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Abstract. The capacity of reinforced concrete sections highly depends on the interaction
between reinforcing bars and surrounding concrete. The buckling of longitudinal steel
bars has an important role in the nonlinear behavior of RC sections. In order to perform
nonlinear analysis on the buckling of the bar in RC columns, two types of column and joint
elements are modeled and separate degrees of freedom are used for the reinforcing bars
and concrete. Buckling e�ect is considered in the numerical modeling of bars, and ability
and reliability of the numerical method are assessed through veri�cation of the numerical
and experimental results. The e�ect of stirrup spacing on the Axial-Force-Moment (P-M)
interaction curve of the RC column is calculated using the nonlinear model for the buckling
of bar and compared with the ACI criterion. Results show that numerical capacity in an RC
section subject to pure axial compressive load and pure bending moment, with buckling
e�ect of the bar, is only about 6% and 9% lower than that obtained without buckling
e�ect, respectively. Also, although ACI criterion does not take buckling e�ect of the bar
into account in the estimation of ultimate strength capacity of RC section, the ultimate
capacity recommended by ACI code is acceptable and conservatively enough.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Various numerical and analytical methods have been
presented to estimate the capacity of RC sections.
The interaction between reinforcing steel bars and
surrounding concrete should be considered appropri-
ately through the process of capacity estimating. The
reinforcing bars are usually subjected to tensile or
compressive forces in RC sections. With regards
to circumstances, the compressive longitudinal bars
in interaction with the concrete segment are prone
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to buckling. Currently, according to the methods
recommended by building codes, on the one hand, it
is assumed that the probable buckling is prevented
by observing the required provisions. Hence, the
e�ect of steel bars buckling is not considered [1].
On the other hand, building codes would prevent
buckling by applying requirements for stirrups spac-
ing, stirrups diameter, and concrete cover. If these
requirements are not observed thoroughly in an RC
member, the buckling is likely to occur. Clear state-
ment of the eventual capacity reduction compared with
codes requirements in this regard is needed. Many
researches have been conducted on the buckling of
longitudinal reinforcement bars. These researches are
classi�ed in two major categories of those on the
buckling action of bars and those on the e�ect of
buckling on the nonlinear behavior of RC sections.
Various models based on the stress-strain curve of
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steel bar have been presented for numerical modeling
of buckling behavior, including simple models such
as the Gomes and Appleton model in 1997 [2] and
complicated models such as the models by Berry and
Eberhard in 2005 [3], Bae and Mises in 2005 [4],
Zong and Kunnath in 2008 [5], Dhakal and Maekawa
in 2002 [6], Masonne and Moroder in 2009 [7], and
Kashani and Crewe in 2013 [8]. The model proposed
by Appleton and Gomes (1997) is simple and consis-
tent with the G-M-P stress-strain model by Giu�re
and Pinto in 1970 [9]. The majority of the second
group study the numerical investigation of nonlinear
behavior of, particularly, post-yield zone and the e�ects
of buckling on ductility in RC sections. In addi-
tion, various experimental methods along with simple
to micro modeling numerical methods, for instance,
the models by Lukkunaparasit et al. [10], Lopes et
al. [11], and Potger et al. [12], have been used by
researchers.

Despite the extensive researches in the �eld of
steel bar buckling in RC sections, the aim of this
paper is to study the e�ects of bar buckling on the
capacity of RC sections as well as on the interaction
curves of axial load-bending moment capacity proposed
by codes, which have not been fully considered in
previous studies. Based on the obtained results of this
research, it is feasible to estimate the strength capacity
of RC sections regarding the possibility of steel bars
buckling when the requirements for the stirrups spacing
are not properly met. Moreover, an appropriate
de�nition exists for the capacity of RC members with
the probable buckling of compressive steel bars, which
can lead engineers to a suitable process for the seismic
retro�tting design of existing old RC structures.

2. Theory of research

An exerted cyclic loading on RC sections might take
the compressive steel bar behavior to the nonlinear
zone. The buckling behavior of steel bars depends
on the ratio of stirrups spacing (Ls) to diameter of
the bar (db), which is de�ned by slenderness ratio.
The stress-strain relationship is presented for some
slenderness ratios in Figure 1. For low slenderness,
the e�ect of buckling is not observed and cycles show
an expansion due to the e�ect of isotropic hardening;
but, for higher slenderness, cycles are more contracted

under the e�ect of buckling and the load gradient is
reduced in compression.

