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Abstract. The use of arti�cial neural network in conjunction with arti�cial bee colony
algorithm is proposed as a method for performance and emissions optimization of an SI
engine. The case study here involves the oxygen enriched combustion of an SI engine fueled
with hydrous ethanol and gasoline. In this study, the engine was considered as a black
box and its performance and emissions were extracted experimentally at di�erent intake
air oxygen concentrations, hydrous ethanol injection rates, and ethanol concentration in
the hydrous ethanol mixture. Then, the simultaneous injection of hydrous ethanol and
oxygen enriched combustion was investigated to maximize the fuel conversion e�ciency
and minimize the CO and NOx emissions. Therefore, an objective function consisting
of both the emission and performance parameters was optimized using the Arti�cial Bee
Colony algorithm. The engine model used in this optimization process was obtained from
an Arti�cial Neural Network trained with experimental engine data. For operating speed
of 3000 rpm, the optimization results indicated 1.21% improvement in fuel conversion
e�ciency and 31.11% and 13.94% reduction in CO and NOx emissions, respectively. At
the speed of 2000 rpm, fuel conversion e�ciency improved by 4.11% and CO emission
decreased by 18.73%, while NOx concentration increased by 28.35%.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Considering the rising trend of energy consumption in
recent years and the limitation of the available energy
resources and climate change, it is crucial to control
and curb the utilization of energy. Road transportation
consumes a substantial portion of energy in the form
of fossil fuels; thus, it is necessary to improve the
e�ciency and fuel economy of vehicle engines. In
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addition, the fossil fuel reserves in the world are limited
and will be used up in the near future. Therefore,
the use of alternative fuels seems to be inevitable [1].
Alternative fuels such as hydrogen, natural gas, and
biofuels are considered as viable options for the trans-
portation industry to help it reduce its dependency on
fossil fuels [2].

In addition, current strong restrictions on emis-
sions from road transportation along with the growing
public awareness of the environmental and health
impacts of exhaust emissions from vehicles have ne-
cessitated the use of biofuels such as ethanol [3]. Bio-
ethanol is an alternative fuel, which can be produced
from various kinds of biomass, such as corn, cassava,
sugarcane, sugar beet, and red seaweed, making it a
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desirable alternative fuel. It can contribute to the
reduction in greenhouse gases from energy conversion
systems [4]. One of the extensively utilized methods in
this regard is to blend gasoline with ethanol, which has
few drawbacks, such as the phase separation of ethanol-
gasoline blend [5,6]. Recently conducted researches
have demonstrated that gasoline blended with mid-
level hydrous ethanol makes an appropriate fuel for
utilization in internal combustion engines [7]. A com-
parison between mid-level (0-40% volumetric concen-
tration of water) hydrous ethanol-gasoline blend and
anhydrous gasoline-ethanol blend can be found in the
research done by Schifter et al. [6]. Low NOx emission
was reported using the hydrous ethanol-gasoline blends
compared to the anhydrous ethanol-gasoline blend.
Other studies have con�rmed low NOx emissions for
60:40 gasoline-ethanol-10% hydrous (E40h) compared
to 60:40 gasoline-anhydrous ethanol (E40) [8]. The
aforementioned results indicate that the water content
of hydrous ethanol lowers the peak temperature and
slows the combustion rate, resulting in reduced NOx
emissions. The performance and emissions of a blend
of water-ethanol (containing 96.2% ethanol) have been
compared with those of gasoline; higher NOx emis-
sion was reported for hydrous ethanol [9]. This was
attributed to a faster 
ame speed, which produced
a higher peak pressure and, therefore, a higher peak
temperature in the combustion process. However, there
are some discrepancies in the literature on the e�ect of
ethanol on NOx emissions of SI engines [10], and there
are a number of other studies that have demonstrated
a reduction in NOx emissions using ethanol gasoline
blends [11-14]. This has been attributed to high heat
of vaporization of ethanol compared to gasoline, which
decreases the charge temperature and reduces thermal
NOx formation [15].

