
in which case the one possessing a larger crowding
distance will win the tournament.

Among instances of classical approaches, on
the other hand, the most commonly used ones are
preference-based methods which multiply each objec-
tive function by a preference factor and create a single
composite objective function to undergo SOO. More
clearly, the weight multiplied by each objective function
is the result of the multiplication of the coe�cient
used for adjusting the scale of the unit through which
the objective is represented by an importance factor,
both of which depend on the context the MOOP is
associated with.

Determining the scalarizing factor is less tricky,
since for the sake of ensuring that every objective is
homogeneously presented and its inuence does not
bear unit-related information, it can be normalized
within the range speci�ed by the extremal values it
can take. Mathematically, the resulting SOOP, which
is, in fact, based on objective function, f , standing for
a weighted sum of the normalized objectives, can be
expressed as follows:

Minimize f (x) =
mX
i=1

wifnorm
i (x) ;

subject to x 2 S; (10)

where, as could be found in Eq. (2), wi is the preference
factor assigned to the ith objective function, and fnorm

i
denotes its normalized form, i.e.:

fnorm
i (x)=

fi(x)� fmin
i (x)

fmax
i (x)�f min

i (x)
; i=1; 2; : : : ;m; (11)

where fmin
i and fmax

i are, respectively, the minimal and
maximal values of fi (x) for x 2 S.

As aforesaid, the most challenging issue with the
weighted-sum method is the question regarding how
the weights have to be determined, which renders the
solution unreliable. The relation between the solution
to the SOOP of Eq. (10) and the Pareto-optimal set has
been investigated in a number of studies, including [44-
46], where it has been shown that the former is a mem-
ber of the non-convex portion of the Pareto-optimal
front, which does not include an optimal solution to
the optimization problem of Eq. (10).

In order to resolve the above problem, the "-
constraint approach could be employed. Herein, the
values which objective functions take in the varying
ranges are manipulated, and they confound us based
on a speci�c set of criteria. More clearly, the revised
MOOP would be described as follows:

Minimize f (x) =
mX
i=1

wifnorm
i (x) ;

subject to x 2 S; fnorm
i (x) < "i;

i = 1; : : : ;m; (12)

where 0 � "i � 1 stands for the highest value the ith
objective function is allowed to take. For example, the
method suggested in [47] takes one of the objectives
into account and considers other constraints for the
resulting MOOP.

Although the main drawback of generic weighted-
sum methods is alleviated by introducing the above
constraints, the "-constraint method is widely accused
of entailing two main drawbacks. First, the solution
is largely dependent on the constraints, which are
demanded to be speci�ed by the user, meaning that
higher number of objectives will necessitate more input
from the user. Besides, determining them is not a
routine task, for which, no solid criterion or process has
been suggested. In practice, if not enough attention
is paid to the manner through which the values of
the constraints are speci�ed, the resulting options for
the optimal solution would be either too various or
too limited. More clearly, upon taking the strictest
constraints into account, the MOOP might end up
leading to no solutions at all, and, on the other hand,
assigning the constraints too generously may result in
all the members of the objective space being solutions
to the MOOP, i.e. rendering the constraints completely
powerless in terms of guiding the MOO procedure.

4. The PPCOF

As aforementioned, preference-based approaches have
the virtue of coming up with a single solution deemed
the best, where their main de�ciency is that they
depend on the discretion of the user and require,
perhaps, considerable amount of input from the user
to consider that, a reliable criterion is not necessarily
always available. On the other hand, evolutionary
algorithms, although initially seem to be automatic in
the sense that they do not demand assigning preference
factors, are not of direct practical use, since, after im-
plementing them, a separate decision-making process
is needed to determine the best choice amongst a set
of Pareto-optimal solutions, which, again, incurs the
necessity of manual contribution from the user.