After buckling, the sti�ness of bar element in
compression is considered on the basis of bending
behavior [13]. Some researchers have recommended
considering the buckling of the longitudinal bars based
on the distance between two consecutive stirrups. In
this distance, longitudinal bar is modeled as a �xed-end
column [14]. According to a number of experimental
and theoretical results, compressive bars are vulnerable
to buckle in an equal length or longer distance between
two consecutive stirrups [15]. Ideas have been provided
by many researchers about the de�nitions in which the
bar buckling must be taken into consideration. When
some or all parts of surrounding concrete of the steel
bars lose their strength and are crushed, or the stress
in stirrups reaches the yield limit, the e�ect of bar
buckling should be investigated [16].

Currently, ACI code gives an estimate of the
nominal strength capacity of RC sections by bene�ting
from simplifying assumptions such as linear strain
distribution along the height of section, neglecting
shear deformations, and assuming perfect bond be-
tween longitudinal bars and concrete. Moreover, ACI
estimates the ultimate capacity by applying reduction
coe�cients to the nominal capacity. On the other
hand, ACI code gives some restrictive criteria on
stirrups, which show di�erences for di�erent levels of
ductility and di�erent sections and positions for the
member [17]. One of the restrictive and determinant
factors is limiting the stirrup transverse spacing to at
most 6 times the diameter of the main bars. In the
case of buckling of a bar, the e�ect of this provision is
directly considered in the stress-strain relationship of
the longitudinal bars as increase in slenderness of the
bar intensi�es the buckling e�ect.

3. Numerical modeling

Two types of elements have been used for numerical
modeling of the examined column. The beam-column
element is basically used for modeling the column
together with the joint element applied for footing
connection. In the method used on the basis of
layered model, the assumption of perfect bond between
concrete and bar has been neglected and the possible
e�ects of slip have been considered [18]. In the joint

Figure 1. The e�ect of buckling on the stress-strain behavior of bars in di�erent slenderness ratios [13].
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element, the e�ect of pull-out can be considered as
the relative displacement between the steel bar and
surrounding concrete and bond stress is referred to as
the shear stress acting parallel to an embedded steel
bar on the contact surface between the reinforcing bar
and concrete. The number of degrees of freedom on
the side of the joint element is compatible with the
degrees of freedom at the ends of the column elements
adjacent to the joint element. Although it is feasible to
model the pull-out e�ects, the embedded length of steel
bars has been considered su�ciently large to prevent
interference of bar's pull-out from the foundation in
the results of this research [19].

The free body diagram of an in�nitesimal seg-
ment, dx, of an RC column with internal and external
forces is shown in Figure 2. As the element consists
of two major parts of concrete and steel bar, the
equilibrium relationships of internal forces have been
written during discretization. The e�ect of bond force
between the concrete and each longitudinal bar has
been taken into calculation.

The axial equilibrium in the concrete element and
steel bar i is given by Eqs. (1) and (2):

dNC(x)
dx

+
nX
i=1

Dbi(x) = 0; (1)

dNi(x)
dx

�Dbi(x) = 0 ; i = 1; 2; ::; n; (2)

where:
NC(x) The axial force in the concrete segment,
Ni(x) The axial force in the steel bar i,
n The number of longitudinal bars,
Dbi(x) The bond force between the concrete

segment and bar i per unit length.

Eq. (3) is provided based on the Euler-Bernoulli
theory and the moment equilibrium about the z axis of
the cross section:

d2Mz(x)
dx2 � Py(x)�

nX
i=1

yi
dDbi(x)
dx

= 0; (3)

Figure 2. Free body diagram of in�nitesimal segment of
RC column.

where:
py(x) Uniform external force on the element,
Mz(x) Bending moment,
yi Bar distance from reference axis.

The slip between the longitudinal bars and the
surrounding concrete in each section for the longitudi-
nal position x of reinforced concrete elements can be
de�ned by Eq. (4):

ubi(x) = ui(x)� u1C(x) + yi
du2C(x)
dx

; (4)

where:
ui(x) The longitudinal displacement of bar,
u1C(x) The longitudinal displacement of

concrete segment,
u2C(x) The transverse displacement of

concrete segment in the y axis
direction.