1.1. Motivation and related works
The concept of oxygen enrichment of the intake air
as a method of enhancing combustion in engines has
been investigated for a long time [16,17]. One method
to control the oxygen concentration is to inject the
pure oxygen from a gas cylinder into the intake of the
engine. Recently, with progress in materials science,
the application of permeable membrane to separate air
(separate oxygen from nitrogen in the intake air) and
get oxygen-enriched intake for engine has been taken
into consideration as an alternative approach. The
polymer membranes with selectivity and permeability
can produce higher oxygen concentrations in the intake
air [18]. By means of membrane separation technology,
up to 35% oxygen concentration in the intake air can
be achieved and is reported in the literature [19].
By development of practical applications for oxygen-
enriching membranes, the results of this paper can be
employed in conventional SI engines.

An e�ective method that can be employed to
reduce the overall fuel consumption is the oxygen
enrichment of combustion air, which cuts the amount
of nitrogen in the 
ue gas, hence reducing the heat loss
through the exhaust gas [20]. On the other hand, the
oxygen enrichment of the intake air leads to a leaner
combustion, which increases the amount of nitrogen
oxides in the exhaust gas [21]. However, water content
of ethanol could be employed to e�ectively counteract
the impact of OEC on NOx emissions [22]. It seems
that the enrichment of oxygen along with some other
parameters (e.g., water content of ethanol, and hydrous
ethanol injection rate) could be regulated in such a
controlled way that the desired engine output parame-
ters are obtained; this is the main focus of this study.
This study aims to balance these opposing e�ects, and
�nd an optimum condition of engine operation with
improved performance and reduced emissions. Firstly,
the e�ect of oxygen enrichment and di�erent 
ow rates
of hydrous ethanol on engine performance (BSFC,
BMEP, fuel conversion e�ciency, volumetric e�ciency,
relative air to fuel ratio, brake output torque, and
combustion e�ciency) and emission (CO, CO2, NOx,
and HC) is investigated in this study. Secondly, the
optimum values of oxygen concentration, volumetric
concentration of ethanol in the ethanol-water blend,
and its 
ow rate are found to minimize the NOx
and CO emissions and the BSFC. The optimization
algorithm we have used is a swarm intelligence based
one, namely, ABC algorithm, which requires numerous
sample data from the system. Therefore, an ANN is
utilized as a virtual model for the engine to provide the
optimization process with an estimate of engine per-
formance and emissions parameters. Related studies
that have used ANN to predict engine performance and
exhaust emissions include studying the performance
and exhaust emissions of a diesel engine [23]; devel-
oping correlation among torque, brake power, BSFC,
volumetric e�ciency, and exhaust emissions [24]; and
predicting the engine brake power, torque, and the
exhaust emissions [25]. Other related works include
those that have focused on the use of optimization
methods in engine improvement [26-28]. In this regard,
Kesgin has employed the Genetic Algorithm (GA) and
neural networks to predict the e�ects of design and
operational parameters on engine e�ciency and NOx
emissions of a natural gas engine [26].

1.2. Study procedure
The overall 
owchart of this study is depicted in
Figure 1. The process started by de�ning the design
space and the range of inputs. Then, a representative
data set (including 16 distinct cases) was produced,
using which the outputs were obtained experimentally
for each case. Then, di�erent training algorithms and
network architectures were compared to �nd the most



198 B. Beigzadeh et al./Scientia Iranica, Transactions B: Mechanical Engineering 25 (2018) 196{207

Figure 1. Overall 
owchart of study procedure.

appropriate one to model the behavior of the tested
engine. Thereafter, the experimental data were used
to train the selected ANN, which was employed by
the ABC algorithm to obtain the required data for the
optimization process. Finally, the optimum operation
condition was obtained.

2. Experimentation

2.1. The experimental setup
A KIA four-cylinder, four-stroke, naturally aspirated,
SOHC engine with displacement volume of 1323 cc
was taken as the case study. Tables 1 and 2 list
the general speci�cations of the engine and the fuel
properties, respectively. Torque measurements were
done by means of a 200 kW Schenk-WT eddy-current
dynamometer. Thermocouples were used to obtain the

Table 1. General speci�cations of the tested engine.

Engine type 4-cylinder, in-line, 8-valve
Displacement volume (cc) 1323
Bore � stroke (mm) 71� 83:6
Valve mechanism SOHC
Compression ratio 9.7:1
Combustion order 1-3-4-2
Maximum torque (Nm/rpm) 120/3000
Maximum power (kW/rpm) 47/5500
Maximum speed (rpm) 6000

inlet and outlet cooling water temperatures as well as
the temperatures of oil and exhaust gases. The oil
pressure was also measured using a pressure probe.
The fuel consumption was determined using a laser
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Figure 2. Schematic diagram of the experimental setup.