The PPCOF tries to �nd a compromise between
preference-based and Pareto-solution-based evolution-
ary MOO methods, which takes advantages of both,
while overcoming the drawbacks entailed simultane-
ously. More clearly, it deals with the MOOP, such that
a single optimal solution is found without requiring
any input from the user, which means that both the
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demand for decision-making and the subjectivity in
approaching the problem are removed. The underlying
notion leading to the foregoing accomplishment lies
in the idea that the values the normalized objective
functions take are compelled to be similar to each other,
i.e. the proportions between the values of the individual
objective functions are checked to be similar to those of
the ideal vector in order to avoid solutions that actually
do minimize the value associated with the composite
objective function, but are, orientation-wise, too far
from what is expected in reality.

Although the search frameworks to be utilized
along with the PPCOF are tantamount to those of
preference-based methods, the need to provide the
preference factors by the user is obviated through
introducing penalty factors, necessitating that all the
objective functions have to be satis�ed to roughly
the same extent. Mathematically, if the normalized
objective functions had taken the same values, which
is desired, the vector constructed by juxtaposing them
would have had the same direction as that of the vector
of all ones with the same dimensions, which would have
a Euclidean norm-2 of

p
m. Therefore, in the context of

the PPCOF, each of the aforementioned penalty factors
stands for the absolute value of the distance between
the corresponding objective function and 1, where it is
scaled such that the Euclidean norm-2 of the resulting
vector of normalized objective functions is equal top
m. In order to ensure that the latter criterion is

paid due attention, by the PPCOF, the penalty factor
associated with each normalized objective function is
treated in the same manner as itself, i.e. just added
to it, meaning that the wish for the objective function
taking a value as close to the desired one as possible
is considered equally important to the demand for it
being similar to the others.

Besides, the basic information for normalization
is obtained by SOO procedures preceding the MOO,
�nding the associated extrema, rather than taking
the nominal ones into account, which is necessary
for preventing the unrealistic marginal values from
causing misinterpretations. The latter strategy would
guarantee that the composite objective function is
robust against the scales and types of the objective
functions at hand. All in all, the PPCOF consists
of two terms, the �rst of which adds the normalized
objective functions up as they are, and the second one is
the summation of the aforementioned penalty factors,
being, overall, mathematically expressed as follows:

PPCOF (x) =
Xm

i=1

�
fnorm
i (x)

+
���� p

m
kfnorm (x)k2 f

norm
i (x)� 1

�����; (13)

which could be dealt with using an arbitrary SOOP

approach. In the above relation, k:k returns the
Euclidean norm of its vector argument, and fnorm (x)
denotes the vector of normalized objective functions as
follows:

fnorm (x)=
�
fnorm

1 (x) fnorm
2 (x) : : : fnorm

m (x)
�T :

(14)

It is worth noticing that if any of the normalized objec-
tive functions, fnorm

i (x), i = 1; 2; : : : ;m, is supposed
to get maximized, despite the default assumption of
getting minimized, f̂i

norm
(x) = 1 � fnorm

i (x) shall
replace it in Eqs. (13) and (14), which preserves
the interval speci�ed by the associated minimum and
maximum values, but at the same time, implicitly
conveys the foregoing notion by reversing the trend
of the changes of the corresponding objective function
based on the variations of the decision variables.

5. Review of the case-study: MOO of the
point-displacement and rotational kinematic
sensitivity and workspace of PPMs

In this section, MOO of the point-displacement and ro-
tational kinematic sensitivity and workspace of PPMS
is considered as a case study for the sake of verifying
the reliability of the PPCOF. It is worth noticing
that the underlying motivation for choosing this case
study, i.e. what quali�es it as an MOOP, is the fact
that it comprises objectives being in conict with
each other [48]. More clearly, optimizing the design
parameters using SOO procedures aiming at maximiz-
ing the area or volume of the workspace [49,50], in
most cases, will result in noticeably weak kinetostatic
performance, which is represented, in the context of
this paper, by kinematic sensitivity, and functionally
disturbing levels of discontinuity and singularity, where
those leading to great kinematic sensitivity usually
su�er from extremely limited workspaces, which are
not practically useful. More clearly, in the latter case,
the optimization process naturally tends to limit the
workspace to the point or region that denotes the best
possible kinematic sensitivity.