The weak form of displacement based �nite ele-
ment formulation is determined through the principle
of stationary potential energy. A computer program
created in MATLAB software has been used by the
authors [20]. More details about the calculation of ele-
ment have previously been provided elsewhere [18,19].
The number of degrees of freedom in a reinforced con-
crete element depends on the number of longitudinal
bars. As an example, 14 degrees of freedom relates to
a reinforced concrete element with 4 longitudinal bars.
Six degrees is associated with the concrete segment and
the others are for the bars.

The Newton-Raphson algorithm has been used
for numerical nonlinear solving of equations. Each
RC column element has been divided into elements
with shorter length in order to consider the e�ects
of dependency on the length of element, because the
formulation is displacement based and the response
depends on element size. As a simple suggestion, the
length of the column elements can be selected equal to
or shorter than the average 
exural crack spacing in
the column. Therefore, in this study, the 
exural crack
spacing is calculated based on the CEB (1978) and the
column element is subdivided into a suitable number of
shorter elements [21]. In these cases, convergence of the
calculated responses will be achieved in the numerical
process.

Yassin model is used for modeling the concrete
stress-strain behavior (Figure 3). Tensile behavior has
been considered to be bilinear and the e�ect of element
size on tensile hardening has been considered [22].
Furthermore, the interaction e�ect between steel bar
and concrete has been entered into calculations as the
bond stress-slip relationship based on the Eligehausen
model (Figure 4). This model is simple and has
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Figure 3. The stress-strain behavior of concrete based on
the Yassin model [22].

Figure 4. The bond stress-slip behavior based on the
Eligehausen model [23].

shown good accuracy in modeling e�ective parameters
compared to the other models [23]. In this model, the
e�ects of many variables, such as spacing and height
of lugs on the steel bar, concrete compressive strength,
thickness of concrete cover, steel bar diameter, and end
bars hook, are considered.

4. Modeling of steel bar behavior and the
e�ect of buckling

The Giu�re-Menegotto-Pinto (G-M-P) model (1970)
has been used in order to represent the stress-strain
relationship of steel bars. The enveloping curve in
Figure 5 presents a transform from a straight line
with a slope of E0 into another straight line with
a slope of E1. In this �gure, the superscripts \1"
and \2" respectively indicate the directions of loading
and unloading, and ("s0; �s0) is the coordinates of the
asymptote's intersection point.

The model proposed by Gomes and Appleton has
been employed to apply the e�ect of bar buckling in
G-M-P stress-strain relationship. Based on the theory
of this model, the process of checking the balance in a

Figure 5. The stress-strain behavior of steel bar without
buckling e�ect based on the G-M-P model.

Figure 6. Free body diagram of buckling steel bar by
Gomes and Appleton (1997) [2].

buckling bar between two stirrups has been depicted in
Figure 6. Eq. (5) shows the stress-strain relationship in
the buckling bar with regards to the details that have
been explained by Gomes and Appleton (1997) [2]:

�s = ((2
p

2MPb)=(AbLs))=
p
"s; (5)

where:
Ab Cross section of the steel bar,
Ls E�ective length in buckling, which

is considered equal to the distance
between two consecutive stirrups,

Mpb Steel bar's plastic moment, which
is calculated based on Eq. (6) for a
circular cross section without axial
load:

MPb = ZP � �y = 0:424� � 1
8
db3 � �y; (6)

where:
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Zp Plastic modulus of circular cross
section,

db Bar's diameter.

In order to use Eq. (5) in stress-strain curve of the
steel bars, the strain corresponding to the zero stress
(the intersection point of the strain axis) should be
determined (Figure 5). This point ("SQ; 0) is assumed
as the origin of the curve coordinate and the change
of variable "sn = "s � "SQ is performed in Eq. (5).
It is capable to consider the e�ect of axial force on
buckling behavior of steel bars. The lack of this
consideration is signi�cant in small amounts of strain,
but not impressive in nonlinear behavior and larger
amounts of strain, in which the inclusion of bending
moment e�ects of steel bar is su�cient. Hence, this
study does not include the e�ect of interaction between
axial force and bending moment to avoid complicated
calculations.