Table 2. Gasoline and ethanol characteristics.

Fuel property Gasoline Ethanol

Density (kg/m3) 740 785
Lower heating value (MJ/kg) 41.86 25.12
Research octane number 85.3 108.6
Stoichiometric air-to-fuel ratio 14.7 9
Speci�c heat (kJ/kg K) 1.98 2.42


ow meter, and the intake air 
ow was measured
by a Venturi-type 
ow meter. The schematic of the
experimental setup is demonstrated in Figure 2. Post
catalyst gas species (O2, CO, CO2, NO, NOx, HC)
and stoichiometric ratio were measured using a KIMO
KIGAZ 300 STD combustion gas analyzer.

In this study, the intake oxygen concentration
was increased by introducing pure oxygen from an
oxygen cylinder into the intake of the engine to provide
sustained and stable oxygen gas. Two injection systems
were designed and utilized in order to homogenously
inject the hydrous ethanol and oxygen into the intake
port at speci�ed 
ow rates. The ignition timing was
kept constant at each speed and load point, and the
engine speed was constant throughout each series of
experiment (at 2000 and 3000 rpm). In addition, the
closed loop air fuel ratio was not used to allow the air
fuel ratio to change by implementing OEC and hydrous
ethanol injection.

2.2. Measurement procedure
In the �rst step, the performance and emission charac-
teristics of the engine were extracted using a standard
E0 gasoline fuel. Thereafter, series of experiments were
performed for di�erent conditions of input parameters
including ethanol concentrations in the water-ethanol

blend, hydrousethanol 
ow rate, and oxygen 
ow
rates. The experiments were designed based on a Box-
Behnken sampling algorithm [29]; these conditions are
listed in Table 3. The upper limits for levels of oxygen,
water, and ethanol mass 
ow rates were set by consid-
ering the stable operation of the engine; operating the
engine with higher levels caused unstable combustion
and, in some cases, engine stall under WOT condition.
All of the experiments were performed for two di�erent
speeds (i.e., 2000 and 3000 rpm) at WOT. In each case,
the injection systems were set to the desired points and
the engine was run for a su�cient time to consume
the remaining fuel of the previous case and reach
steady state operation. Afterwards, variables such as
the output torque, cooling water, oil and exhaust gas
temperatures, fuel consumption rate, oil and intake
air pressures, and the concentration of exhaust species
were recorded.

2.3. Uncertainty analysis
A �rst-order uncertainty analysis was performed using
the constant odds combination method, based on a
95% con�dence level, as described by Mo�at [30]. Un-
certainty of each measured parameter was calculated
based on the instrument characteristics and the mea-
surement dispersion. The uncertainty of each measured
variable in each case of experiment is depicted in the
error bars of output parameters.

3. Arti�cial neural network

The ANN is an e�ective method for the prediction
of a system's behavior based on the experimental
data. The performance of the ANN-based predictions
is evaluated by the regression analysis of the network
outputs (predicted parameters) and the experimental

Table 3. Input parameters in each experimental case.

Case
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Oxygen (ml/s) 0 157.3 368.25 562.3 0 0 0 0 157.3 157.3 368.25 368.25 562.3 562.3 368.25 368.25
Ethanol (ml/s) 0 0 0 0 0 0 0.1837 0.3 0 0 0 0 0 0 0.1837 0.3
Water (ml/s) 0 0 0 0 0.612 1 0.4286 0.7 0.612 1 0.612 1 0.612 1 0.4286 0.7
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values [31,32]. The criterion for performance evaluation
of the ANN is the absolute fraction of variance, which
is:

R2 = 1�

0BBB@
NsP
j=1

(aj � POj)2

NsP
j=1

(aj)2

1CCCA ; (1)

Mean Error Percentage (MEP):
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1
Ns

NsX
j=1

����100� (aj � POj)
aj

���� ; (2)

and the Root Mean Square Error (RMSE):

RMSE =

vuuut NsP
j=1

(aj � POj)2

Ns
; (3)

where a is the actual output, PO the predicted output,
and Ns the number of points in the data set [31,32].

