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Abstract. This paper proposes two models to formulate a Supplier Selection Problem
(SSP) in a single-buyer, multi-supplier two-echelon supply chain network. The model
coordinates order allocation and supplier selection problems under all-unit quantity
discount policy. In this way, bi-level programming is employed to obtain two models: 1) The
model with buyer as a leader; 2) The model with vendor as a leader. The resulted nonlinear
bi-level programming problems are hard to solve. Therefore, Particle Swarm Optimization
(PSO) algorithm is used to deal with the complexity of the model and makes it solvable.
Numerical results show that the proposed model is e�cient for SSP in compliance with
order allocation decision making.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

A Supply Chain (SC) is a complex hierarchical system,
including several contributors, i.e. suppliers, manu-
facturers, distributors, retailers, and ultimate con-
sumers [1]. Each contributor, in this network, tries to
control a set of decision variables and makes decisions
based on its needs and interests. Therefore, some stud-
ies have studied the SC components cooperation based
on pricing, inventory and production planning, supplier
selection, product designation, capacity allocation, and
so on [2].

This paper considers a network with a single ven-
dor and multiple suppliers to feed the �nal customer.
Since the �nal model is based on two distinct levels,
it is not suitable to use the standard programming to
formulate problems [3]. Therefore, in this research,
Bi-Level Programming (BLP) approach is used to for-
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mulate a Supplier Selection Problem (SSP) in Supply
Chain Network (SCN).

BLP is a proper model to deal with non-
cooperative decision-makers in decision-making pro-
cesses [3]. The aim of the BLP is to formulate problems
with hierarchical structure and two levels of decision-
making [4]. The leader, at a higher level of hierarchy,
follows a speci�c strategy, and the follower, at a lower
level of hierarchy, determines its strategy subsequently.
In such a non-cooperative game, each decision-maker
controls a set of decision variables and tries to opti-
mize his/her own objective function [5]. Stackelberg
reported the follower as the dominated member of the
game which is controlled by the leader. Given the
estimation of the followers' reaction, the leader takes
the �rst step [6]. According to its characteristics, the
BLP approach has been applied in so many �elds, i.e.
environmental economic problem [7], optimal design
engineering [8], mechanical engineering, decentralized
resource planning, logistics and transportation [9], civil
engineering, electric power markets [10], and so on.

More generally, the BLP can be formulated in
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Eq. (1):

min
x;y

f1(x; y)

s.t. (x; y) 2 R; (1)

where y is a solution vector for any given x obtained
by Eq. (2):

min
y
f2(x; y);

s.t. (x; y) 2 S: (2)

On the other hand, x 2 Rn1 is the vector of variables,
controlled by the leader, and y is the vector of variables,
controlled by the follower.

In spite of all its useful characteristics, it is
really di�cult to solve the BLP problems. Even
with the problems that objective function and all
constraints are linear, these problems are considered
as NP-hard [11]. Therefore, several di�erent meth-
ods have been proposed to obtain exact solution to
the BLP issues and its applications, i.e. enumerative
method [12], using the penalty function [13], and a
method based on the Gradient method [5]. Some of
approaches and algorithms, introduced to solve linear
BLP problems, are based on Karush{Kunh{Tucker
conditions [14], branch-and-bound algorithm [11], and
Benders decomposition algorithm [15]. Since it is
di�cult to solve the BLP problems, meta-heuristic
approaches have expanded. Meta-heuristic approaches
have greater ability to overcome many challenges of
the BLP problems. Genetic algorithm [16], ant colony
optimization algorithm [5], di�erential evolution [17],
Particle Swarm Optimization (PSO) [10], and co-
evolutionary approaches [18] are some meta-heuristic
approaches introduced to solve the BLP problems.

Yu et al. [19] proposed the BLP for a SC with
Vendor Managed Inventory (VMI) strategy. In their
model, a manufacturer plays the role of a leader
and several retailers play the role of followers. Both
manufacturers and retailers try to obtain their own
optimal product marketing and inventory policies. Kis
and Kov�acs [20] determined incapacitated lot-sizing
strategy in compliance with backlogs in a two-echelon
SC using BLP approach. Sadigh et al. [21] introduced
a framework for a multi-product SC with a single man-
ufacturer and single retailer using Stackelberg game
theory. In their model, the demand is a nonlinear
function of prices and advertising expenditures. Wee
et al. [22] considered a vendor as a leader and a buyer
as a follower to formulate a SC through BLP problem
approach. They captured a time-varying price and
solved the model with bi-level elitist genetic algorithm.