During the modeling of RC elements, the e�ect of
buckling in each steel bar is considered after crushing
of the surrounding concrete. The point (P) in Fig-
ure 5 is formed by intersection of compressive loading
path (AB) and the curve of buckling e�ect (CD). An
iterative process is necessary while reverse loading to
determine the point (B) and, consequently, the position
of point (D).

5. Numerical analysis and method validation

Validity of the proposed numerical method has been
demonstrated through numerical and experimental re-
sults of the veri�cation of two examined specimens. In
this paper, the examined model by Kostantakopoulos
and Bousias (2004) [24] is used and the numerical and
experimental results are compared. Two columns with
similar characteristics, except for the distance between
stirrups, have been tested under lateral loading. The
specimen with Ls = 4db does not buckle, but another
one with Ls = 12db experiences the buckling of lon-
gitudinal steel bars. The cross section of specimens is
square with dimensions of 250 mm�250 mm and height
of 1600 mm. Both specimens have 4 longitudinal steel
bars with diameter of 16 mm and yield strength (fy)
of 514 MPa. Moreover, the stirrups with diameter of
10 mm and yield strength of 542 MPa are used. Finally,
the concrete with compressive strength (fc) of 28 MPa
is conducted. A constant compressive axial load with
a magnitude of 500 KN is applied during the imposing
of lateral cyclic load. More details on specimens
are presented in the study by Kostantakopoulos and
Bousias [24].

The numerical results for both specimens with
and without buckling are presented and compared with
experimental ones in Figures 7 and 8. The results

indicate high accuracy of the employed numerical

Figure 7. Experimental and numerical responses of the
specimen with Ls = 4db [24].

Figure 8. Experimental response of the specimen with
Ls = 12db [24].

method, especially in estimating the lateral capacity
of columns. The history of the stress-strain curve for
one of the steel bars is shown in Figure 9 in both
cases of with and without buckling. Results show a
signi�cant di�erence in the behavior of steel bar in
the presence of the buckling e�ect, especially in the
case of experiencing deformation. For Ls = 12db, the
con
uence of the buckling curve and the envelop stress-
strain curve of steel bar is located quite near the yield
point (�y). It shows that buckling does not have a
signi�cant role in reducing the compressive yield point
of steel bar and is more e�ective on the post-yield
range of behavior. This is justi�ed by investigating the
behavior of experimental and numerical specimens with
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Figure 9. The steel bar behavior with and without
buckling e�ect.

and without buckling. In other words, the ultimate
strength capacities are almost identical in both of
the examined specimens and the small disparity is
due to the e�ect of Ls on the coe�cient of con�ned
concrete. But, after yielding of the compressive steel
bar, nonlinear behavior of specimen shows softening
with high gradient as a result of buckling e�ect. Thus,
experimental behavior is well predicted by numerical
analysis.

6. Numerical investigation

In order to investigate the capacity of RC columns,
various samples of short column, listed in Table 1 with
�xed and variable characteristics, are modeled and
analyzed. Thirty models have been investigated and

the obtained results are compared with the capacity
curves of ACI code. Models of this study have been
selected based on the characteristics and geometry
proposed in the laboratory research by Qui et al. [25].
The case study, i.e. the column with 50 mm stirrup
spacing and 40 MPa compressive strength for concrete,
is tested under a constant 350 kN axial load. Because
good agreement is observed between the results of
the numerical method and the experimental one, the
results of this veri�cation have not been mentioned to
avoid prolongation of the text.

Many researchers have conducted numerical anal-
yses to investigate the e�ect of buckling by monotonic
and cyclic methods. Bae et al. in 2005, Dhakal and
Maekawa in 2002, Monti and Nuti in 1992, and Mander
et al. in 1994 [26] investigated the e�ect of buckling
through both cyclic and monotonic analyses together.
On the other hand, Zong and Kunnath in 2008, Mander
in 1983 [27], and Bai et al. in 2012 [28] studied the
buckling using monotonic analyses. Despite the fact
that buckling e�ects of the bar are more obvious in
cyclic behavior and large deformations, the pushover
analysis has been used in this paper, since the main
objective is to investigate the e�ect of buckling on the
ultimate capacity. Therefore, there is no explicit and
speci�c statement in regard to ductility, post-buckling,
and post-yield of the bars.