In this study, an ANN model was employed to
establish a correlation between the input parameters
and the engine performance and emissions as the
output parameters. The general architecture of the
ANN is a multi-layer perceptron with one hidden layer
demonstrated in Figure 3. Inputs include intake air
oxygen concentration, hydrous ethanol 
ow rate, and
the ethanol concentration in the blend. Outputs of the
ANN are NOx and CO concentrations in exhaust gases
and �f .

Feed-forward back-propagation algorithm was
used in conjunction with a hyperbolic tangent sigmoid
(tansig) activation function for the hidden layer and
a linear (purelin) function for the output layer in the
ANN development process [3]. Four distinct learning
algorithms including the trainbfg, trainscg, trainlm,
and trainrp with NoN in the range of 10 to 28
neurons [23] were used and compared to select the most
accurate con�guration of the ANN. From the whole set
of experimental data, 70% were set aside for training,
15% for validation, and 15% for testing during the ANN
development and optimization.

4. Optimization

In order to obtain the optimum input parameters of the
engine, an optimization algorithm (ABC algorithm)
was employed to minimize the following objective
function:

OF = KE�F +KNENOx +KCECO; (4)

where KE , KN , and KC are weights corresponding
to the fuel conversion e�ciency, NOx emission, and
CO emission, respectively, and the search space can
be de�ned in terms of the input parameters. The
only constraints of the optimization problem are the
physical input limitations. The Arti�cial Bee Colony
(ABC) algorithm, which has been used in this study,
is a swarm intelligence-based algorithm that has shown
an acceptable performance in terms of reliability, accu-
racy, and convergence speed [33,34]. The ABC has an
iterative behavior, so it needs to evaluate the output
of the engine repeatedly. We used ANN as a meta
model to provide ABC with the required data. Each
time the ABC needed to acquire data from ANN, the
network was run �fty times and the outputs average
was considered as the input to the ABC; it guaranteed
the accuracy and reliability of the network output.

5. Results and discussion

5.1. Performance and emission characteristics
5.1.1. Brake torque
Figure 4 indicates the brake torque for each experimen-
tal case at 2000 rpm (mid-range speed of the engine)
and 3000 rpm (the speed of maximum torque output).
The results demonstrate that an increase in the oxygen

ow rate leads to a considerable increase in the output
torque. The increase in the output torque can be
attributed to the increase in oxygen percentage in the
intake charge, which raises the average temperature
and the mean e�ective pressure in the combustion
chamber. Furthermore, it is observed that the water
content in the hydrous ethanol leads to a decrease in
brake torque, which can be attributed to diminished
IMEP as a result of reduced 
ame temperature and

Figure 3. The general architecture of the ANN.
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Figure 4. Measured output torque and the corresponding
error bar.

lower 
ame propagation speed that necessitates an
advance in spark timing to achieve the maximum
torque. It should be mentioned that this observation
is mainly due to the operation under constant ignition
timing at each rpm and load point, not necessarily the
optimal ignition timing for the case of water injection.

Ethanol has a higher heat of evaporation than
gasoline has; this provides cooler and denser fuel-air
intake charge, and thus a higher output torque is
produced [35]. It also increases the knock resistance
of the air-fuel mixture. The outcome is equivalent
to having a fuel with a higher octane number, which
will support much larger compression ratios before the
onset of ignition [36-40]. When the engine is operated
in knock limited conditions, both water and ethanol
can suppress knock and enable the engine to run with
optimal ignition timing to achieve the maximum torque
and BTE [41].

5.1.2. Fuel conversion e�ciency and BSFC
The fuel conversion e�ciency can be calculated by
Eq. (5), which demonstrates the ratio of the work
produced per cycle to the amount of fuel energy sup-
plied per cycle that can be released in the combustion
process [42]:

�F =
P

_mfQHV
: (5)

Figure 5 shows the fuel conversion e�ciency for
each experimental case at engine speeds of 2000 and
3000 rpm. The results indicate that with increase in
the intake air oxygen content, the thermal e�ciency
increases and, consequently, the BSFC diminishes ac-
cording to Eq. (6):

BSFC =
_mf

P
: (6)