The goal of this case study is, in fact, to try the
PPCOF out and check whether the proposed composite
objective function would actually both compensate for
the absence of preference factors that would otherwise
be expected from the user in preference-based MOO
settings and deal with all the objectives fairly and log-
ically without demanding performing decision-making.
More clearly, if the solution found upon utilizing the
PPCOF is not dominated by any of the ones obtained
by implementing Pareto-solutions-based MOO on the
same case study, and is preferable, or at least close, to
them, then it means that the PPCOF has been devised,
such that it could accomplish its missions that were
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sought from the outset. The relations and concepts
required for dealing with the case study are explained
in detail in studies such as [51]. Nevertheless, for quick
reference, they are briey recalled in what follows.

Various e�ciency indices have been proposed for
the evaluation and comparison of Parallel Mechanisms
(PMs) [52-54]. However, most of them entail several
drawbacks and, as a result, are neither universally
reliable nor physically applicable. Numerous studies re-
ported in the literature have asserted and demonstrated
that most of the proposed kinetostatic performance
indices do not indicate the accuracy of PMs in a
physically sound manner [55,56]. For instance, some of
them consider input and design errors simultaneously
and are not able to distinguish between them [57,58].

Since the translational and rotational parts of
Jacobian matrices are not unit-consistent, the perfor-
mance indices de�ned on the basis of this matrix, as
well as the characteristic length proposed in [59], are
not physically applicable, since changing the scale of
geometric properties could change their results signi�-
cantly. This assertion is investigated extensively and
proved in [36,55,56,60,61]. Therefore, two separate
performance indices are considered for the purpose
of this paper, namely point-displacement and rota-
tional kinematic sensitivity, which have been recently
proposed to the end of alleviating the limitations of
the above notorious indices [55]. However, according
to the classi�cation proposed in [62,63], this index is
posture-dependent. Therefore, its posture-independent
counterpart, the global kinematic sensitivity [64], is
considered, which measures the performance of the
mechanical system in the whole workspace and gives
a meaningful and convincing value.

According to the study carried out in [65], there
are ten di�erent feasible types of PPMs. However, from
the study conducted in [36], it is revealed that even an
optimized 3-RPP or 3-RPP has a limited workspace.
Therefore, they are excluded from the rest of the paper,
and the remaining eight are considered. The latter
PPMs are schematically shown in Figure 1, along with
their corresponding geometrical design parameters,
where each architecture comprises three kinematically
identical limbs. Throughout this paper, prismatic and
revolute joints are denoted by P and R, respectively.
With this notation, the kinematic arrangement of the
joints in each leg is shown by juxtaposing the joint
symbols in the same order as they appear from the
base to the end-e�ector, where the actuated joint is
underlined.

It is worth mentioning that PMs usually comprise
various working modes. However, trajectory planning
while switching between di�erent working modes, in
most cases, is a demanding task, which regularly ne-
cessitates passing through singular regions. Therefore,
in this paper, only the working mode that possesses the

best kinetostatic performance is taken into account for
each PPM when calculating its input-output velocity
relation [65], which can be expressed as follows:24��1��2

��3

3524vxvy
!

35 =

24�1 0 0
0 �2 0
0 0 �3

3524 _�a1
_�a2
_�a3

35 ; (15)

or in a matrix form:

Z� = �_� =) K� = _�; (16)

where K = ��1Z stands for the inverse Jacobian
matrix. In the above relation, ��i is the row vector of
the three-dimensional wrench matrix, implied by the
ith limb. Furthermore, �i denotes the moment of the
reciprocal force around the center of the active joint in
case of a revolute joint, or the projection of the force
onto the direction of translation in case of a prismatic
one [65]. It should be noted that i is a dummy variable,
which is meant to change throughout the paper.