Supplier selection is a key issue in decision mak-
ing process involving many respects, i.e. quality and

reliability, along with measures such as discounts and
pricing [23]. There are a lot of studies prominent in
the �eld of supplier selection. Rosenblatt et al. [24]
studied procurement policies and order quantity in a
SC. Xia and Wu [25] considered quantity discounts
in a SSP. They referred to the issues of multiple
suppliers to provide multiple products with capacity
limits, price intervals, and quantitative discounts. J.L.
Zhang and M.Y. Zhang [26] studied the same problem
for a single manufacturer with a random demand in
which suppliers have di�erent sales prices and limited
capacities. They also considered holding, shortage, and
�xed order costs. Mohamadi et al. [27] introduced
an integrated model for supplier location selection
and order allocation with capacity constraints under
uncertainty. They formulated a bi-objective model to
optimize SCN costs. Neyestani et al. [28] investigated
a supplier order allocation with one buyer and pre-
selected suppliers. They formulated a multi-objective
mixed integer nonlinear programming problem to opti-
mize the total value and cost of purchase.

To the best of our knowledge, researchers try to
formulate SSP using integrated mathematical program-
ming. Nevertheless, the problem has a hierarchical
nature, and it is better to employ the BLP to formulate
it. This research consists of a buyer, a vendor, and
multiple suppliers. The BLP approach is proposed
for supplier selection and order allocation under the
all-unit quantity discount policy. There are two main
questions which are investigated:

1. Is the cost of the integrated model for supplier
selection less than the BLP approach?

2. How can an e�ective approach be developed for
solving the resulted nonlinear BLP?

Given the order quantity per period, the paper adopts
the BLP approach to formulate the SSP with taking the
suppliers' capacity in to account. Since the objective
functions of the leader and the follower are both non-
linear, the problem is formulated as a Non-Linear
Bi-Level Programming (NLBLP). It determines the
amount of each order per period and selects a set of
capacitated suppliers. In this case, it is assumed that
the buyer and vendor play the role of the leader and
the follower in the hierarchical structure of decision-
making.

The rest of the paper is as follows: the problem
statement and formulation will be described in Sec-
tion 2 with details. The solution approach, computa-
tional results, and selectivity analysis will be pointed
out in Section 3, and �nally conclusions and future
studies will be presented in Section 4.

2. Problem statement

This paper addresses the SSP, including a buyer and
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a vender with multiple suppliers. The buyer selects
one or more suppliers to order a product with a �xed
market demand. All capacitated suppliers o�er all-unit
quantity discounts with predetermined discount inter-
vals and limited annual production rate. Furthermore,
the economic quantity of production is equivalent to
that of purchase order, which is requested by the buyer.

2.1. Model assumptions and notations
The following assumptions are considered in the model
formulation:

- The buyer can provide the required quantity of
supply from multiple suppliers;

- There is only one product speci�ed in this chain;

- The vendor o�ers all-unit quantity discount and
discounted prices will be applied to the orders;

- Speci�c annual demand is known and it has a
constant amount over time;

- Inventory shortage is not allowed for both buyer and
the suppliers;

- Inventory is not transferable from one period to
another period.

The parameters and decision variables used in the
model formulation are as follows:

The parameters:
i Index representing the suppliers of the

vendor
k Index for discount intervals
n The number of suppliers
� A small positive number
lik The lower bound of discount interval k

o�ered by supplier i
uik The upper bound of discount interval

k o�ered by supplier i
cik The discounted unit price in discount

interval k o�ered by supplier i
Ki The index of the last discount interval

o�ered by supplier i
D Annual demand rate for the buyer
Ai The cost of each order from supplier i
Si The setup cost of production for

supplier i
Pi Annual production rate for supplier i
zi Variable cost per unit of product for

suppliers i
hb Buyers' inventory holding cost per unit

per unit time
hi Suppliers' i holding cost per unit per

unit time

The decision variables:
qik The quantity purchased in each period

from a supplier i in discount interval k
yik Binary variable; if purchased quantity

provided from suppliers i per period
be placed in discount interval k, value
yik = 1; otherwise, yik = 0

Q The total value of the order per period
for the buyer from all suppliers

yi Binary variable; if supplier i has been
chosen by the buyer, value yi = 1;
otherwise, yi = 0