Since the air fuel ratio was not closed-loop controlled,
oxygen enrichment led to a leaner and more com-
plete combustion with higher values of relative air-to-
fuel ratio (�). Furthermore, the oxygen enrichment

Figure 5. Fuel conversion e�ciencies in each
experimental case.

reduced the amount of nitrogen in the exhaust gas,
which contributed to lower thermal losses through the
exhaust [20]. On the other hand, it was observed
that an increase in the oxygen content resulted in a
higher temperature di�erence between the outlet and
inlet cooling waters. This observation was a result
of a higher adiabatic 
ame temperature of oxygen
enriched combustion, which increased the amount of
heat 
ux to cylinder walls. The value of fuel conversion
e�ciency is obtained through a balance between the
abovementioned factors.

It was observed that the thermal e�ciency had
an increasing trend as the ethanol content increased.
Since ethanol had a higher 
ame speed and lower
combustion temperature, it reduced the amount of
heat loss to cylinder walls and, thus, enhanced the
thermal e�ciency [9]. Another e�ect was caused by
the vaporization of fuel, which continued during the
compression stroke. This had two opposing e�ects;
�rst, decrease in the temperature of the working charge,
which reduced the compression work, and, second,
increase in the volume charge, which increased the
compression work. The heat of vaporization of ethanol
is higher than that of gasoline, which increases the
cooling e�ect and reduces the compression work and,
hence, enhances the brake thermal e�ciency [43].

Water content has shown to have a reducing e�ect
on thermal e�ciency. It was observed that water
reduced the 
ame temperature and, hence, the heat

ux to cylinder walls. In addition, water absorbed
the heat and lowered the pressure as the charge was
compressed, thereby reducing the work of the com-
pression stroke [44]. However, thermal loss through
exhaust gases increases signi�cantly due to the vapor
content of these gases. In addition, water reduces the

ame speed, which necessitates a change in ignition
timing to optimal combustion phasing and maximum
BTE [45,46]. Since the ignition timing was �xed at
each rpm in this work, the combustion phasing was
not optimum for the case of water injection.
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Figure 6. Volumetric e�ciencies according to
Relation (7).

5.1.3. Volumetric e�ciency
The volumetric e�ciency for the test engine is calcu-
lated by:

�v =
2 _ma

�a;iVdN
; (7)

where _ma is the mass 
ow rate of air induced into the
cylinder, which is calculated using:

_ma =
AEp0p
RT0

8<: 2


 � 1

24� p
p0

� 2

�
�
p
p0

� (
+1)



359=;
1=2

:
(8)

The e�ect of di�erent input parameters on the vol-
umetric e�ciency is depicted in Figure 6. It is
shown that the injection of hydrous ethanol results
in a lower fuel-air mixture temperature in the intake
manifold due to the evaporation of water and ethanol.
This increases the charge density and, therefore, the
volumetric e�ciency. The volumetric e�ciencies for
Cases 1, 5, and 7 at 2000 rpm were 85.8%, 87.44%, and
88.50%, respectively. The oxygen enrichment did not
show any considerable e�ect on volumetric e�ciency.

5.1.4. Combustion e�ciency
The combustion e�ciency is calculated by Eq. (9):

�v =

_ma

 P
i;Reactants

ni��h0
f;i � P

i;Products
ni��h0

f;i

!
_mfQHV

:
(9)

The combustion e�ciency is calculated for each case
and depicted in Figure 7. For cases in which ethanol is
injected, its heating value is added to the denominator
of Eq. (9). It is observed that with oxygen enrichment,
the combustion e�ciency increases, mainly because
of a leaner and more complete combustion [40]. For
instance, at 2000 rpm, the combustion e�ciency in

Figure 7. Combustion e�ciency of all cases according to
Relation (9).

Case 1 is 90.85%, and through a mid-level oxygen en-
richment in Case 3, the combustion e�ciency increases
to 91.31%. However, the use of oxygen enrichment
in some cases results in a lower value of combustion
e�ciency, as observed in Case 2 with a combustion
e�ciency of 90.73%. This is due to a higher 
ame
temperature and, thus, a higher fraction of CO, which
is considered as a partly burnt fuel in the exhaust gas.

It was observed that water injection could be
e�ectively utilized to counteract the temperature in-
creasing e�ect of oxygen. The best values of combus-
tion e�ciency were obtained in Case 12 (93.78%) and
Case 14 (93.59%) in which both water and oxygen were
injected.