The workspace of PMs has been investigated from
di�erent perspectives in the literature [66]. In this
paper, constant-orientation workspace is considered,
which consists of the set of all the possible Cartesian
coordinates of a given point of the mobile platform that
can be reached for a prescribed orientation [36]. The
area of the workspace can be calculated numerically
using discrete integration, which can be formulated as
follows [64]:

W =
Z �

��
A(�)d�; (17)

where A(�) is the area of the constant-orientation
workspace.

From the study conducted in [55], it can be
inferred that, geometrically, kinematic sensitivity is
the maximum displacement or rotation of the moving
platform under a unit-norm change in the joint space,
which, for a PPM, can be formulated as follows:

�rc;f =maxk _�kc=1k�kf ; �pc;f =maxk _�kc=1kpkf ; (18)

where �rc;f and �pc;f are the rotational and point-
displacement kinematic sensitivities, respectively. Fur-
thermore, c and f are the norms of the constraints
functions, i.e. error in the joint space, and the norms of
the pose of the moving platform, respectively. Besides,
vector p and scalar � stand for the variations of
the position and orientation of the moving platform,
respectively.

Two types of norms, namely 2- and 1-norm,
are frequently used in practice, since a geometric
interpretation could be associated with them, which
leads to four possible combinations of formulating the
kinematic sensitivity, where [35,36] report that c = 1
and f = 2 imply the most meaningful and reliable
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evaluation of the performance of PMs. Therefore, they
are considered for the aim of this paper.

In Eq. (18), constraint k _�kc � 1 for c =1 can be
rewritten as follows:

kKxk1 � 1; (19)

which geometrically represents a polyhedron spanned
by 2n corners [35,36,55]. Furthermore, x = [x y
�]T indicates the pose of the moving platform in the
Cartesian space.

The corners of the above polyhedron can be
considered as solutions to the kinametic sensitivity
problem, which can be described through a system of
equations, formulated as follows:

L�x � 12n; L � �KT �KT �T ; (20)

where sign � indicates that the above inequalities
should be treated in a component-wise manner. The
polyhedron is symmetric with respect to the origin,
thus solving only 2n

2 inequalities su�ces. PPMs only
have three degrees of freedom, i.e. n = 3, which means
that the polygon has eight corners, thus one should
consider four, namely, (xi; yi), i = 1; : : : ; 4. Then,
the kinematic sensitivity indices can be formulated as
follows [34,35]:

�p1;2 = max
i=1;:::;4

q
x2
i + y2

i ; �r1;2 = max
i=1;:::;4

�i: (21)

Given the fact that the above parameters always take
nonnegative values, they could be con�ned within the
interval from zero to one by taking advantage of the
following substitutions:

�0p1;2 =
1

1 + �p1;2
; �0r1;2 =

1
1 + �r1;2

; (22)

which are discussed in [64]. Next, averaging these
values in the whole workspace of the PM gives the
global kinematic sensitivity [64,67] as follows:

��0p1;2 =

Z
W
�0p1;2dWZ
W
dW

; ��0r1;2 =

Z
W
�0r1;dWZ
W
dW

; (23)

with an overall gauge of the kinetostatic performance
of the PM.

The three objective functions of the MOO are
expressed in Eqs. (17) and (23), which should be
maximized through manipulating the geometric design
parameters, schematically shown in Figure 1. The
PPMs are supposed to occupy an equal area in the
space. Therefore, each base triangle is assumed to
be equilateral, the diameter of whose circumscribed
circle is �a = 1. Furthermore, the design parameters

Figure 1. Eight PPMs with the corresponding geometric
design parameters. The schematic is taken from [36].

should be con�ned within rational intervals. The legs of
each PPM are supposed to be symmetric. Therefore,
only the parameters associated with a single leg are
considered for optimization.