2.2. BLP model for SSP: Buyer as a leader
The BLP formulation of the model is described through
Eqs. (3) to (13):

min
Q;y

zL(Q; yi) =D=Q
nX
i=1

KiX
k=1

(cikqik +Aiyi)

+ hb=2Q
nX
i=1

24 KiX
k=1

qik

!235 (3)

s.t.:
Q � �; (4)

KiX
k=1

yik � yi 8i = 1; � � � ; n; (5)

yi 2 f0; 1g 8i = 1; � � � ; n; (6)

min
q;y

zF (qik; yik) =D=Q
nX
i=1

KiX
k=1

(ziqik + Siyik)

+D=2Q
nX
i=1

24hi
Pi

 KiX
k=1

qik

!235 ; (7)

s.t.:
KiX
k=1

qik = Q; (8)

KiX
k=1

qik � Pi
D
Q 8i = 1; � � � ; n; (9)

yiklik�qik�uikyik 8i=1;� � �; n; 8k=1;� � �;Ki; (10)

KiX
k=1

yik � 1 8i = 1; � � � ; n; (11)

yik 2 f0; 1g 8i = 1; � � � ; n; 8k = 1; � � � ;Ki;
(12)

qik � 0 8i = 1; � � � ; n; 8k = 1; � � � ;Ki: (13)
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Eqs. (3) and (7) represent higher and lower level
objective functions, respectively. Eq. (3) reects the
total annual cost of purchasing, order, and holding
for the leader, while Eq. (7) represents the total
annual cost of production, setup, and holding for the
suppliers. Constraint (4) denotes the fact that the
orders received from all suppliers must be greater
than zero. Constraint (5) expresses the fact that if
a supplier is selected by the buyer, it will be able to
o�er one of its price intervals. Constraint (6) is to
select or unselect any of the suppliers. Constraint (8)
embraces the fact that the quantity of each order
per period by the buyer equals the total quantity
per period received from all selected suppliers of the
vendors in each order. Constraint (9) indicates that
the annual quantity of the order from a supplier would
not exceed the annual production capacity of that
supplier. Constraints (10) and (11) enforce that each
supplier can feed the network according to its capacity
interval. Constraint (12) denotes binary variable, yik,
and Constraint (13) indicates that qik variables are
positive.

2.3. BLP models for SSP: Vendor as a leader
The BLP formulation of the model is described through
Eqs. (14) to (24):

min
q;y

zL(qik; yik) =D=Q
nX
i=1

KiX
k=1

(ziqik + Siyik)

+D=2Q
nX
i=1

24hi
Pi

 KiX
k=1

qik

!235 ;
(14)

s.t.:
nX
i=1

KiX
k=1

qik = Q; (15)

KiX
k=1

qik � Pi
D
Q 8i = 1; � � � ; n; (16)

yiklik � qik � uikyik 8i = 1; � � � ; n;
8k = 1; � � � ;Ki; (17)

KiX
k=1

yik � 1 8i = 1; � � � ; n; (18)

yik 2 f0; 1g 8i = 1; � � � ; n;
8k = 1; � � � ;Ki; (19)

qik � 0 8i = 1; � � � ; n;
8k = 1; � � � ;Ki; (20)

min
Q;y

zF (Q; yi) =D=Q
nX
i=1

KiX
k=1

(cikqik +Aiyi)

+ hb=2Q
nX
i=1

24 KiX
k=1

qik

!235 ; (21)

s.t.:

Q � �; (22)

KiX
k=1

yik � yi 8i = 1; � � � ; n; (23)

yi 2 f0; 1g 8i = 1; � � � ; n: (24)

3. The proposed solution method

The BLP problem is a NP-hard one due to its hierar-
chical structure [22]. Although it is easier to model
a hierarchical problem by using the BLP approach,
employing only exact solution methods is very hard
and time-consuming. Therefore, it is better to use
other methods to solve such a model. Since both
of the formulated models are mixed binary NLBLP,
the meta-heuristic algorithm is adopted to solve them
based on PSO algorithm. On the other hand, the
method needs the follower solution in the procedure.
This solution may be obtained using the Branch-And-
Reduce Optimization Navigator (BARON) as a solver
of GAMS software for nonlinear models. In other
words, PSO algorithm, as a well-known meta-heuristic
method, is employed to deal with the higher level of
the problem. Due to nonlinearity of the problem, the
BARON solver is employed to obtain a global solution
to the problem in its lower level. Some more details are
illustrated in Figure 1 and rather discussed as follows.