The resulting axial force-bending moment inter-
action curves (P-M) are presented in Figure 10 along
with the curves obtained from ACI code. The ACI
P-M interaction curves have been plotted with and
without capacity reduction factor (�) (the ultimate
and nominal capacities) in order to make a better
comparison. Quantitative investigations are performed
in 3 cases of pure bending, maximum bending capacity
a�ected by the axial force-bending moment interaction,
and pure axial force. Results are presented in Table 2.

Table 1. Fixed and variable properties of the specimens.

Dimensions of models 200 mm�200 mm

Stirrup diameter 6 mm

Yield stress of longitudinal bars 460 MPa

Yield stress of stirrup 420 MPa

Thickness of concrete cover 21 mm

Variety in distances between stirrups (5, 10, 20, 30, 50) �db
Specimen ID Stirrups spacing (mm) Longitudinal bars Percentage of bars, r fc (MPa)

S1-1 50, 100, 200, 300, 500 8f10 mm 1.57% 30

S1-2 40

S2-1 60, 120, 240, 360, 600 8f12 mm 2.26% 30

S2-2 40

S3-1 60, 120, 240, 360, 600 12f12 mm 3.39% 30

S3-2 40
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Figure 10. P-M curves of the specimens.

The results for the specimen with Ls = 5db, in which
buckling does not occur, have been chosen as a criterion
and the relative percent of disparity are presented for
other specimens per increase in the stirrup spacing
(Table 2).

7. Discussion and interpretation of results

Increasing the Ls factor has two signi�cant e�ects on
numerical responses. One of them is reduction in
con�nement of the core concrete and the other one is
exacerbation of the buckling potential of longitudinal
bars. The e�ect of Ls on the compressive strength of
con�ned concrete is utilized in estimating the capacity
as the con�ned coe�cient factor, although this factor
has been neglected in assessing the strength of concrete
in codes as a conservative approach. By considering
the equation of buckling path equal to the steel stress-
strain envelope curve, an intersection point will be
achieved that shows the condition in which the buckling
point ("b) and the yield point of curve ("so) are
identical, as shown in Figure 11 and Eq. (7):

Ls = 0:6� "� 1
2

s0 � db; (7)

Figure 11. The behavior of compressive steel bar when
"b = "S0.

where db is the bar diameter. This equation will be
equal to 12:5db for the cases under study. For greater
amounts of Ls, buckling path and separation from the
envelope curve are considered before the theoretical
yield point of the bar (�y). On the other hand, if Ls
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Table 2. Capacity evaluation of the specimens.

Pure bending The point with maximum

exural capacity

Pure axial force

fc = 30
MPa

fc = 40
MPa

fc = 30
MPa

fc = 40
MPa

fc = 30
MPa

fc = 04
MPa

Mz

(kN.m)
Mz

(kN.m)
Mz

(kN.m)
P

(kN)
Mz

(kN.m)
P

(kN)
P

(kN)
P

(kN)

r = 1:57%

Ls = 5db Value 26.8 27.6 43.0 360.0 50.1 720.0 1600.0 1997.6
Ls = 10db %� {0.1% 0.0% {8.8% 50.0% {2.0% 0.0% {3.6% {2.8%
Ls = 20db % {0.2% 0.0% {9.2% 50.0% {3.4% 0.0% {5.3% {4.2%
Ls = 30db % {0.3% 0.0% {9.8% 50.0% {3.7% 8.3% {5.9% {4.6%
Ls = 50db % {0.3% 0.0% {10.3% 50.0% {4.0% 8.3% {6.3% {4.9%

ACI318-11 without
reduction factor '

% 9.4% 8.6% {0.6% {0.2% {1.4% {38.5% {31.7% {31.9%

ACI318-11 with
reduction factor '

% {19.7% {20.6% {24.1% {44.2% {25.7% {64.6% {58.0% {57.6%

r = 2:26%

Ls = 5db Value 36.9 37.3 49.1 360.0 56.0 420.0 1707.4 2105.6
Ls = 10db %� {0.5% {0.2% {13.7% 66.7% {8.2% 57.1% {2.8% {2.2%
Ls = 20db % {2.6% {0.7% {15.3% 66.7% {8.9% 57.1% {4.1% {3.2%
Ls = 30db % {4.7% {1.5% {15.8% 66.7% {9.1% 57.1% {4.5% {3.6%
Ls = 50db % {5.7% {2.1% {16.2% 66.7% {9.3% 57.1% {4.8% {3.8%