As regards the constraints, the strokes of the
prismatic joints are limited as follows:

�min > 0:1; �max < 0:75; �max > �min; (24)

�max � �min < �min ) �max < 2�min: (25)

In order to come up with designs of practical use,
the size of the moving platform, �b, should take a
reasonable value with respect to the �xed size of the
base. Therefore, it is constrained as follows:

0:1 < �b < �a = 1: (26)

Besides, the rigid links are con�ned within the following
range:

0:05 < l < 0:5: (27)

6. Implementation of the case study, the
results and discussion

In this section, the PPCOF is utilized by means of
DE through the case-study introduced in the previous
section, along with the discussion substantiating its
e�ciency, reliability, and robustness. For normalizing
the objective functions, the outcomes of the individual
SOO procedures on the same case study in [36] are used
as the maximal values, where all the objective functions
have practical lower bounds of zero. The best solutions
obtained by the PPCOF-based MOO are presented in
Table 1, where the upper bound of each objective is
shown in Table 2.
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Table 1. The best solutions obtained by MOO using DE
based on PPCOF.

PPM The parameters

3-RPR �b �min �max | |
0.6774 0.3818 0.7500

3-PRR �b �min �max l |
0.9611 0.3524 0.7048 0.4888

3-PRP �b �1 min �1 max �2 min �2 max

0.8657 0.3463 0.6919 0.3226 0.6370

3-RPR �b �min �max | |
0.7238 0.3538 0.7066

3-RRR �b l1 l2 | |
0.8086 0.2999 0.4772

3-RRR �b l1 l2 | |
0.8643 0.3287 0.4320

3-PRR �b �min �max l |
0.9572 0.3751 0.7500 0.3230

3-RRP �b �min �max l |
0.7466 0.1979 0.3950 0.3427

Table 2. The upper bounds of the objective functions
obtained by individual SOO processes in [36].

PPM The upper bounds
��0p1;2 ��0r1;2 W

3-RPR 0.4060 0.2984 1.2140
3-PRR 0.8856 0.5116 0.2739
3-PRP 0.4797 0.2695 0.1125
3-RPR 0.7639 0.7143 1.2199
3-RRR 0.9999 0.9975 6.8974
3-RRR 0.9927 0.9980 6.8974
3-PRR 1.0000 0.9688 0.2739
3-RRP 0.7260 0.5759 0.1318

The optimal values of the objective functions
achieved through MOO based on the PPCOF using DE
are presented in Table 3, along with their normalized
counterparts. The normalized values of the optimal
objective functions are convincingly close to each other
in case of each PPM, which shows the e�ectiveness of
the PPCOF in accomplishing its main purpose.

From another perspective, since the PPCOF is
devised such that it would properly enforce that the
normalized objective functions should take similar val-
ues upon optimization, the penalty factors responsible
for the latter notion in Eq. (13) should get close to zero
through the optimization iterations, whose statuses at
the last iteration could be checked by substituting the
optimal values of the normalized objective functions
into them, as shown in Table 4. The foregoing
values are, indeed, approximately equal to zero, further
verifying the reliability of the PPCOF in terms of pre-
serving the desired proportions between the objective
functions.

On top of that, as another major virtue of
the PPCOF, no decision-making is required anymore.
Nevertheless, the e�ciency of the PPCOF should also
be analyzed in terms of the main mission of the
optimization process, namely getting the objective
functions as close to their desired values as possible. In
order to do so, the results can be compared with those
of NSGA-II applied to the same case study in [36]. For
this purpose, as the �rst step, the results are compared
by the reasoning of the dominance described before.
It has been conducted on all the eight PPMs under
study, which reveals that none of the solutions returned
by utilizing the PPCOF is dominated by any member
of the corresponding set of Pareto-optimal solutions,
meaning that the PPCOF is at least non-inferior to
NSGA-II, and its result could itself be considered a
member of the foregoing set.