Figure 1. The scheme procedure for solution.
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According to the structure of the BLP at Eq. (1),
the proposed solving procedure is started by estimation
of optimal solution for decision variable, x. This initial
solution will be in an exploratory process till the new
solution is achieved. The optimal solution for the lower
level, i.e. y�, is obtained in each iteration, and it returns
to the higher level of the model. The process will go
on till an optimal or near-optimal solution is found for
the leader level of the model.

3.1. Solving BLP using PSO
As an evolutionary meta-heuristic algorithm, PSO has
been organized based on an initial population and a
random solution [29]. Each particle, i.e. a location
vector, is generated randomly in the feasible area of
the problem. Particles need velocity to achieve a better
position. Thus, a velocity vector, which is usually
zero, is generated for each particle. Then, positions of
particles are updated in each iteration of the process,
according to Eqs. (25) and (26). The velocity of
each particle is calculated by Eq. (25), and then the
position of a particle is updated by Eq. (26) according
to previous position and velocity:

V t+1
i = WV ti + c1r1(pti � xti) + c2r2(ptg � xti); (25)

xt+1
i = xti + V t+1

i ; (26)

where i is used for particles' indexing; t is a iteration
counter; xti and V ti indicate position and velocity of
particle i in t iteration, respectively; pi is the best
position found for the particle i so far and pg is the best
position obtained for all particles so far; c1 and c2 are
constants; r1 and r2 are random numbers generated in
the range of 0�1; and W is the weight inertia to control
diversi�cation and intensi�cation of the problem space.
W is adjusted to each iteration using Eq. (27):

W =Wmin+(Wmax�Wmin):
�

itermax � iter
itermax

�
: (27)

Wmax and Wmin are the initial and �nal values of their
inertia weight; itermax is the iteration maximum and
iter is the current iteration.

3.1.1. The proposed PSO algorithm: Buyer as a
leader

Pseudocode of the formulated BLP is shown in Al-
gorithm 1 considering the buyer as a leader. The
algorithm is started by the initial data and the proper
values for needing parameters. The initial solutions
are generated based on the swarm-sized particles. The

Algorithm 1. The proposed PSO algorithm: Buyer as a leader.
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encoding scheme of solution vectors is displayed in
Eq. (28):

x = [Q;Y1; Y2; � � � ; Yn]: (28)

Q is generated within the range of [�;
Pn
j=1 ujKj ]

randomly, and also a random variable in the range
of 0 � 1 is generated for quantity, Yj . If the random
value is less than 0.5, then Yj equals zero, unless it
equals one. For each candidate solution, a �tness
function is introduced to balance the solution �tness
and optimization purpose. As also shown in Figure 1,
for each given x, the optimal solution to the follower
problem is obtained as y�. It is possible to obtain the
�tness values for each solution by Eq. (3).

The generated solutions of the leader are pre-
sented to the follower. The follower problem is solved,
and then the values of qjk and yjk are returned to the
leader to calculate the objective function. The initial
velocity of every particle is randomly determined in
the range [0 1]. The best position of each particle
in each phase is obtained by pi. Initially, pi for each
particle is equal to the initial position of each particle.
After calculating the objective value of all particles, the
best position for pg is achieved using the best objective
function.

After generating the initial population, it is pos-
sible to improve e�ciency and performance of the
particles. Using Eqs. (25) and (26), the new values of
the velocity and position for all particles are obtained
at each step of iteration. Also, Yj is binary variable in
each iteration which can be updated by Eq. (29):

xt+1
i =

(
0 if xt+1

i < 0:5
1 otherwise

)
: (29)

Given the previous and current values of the objective
function, the best position is obtained for every parti-
cle. If the new answer is better than the previous one,
the position of the particle is replaced with a new the
position, which means to change pi. Additionally, pg is
replaced with new values if the other particles contain
better objective functions. Finally, after obtaining
the maximum iteration or the closest distance from
solutions, the de�ned error algorithm is terminated,
and the best answer will be achieved. The proposed
PSO structure is discussed in the next section regarding
the vendor as a leader.