ACI318-11 without
reduction factor '

% 11.3% 12.6% 3.6% {4.5% 2.7% 1.6% {28.9% {29.7%

ACI318-11 with
reduction factor '

% {18.1% {17.5% {20.9% {51.0% {22.5% {45.3% {57.0% {56.9%

r = 3:39%

Ls = 5db Value 51.6 52.9 61.2 420.0 67.9 420.0 1915.5 2313.7
Ls = 10db %� {1.3% {0.9% {9.0% {42.9% {9.9% {28.6% {2.5% {2.0%
Ls = 20db % {7.1% {5.0% {16.6% {57.1% {18.1% 71.4% {3.6% {2.9%
Ls = 30db % {8.5% {6.8% {20.3% {71.4% {18.3% 71.4% {4.2% {3.3%
Ls = 50db % {8.8% {6.8% {20.5% {85.7% {18.5% 71.4% {4.3% {3.5%

ACI318-11 without
reduction factor '

% 7.2% 8.3% 0.8% {35.4% 0.6% {4.3% {26.3% {27.6%

ACI318-11 with
reduction factor '

% {18.5% {17.7% {22.0% {70.6% {23.1% {58.2% {56.3% {56.5%

�The positive and negative percentages of di�erences corresponded to higher and lower values per Ls = 5db, respectively.

is assumed to be shorter than 12:5db, separation from
the envelope curve is after the yield point. The e�ect
of the second status is normally negligible in capacity
and will substantially be re
ected in ductility as well
as post-yield behavior.

The �rst status (Ls > 12:5db), depending on
the amount of Ls, can decrease the yield point and
compressive bar capacity and, consequently, reduce the
whole capacity of the section. Obviously, this can be
true provided that the conditions for buckling of bars
are available. Even with large amounts of Ls, the
buckling of longitudinal bars may not occur, because

the surrounding concrete of steel bar acts as lateral sup-
port. In other words, when the surrounding concrete
of compressive steel bars loses strength and is crushed,
the buckling needs to be investigated. Generally, it
can be claimed that conditions for the buckling of
compressive steel bars depend on the amount of Ls, and
the yield strengths of steel bars and their surrounding
concrete. Therefore, a prerequisite for the initiation of
possible buckling of longitudinal steel bars is that the
surrounding concrete loses its resistance. By de�ning
"c0 as the strain corresponding to compressive strength
of concrete and "b as the intersection point between
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Figure 12. The behavior of compressive steel bar in di�erent conditions.

the buckling path and the envelope curve of the stress-
strain steel bar, one of the following conditions would
be dominant:

(a) "b > "S0 and "b > "C0 for Ls < 0:6 "�0:5
S0 db. The

buckling path starts after the yield point of steel
bar (Figure 12(a)). Models with Ls = 5db and
10db are in this situation. Due to the post-yield
buckling, Ls will just a�ect the con�nement ef-
fectiveness factor and, consequently, discrepancy
will be observed in capacity values;

(b) "b � "C0 and "b > "C0 for 0:6 "�0:5
S0 db �

Ls � 0:6 "S0"�1:5
C0 db. The buckling path starts

before the yield point of the steel bar and, �nally,
the concrete cover is crushed prior to buckling
(Figure 12(b)). This state rarely occurs because
of the typical values of "S0 and "C0. The usual
value for "C0 is more than 0.002. Moreover, for
steel bars with yield points in a range of 400
to 500 MPa, "S0 will change between 0.002 and
0.0025. If Ls provides the conditions for the
occurrence of this state, drop in the resistance of
steel bar would be negligible;

(c) "b � "S0 and "b < "C0 for Ls > 0:6 "�0:5
S0 db.