Furthermore, the solution returned by MOO
based on the PPCOF can be compared against the
set of Pareto-optimal solutions through projecting the
former onto the latter, which, in the context of this

Table 3. The optimal values of the objective functions, both before and after normalization, which have been found out
by MOO using DE based on the PPCOF.

PPM The optimal values The normalized values
��0p1;2 ��0r1;2 W ��0p1;2 ��0r1;2 W

3-RPR 0.1433 0.0980 0.4234 0.3529 0.3283 0.3488
3-PRR 0.3503 0.2239 0.1140 0.3955 0.4376 0.4162
3-PRP 0.3472 0.1950 0.0814 0.7237 0.7237 0.7238
3-RPR 0.2995 0.2832 0.4752 0.3920 0.3964 0.3896
3-RRR 0.3536 0.3236 2.3391 0.3536 0.3244 0.3391
3-RRR 0.3853 0.3875 2.6781 0.3882 0.3883 0.3883
3-PRR 0.6698 0.5822 0.1732 0.6698 0.6009 0.6324
3-RRP 0.3984 0.3130 0.0711 0.5487 0.5435 0.5392
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Table 4. The penalty factors at the last optimization
iteration.

PPM The penalty factors
��0p1;2 ��0r1;2 W

3-RPR 0.0147 0.0227 0.0084
3-PRR 0.0354 0.0367 0.0000
3-PRP 0.0000 0.0001 0.0001
3-RPR 0.0011 0.0062 0.0051
3-RRR 0.0222 0.0220 0.0003
3-RRR 0.0001 0.0000 0.0000
3-PRR 0.0995 0.0882 0.0024
3-RRP 0.0108 0.0006 0.0101

paper, is approximated by �nding the point in the set
of Pareto-optimal solutions that is closest to it. As an
illustrative example, it can be imagined that the set of
Pareto-optimal solutions is embraced by a hyperplane,
the projection of the solution obtained by PPCOF-
based MOO onto which is the point within the set that
has the minimum Euclidean distance from it. Then,
comparing the Euclidean distance of the two from the
origin would provide a criterion for deciding which one
has been more successfully attracted towards the origin
for it to get minimized or pushed away from it to get
maximized. The projected points are shown in Table 5
for all the PPMS, along with their normalized values. It
should be noted that the foregoing points and distances
between them may not make geometric sense and are
just used as mathematical means for the purpose of
comparison.

Now that the normalized projected point has
been found, the comparison can be performed through
calculating the ratio of its Euclidean norm to that of
the normalized optimal point itself, which can be taken
from Table 3. More clearly, this ratio is considered for
evaluating the strength of the PPCOF in making the
MOO maximize the objective functions, as a whole,
compared to NSGA-II. The latter metric, which again
may not be geometrically meaningful, is proposed
for the goal of the paper and referred to as Success
Rate (SR), whose values are provided in Table 6. It
can be clearly seen from the table that SR has taken
values greater than 1 in nearly all the cases, averaging
1.0158. If not, SR is still taking values quite close to 1.
In other words, the norm of the vector of normalized
optimal values of the objective functions achieved by
considering it for the MOO is higher than that of
its projection onto the set of Pareto-optimal solutions
obtained by NSGA-II in most cases, showing that it
has been more successful than NASGA-II in pushing
the objective functions' values outward from the origin,
i.e. maximizing them.

One could clearly observe from the above rea-
soning that the proposed objective function, PPCOF,
leads to an e�cient, fast and handy framework for
MOO scenarios with conicting objectives. Therefore,
once the objectives and parameters of the MOO are
de�ned, the PPCOF can be readily calculated and then
optimized using a typical SOO procedure, which is ap-
plicable to a variety of engineering and scienti�c prob-
lems similar to the case study investigated throughout

Table 5. The approximate projection of the optimal objective function points onto the corresponding sets of
Pareto-optimal points obtained by NSGA-II in [36], before and after normalization.