3.1.2. The proposed PSO algorithm: Vendor as a
leader

Bi-level PSO pseudocode, considering vendor as a
leader, is illustrated in Algorithm 2. The encoding
scheme of solution vectors is displayed in Eq. (30):

x =

264q11; � � � ; q1K1| {z }
Q1

; � � � ; qn1; � � � ; qnKn| {z }
Qn

375 : (30)

First, supplier 1 is chosen by the vendor and a random
number is generated between zero and one. The �rst
supplier is omitted if the generated number is less than
0.5. Otherwise, the supplier is selected. The other
random integer number is generated between 1 and
Kj to randomly select a discount interval. Finally, an
amount of order is randomly generated according to
the selected supplier. This procedure is repeated for
all suppliers. If none of the suppliers is selected, this
procedure is repeated from the beginning.

After generating initial data, the generated so-
lutions, obtained by the leader, are handed in to the
follower. The problem of the follower is solved using
GAMS software, and the leader is provided with Q, Yj
values to calculate the objective value. After this step,
the algorithm goes to improve the quality of the solu-
tion. Solutions are used to get new values at each step
of iteration for all particles in Eqs. (25) and (26). The
local search, introduced by Kamali et al. [30], is used to
improve the updated solutions. Given the two suppliers
indexed by i and j, in the �rst phase, the number of
the suppliers' orders is exchanged. The replacement
is carried out if they are interchangeable considering
the suppliers capacities introduced by uiki , ujkj , i; j =
1; � � �n, ki = 1; � � � ; ki, and kj = 1; � � � ; kj . If the cost of
the resulted solution is lower than that of the previous
one, the solution is replaced; otherwise, it is discarded.
This procedure is done for all elements of the paired
suppliers. Given the �rst supplier, in the next phase, its
order quantity is added to the other supplier who has an
extra necessary capacity. If the cost of the new solution
is lower, the order quantity is assigned to the best
supplier. As it is done in the �rst phase, this procedure
is repeated for all elements of the paired suppliers.
Results of calculations and sensitivity analysis of an
example will be discussed in the next section.

4. Computational results

The required codes for solving the programs are written
by MATLAB software, version 7.10.0 in Windows XP
(Intel Core 2 Duo CPU 2.83 GHz, 2 GB RAM).

4.1. Numerical example
A numerical example is o�ered to con�rm the validity
of the formulated BLP models and the proposed
solution procedures. Suppose a SC involving a buyer
and a vendor with four suppliers. First, the buyer
wants to know which of four suppliers can be selected
with its order quantity per period. The annual demand
of the buyer is 100,000 units and the buyer should
satisfy the demand. Suppliers o�er products with
all-unit quantity discount and discount intervals,
illustrated in Table 1. The other information required
by suppliers is shown in Table 2. Inventory holding
rate per unit is 2.6 in the buyer's level.
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Algorithm 2. Proposed PSO algorithm: Vendor as a leader.

Table 1. Numerical example of the discount intervals.
Supplier Intervals Unit price Supplier Intervals Unit price

1

0 < Q < 5000 9.0

2

0 < Q < 2000 9.1
5000 � Q < 10000 8.9 2000 � Q < 4000 9.0
10000 � Q < 15000 8.8 4000 � Q < 6000 8.9
15000 � Q < 20000 8.7 6000 � Q < 8000 8.8
20000 � Q < 25000 8.6 8000 � Q < 10000 8.7
25000 � Q < 30000 8.5 10000 � Q � 20000 8.6
30000 � Q � 35108 8.4

3

0 < Q < 3000 8.7

4

0 < Q < 4000 10.5
3000 � Q < 6000 8.6 4000 � Q < 8000 10.4
6000 � Q < 9000 8.5 8000 � Q < 12000 10.3
9000 � Q < 12000 8.4 12000 � Q < 16000 10.2
12000 � Q < 15000 8.3 16000 � Q � 68777 10.1
15000 � Q < 18000 8.2
18000 � Q < 21000 8.1
21000 � Q � 30000 8.0



2102 F. Zaheri et al./Scientia Iranica, Transactions E: Industrial Engineering 24 (2017) 2095{2104

Table 2. Suppliers information.

Supplier z S P A h

1 4.04 43 35108 40 2.29
2 6.48 39 29898 19 1.96
3 7.17 42 35785 25 2.74
4 5.87 30 68777 39 0.54

Table 3. Suggested PSO parameters.

Parameter Quantity

Swarm size 100
Wmax 0.7
Wmin 0.2
c1 0.8
c2 0.8

The values of the proposed PSO parameters are
shown in Table 3. These values have been obtained
through trial and error.