Conditions are available in order to enter the
buckling path, which starts before the yield point
of steel bar; but, the strength and stability of
surrounding concrete do not permit to enter the
buckling path. In this status, steel bars tend to
return to the buckling path by loading progress,
after crushing of the cover concrete. Hence,
remarkable decline in resistance can be observed

(Figure 12(c)). Models with Ls = 20db, 30db, and
50db show this situation. By increasing values
of Ls, the buckling of steel bars is more likely
to take place. However, it will happen after
crushing of the concrete cover; thus, the strength
limit of compressive steel bars is the same for
di�erent values of Ls. Although, their behavior
would be di�erent after crushing of concrete, since
by increasing Ls, the degradation of resistance
and prolapse of curve behavior after initiation of
buckling increase. Slight di�erences due to the
con�ning e�ect are not signi�cant (Figure 13);

(d) "b � "S0 < "C0 for Ls > 0:6"�0:5
S0 db. Here,

conditions are available to enter the buckling

Figure 13. The moment-curvature curve of the specimen
S3-2.
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path, which starts before the yield point of steel
bars; but, because of the strength of surrounding
concrete, buckling does not happen before the
crushing of concrete cover (Figure 12(d)). On
the other hand, as "S0 < "C0, compressive steel
bar yields before initiation of concrete crushing.
Crushing of concrete cover in this situation will
lead to a sharp drop in resistance. The behavior
is non-ductile; however, steel bar passes the yield
stage and, logically, buckling does not interfere
with strength capacity of the section, although
it a�ects ductility. This situation is common for
steel bars with low yield points. With regards to
the usual values of strain corresponding to yield
point of concrete and steel bar, this situation is
likely to happen when the yield point of steel bar
is lower than 400 MPa;

(e) "S0 < "b < "C0, which is the fusion of (a) and (d)
(Figure 12(e)) and widely overshadows ductility.
Slight impact on the strength capacity of section
is due to the con�nement of concrete rather than
buckling.

8. Conclusions

� The e�ect of increasing Ls on 
exural capacity of
RC sections under pure bending is not signi�cant.
Changes of Ls between 5db to 50db leads to reduc-
tion, from zero to 9%, in 
exural capacity of section.
By increasing � and fy=fc, the compressive steel bar
has a more signi�cant role in the strength capacity
of section and, consequently, the e�ect of buckling
on capacity would be remarkable. However, by
considering the e�ect of buckling, the value of ulti-
mate strength capacity recommended by ACI code
is highly acceptable, which conservatively estimates

exural capacity 17.5% less than the numerical
value;

� The e�ect of buckling is more signi�cant in esti-
mating the maximum 
exural capacity, which is
achieved in the presence of axial compressive load.
On the other hand, reduction in the capacity due
to increase in Ls is low because of the prerequisite
for buckling, which crushes the surrounding concrete
of the steel bars. Among the examined specimens,
changes of Ls from 5db to 50db lead to reduction,
from zero to 21%, in 
exural capacity. Moreover, the
di�erence is greater by increasing � and fy=fc. In
the presence of buckling e�ect, the ultimate strength
capacity proposed by the code is conservatively ac-
ceptable and it approximately estimates the 
exural
capacity of the section at least 20.9% less than the
numerical capacity;

� In the presence of pure axial force, the section is
completely under pressure and the required con-

dition for buckling is available, provided that the
surrounding concrete is crushed. These conditions
will be achieved when the strain in concrete cover
exceeds "C0 = 0:002. This situation means that
axial force is well tolerated and is away from the
possibility of buckling before this strain. If Ls
increases, the bar experiences this amount of strain
before buckling even if "b is too lower than the
aforementioned value. Changes of Ls between 5db
to 50db results in reduction from zero to 6% in axial
capacity. By increasing � and fy=fc, di�erences
will be less and more, respectively. The values of
nominal and ultimate strength capacity estimated
by the code are conservative and at least 26% and
56% less than the numerical values estimated with
the e�ect of buckling, respectively;

� Although deterrent restrictions in ACI code for the
occurrence of buckling e�ect are su�cient, if Ls
is considered to be exceeded, the reduction e�ects
of this factor on ultimate strength capacity are
not signi�cant and the estimated capacity with
the e�ect of buckling will not be less than the
ultimate strength capacity achieved by the method
of ACI code. In other words, ultimate strength
capacity with the e�ect of buckling gained by the
ACI code has su�cient factor of safety. However,
this factor of safety can just con�rm the bearing
capacity. Ductility and behavior of column section
after crossing the ultimate strength capacity are
signi�cantly related to Ls, which can intensify the
possibility of brittle fracture as well as resistance
drop ratio.
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