PPM
The Pareto-optimal points The normalized values

��0p1;2 ��0r1;2 W ��0p1;2 ��0r1;2 W

3-RPR 0.1476 0.0962 0.4145 0.3636 0.3225 0.3415

3-PRR 0.3383 0.2303 0.1140 0.3820 0.4502 0.4162

3-PRP 0.3983 0.2021 0.0622 0.8303 0.7500 0.5527

3-RPR 0.2984 0.2674 0.4056 0.3906 0.3743 0.3325

3-RRR 0.3722 0.2780 2.1644 0.3723 0.2786 0.3138

3-RRR 0.3258 0.4026 2.7166 0.3282 0.4034 0.3939

3-PRR 0.8004 0.6452 0.1273 0.8004 0.6660 0.4648

3-RRP 0.3989 0.3061 0.0711 0.5494 0.5316 0.5392

Table 6. The SR values.

PPM 3-RPR 3-PRR 3-PRP 3-RPR 3-RRR 3-RRR 3-PRR 3-RRP

SR 1.0018 0.9994 1.0043 1.0711 1.0475 1.0307 0.9645 1.0070
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the paper, including design and control optimization
of various types of electromechanical structures, such
as mannequin robots [68,69], spatial mechanical ma-
nipulators [70-73] and cable-driven parallel robots [74],
as well as optimization of 3D measurement [75], re-
construction [76], and post-processing [77] procedures
utilized in the contexts of 3D simulation, modeling, and
visualization.

7. Conclusion

This paper proposed a robust proportion-preserving
composite objective function, referred to as PPCOF for
multi-objective optimization, and veri�ed its reliability
and applicability through implementing it on a case
study dealing with optimizing the kinematic sensitivity
and workspace of planar parallel mechanisms. The
PPCOF aims at alleviating the de�ciencies of both
preference-based and evolutionary multi-objective op-
timization techniques, namely requiring the preference
factors as inputs from the user and performing decision-
making, respectively. It makes the optimization al-
gorithm look for solutions that present proportions
between the resulting values of the objective functions
that are roughly the same as those of the ideal ones.
The objective functions, in the context of PPCOF,
are normalized based on the extrema found through
separate SOO processes, rather than the nominal ones,
meant to exclude unrealistic marginal values. The
mathematical structure of the PPCOF is such that it
adds the normalized objective functions up, and then
introduces penalty factors demanding that they should
take values closely similar to each other, which means
that all the objectives have to be given the same level
of importance and prevented from ruining the results
of the others. The latter would otherwise happen due
to the conicting nature of the objectives taken into
account in multi-objective optimization settings. The
penalty factors are treated in the same manner as the
normalized objective functions themselves, implying
the fact that the proportions which should be preserved
bear the same level of signi�cance as optimizing the
objective functions. For constructing the penalty
factors, �rst, the normalized objective functions are
juxtaposed inside a vector, and then scaled such that
the Euclidean norm of the resulting vector is equal to
that of the vector of all ones with the same dimension.
Then, the penalty factors are calculated by �nding the
absolute value of the di�erence between the associated
values in the foregoing vector from 1. The PPCOF
could be optimized using an arbitrary single-objective
optimization procedure, where di�erential evolution
was utilized for the purpose of this paper. The results
of the implementation of the case study were compared
with the ones obtained by NSGA-II in a previous study.
First of all, it was concluded that the solutions reported

by the PPCOF are not dominated by the ones included
in the set of Pareto-optimal solutions determined by
NSGA-II. Besides, the strength of the PPCOF was
evaluated by roughly projecting the resulting vector
of the normalized optimal values of the objective
functions onto the set of Pareto-optimal solutions, and
comparing the Euclidean norms of them, revealing that
the results were achieved by PPCOF where preferable
in almost all the cases.
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