The results are shown in Table 4, i.e. objective
function values for higher and lower levels. Also, the
information in this table shows the order quantities of
the four suppliers. The results show the fact that the
sum of cost for the integrated approach is lower than
the two bi-level models. However, the individual cost
of vendor or buyer for the bi-level strategies is lower
than that of the integrated model. For the buyer as
a leader, costs are reduced by 3% (from 890,717 to
865,286), and for the vendor as a leader, they are
reduced by 12% (from 597,906 to 526,822). The table
also includes solutions to the integrated model. The
objective function value of the integrated approach is
the sum of the total costs of the buyer and vendor.
But, compared with bi-level approaches, these values
are also included separately. Although the sum of the
costs in the integrated approach is lower than that
of the bi-level approach, it should be noted that the
higher level as the prior interest resulted in a much
higher level. The objective function value for the

leaders is decreasing in the bi-level model. The impact
of changing of parameters on the obtained results is
discussed in the next section.

4.2. Sensitivity analysis
Sensitivity analysis is done by changing the parameters
in the range of 10 to 50% and by changing one of
the parameters and �xing the other parameters with
the initial values. The results are shown in Tables 5
and 6. Results in Table 5 show that when the buyer
plays the role of the leader, changes in the objective
function are highly sensitive to changes in the value
of demand, but less sensitive to those of production
rates. Also, changes in the objective function show

Table 5. Sensitivity analysis for the buyer as leader.

Parameters Changes in parameter values (%)
{50 {30 {10 +10 +30 +50

D {49 {30 {10 +24 +43 +64
hb {2 {1 0 0 +1 +1
zi 0 0 0 0 0 0
Si 0 0 0 0 0 0
Pi Impossible +11 +13 0 0 {1
Ai 0 0 0 0 0 0
hi 0 0 0 0 0 0

Table 6. Sensitivity analysis for the vendor as leader.

Parameters Changes in parameter values (%)
{50 {30 {10 +10 +30 +50

D {56 {34 {11 +12 +37 +64
hb 0 0 0 0 0 0
zi {50 {30 {10 +10 +30 +50
Si 0 0 0 0 0 0
Pi Impossible +8 +2 {1 {4 {6
Ai 0 0 0 0 0 0
hi 0 0 0 0 0 0

Table 4. The results of the numerical example.

The bi-level
approach assuming

the buyer as a leader

The bi-level
approach assuming

the vender as a leader

Integrated
approach

(Kamali et al.) [30]
Order to supplier 1 21068.29 1259.63 3009.77
Order to supplier 2 17941.66 0 2563.13
Order to supplier 3 21000 0 3000.00
Order to supplier 4 0 2328.25 0
Buyer's objective function value 865286 1002079 890717
Vendor's objective function value 656529 526822 597906
The integrated objective function value 1521815 1528901 1488623
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little sensitivity to those in the values of holding costs.
Results in Table 6 indicate that when the vendor plays
the role of the leader, changes in the objective function
in relation to the quantity of the demand and variable
costs are very sensitive. Changes in the values of
other parameters have no speci�c e�ect on the objective
function. 50% reduction in production rates' change in
both cases is not possible because it will not satisfy
customer's demand.

5. Conclusion

The order allocation problem with the supplier selec-
tion under an all-unit quantity discount policy with
buyer as a leader was formulated and compared to the
model with vendor as a leader in this paper. Two bi-
level models were studied in a supply chain network
design problem with a hierarchical structure. It was
assumed, in this study, that both buyer and vendor
play the leadership role in a BLP model structure.
The latter reacts to the decisions made by the leader.
Since NBLP problems were considered as a NP-hard
problem, PSO algorithm was proposed to solve NBLP
suggested nonlinear models. Using the proposed solved
algorithms, an example was compared with solutions
from the integrated model. The sensitivity analysis
was conducted to assess the changes in the values of
the parameters. When one of the players, leader or
follower, has dominant power in the supply chain, the
proposed models can be used to choose suppliers in a
supply chain. The results can be used as a management
managerial insight to design strategic models of bi-
level inventory. The impact of demand on uncertainty
can be studied as a further research in this area. It
is also possible to study the problem of selecting the
suppliers from multi-objective views. Another area
of study is to assess the models in multi products
and alternative product conditions. The study also
considered suppliers in the form of a single company,
while they can be studied as an independent one or a
company in a competitive environment.
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