In this study, the AF ratio was not closed-loop
controlled; therefore, injection of ethanol into the
intake air led to a richer charge, which increased
the amount of unburnt or partially oxidized HC and
diminished the combustion e�ciency. For instance,
combustion e�ciencies of 89.75% and 89.13% were
obtained in Cases 7 and 8, respectively. Contrary
to these results, when a closed-loop control system is
employed to maintain stoichiometric combustion, the
use of ethanol as an oxygenated fuel is expected to
improve the combustion e�ciency [47].

5.1.5. NOx emissions
Figure 8 depicts NOx emissions in di�erent experi-
mental cases. The water content in the water-ethanol
blend lowers the peak temperature, thereby reducing
the NOx emissions [37]. Cases 5 and 6 (which have
water injection) indicate relative reductions of 10.4%
and 25.3% in NOx emissions, respectively. The ethanol
content itself demonstrated a decrease in NOx emis-
sion; this observation is consistent with some of the
previous studies [10-14] and is primarily due to high
heat of vaporization of ethanol compared to gasoline,
which decreases the charge temperature [15].

The injection of oxygen results in an oxygen
enriched combustion, which increases the peak tem-
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Figure 8. Brake speci�c NOx emissions.

perature and �, thereby increasing the NOx formation
in the combustion chamber [21]. Cases 2, 3, and 4
demonstrate 18.5%, 63.8%, and 117.4% increases in
NOx emissions, respectively, at 2000 rpm.

5.1.6. CO emission
The most in
uential parameter on CO emission is the
relative air-fuel ratio [35]. As indicated in Figure 9,
which illustrates the CO emissions in each case, the ad-
dition of oxygen mostly has reducing e�ect on CO con-
centrations; yet, some cases exhibit slightly increased
CO values. Oxygen injection makes the combustion
leaner; thus, a lower CO concentration is expected. On
the other hand, it raises the 
ame temperature, which
increases the equilibrium concentration of CO [48]. By
comparing Cases 2, 3, and 4 (at 2000 rpm), with
respective CO concentrations of 2.08%, 1.88%, and
1.79%, it is obvious that the increase in the oxygen
injection rate reduces the CO emission.

Water injection mostly lowers the CO emission,
for it leads to lower 
ame temperatures. On the
other hand, the addition of hydrous ethanol increases
the CO concentrations, since it contributes to a lower
�. Cases 7 and 8 have CO concentrations of 2.31%
and 2.45%, respectively, which demonstrates 11.6%

Figure 9. Brake speci�c CO emission.

Figure 10. Brake speci�c CO2 emission.

and 18.4% increase with respect to standard operation
condition (Case 1).

5.1.7. CO2 emission
The amount of CO2 mainly depends on the air-to-fuel
ratio and the formation of CO [35,49]. CO2 concentra-
tion for each case has been depicted in Figure 10. It
was observed that oxygen injection had both increasing
and decreasing e�ects on CO2 concentration in di�erent
situations. The addition of oxygen makes a leaner and
more complete combustion, which should increase the
CO2 concentration. On the other hand, it leads to
higher 
ame temperatures, which would increase the
CO concentration and, consequently, lower the amount
of CO2. Thus, CO2 concentration is a compromise
between the abovementioned factors. In some cases,
where only oxygen was injected, it was observed that
CO2 concentration chie
y decreased. For instance,
Case 2 had a CO2 emission of 11.5%, which was less
than the 11.6% CO2 concentration in Case 1. On the
other hand, in cases in which the 
ame temperature is
reduced by water injection, oxygen injection increases
the CO2 emission, like in Cases 5, 9, and 11, with 11%,
11.2%, and 11.4% concentrations of CO2, respectively.

Water injection alone has a decreasing e�ect on
CO2 concentration. Although it reduces the 
ame
temperature and shifts the equilibrium in favor of
CO2, water vapor dilutes the exhaust gases and, hence,
reduces the volumetric concentration of CO2.

The injection of hydrous ethanol resulted in high
CO2 concentrations in comparison with pure water
injection. This was demonstrated by Cases 5 and 7,
with 11% and 11.6% CO2 concentrations, respectively.

5.1.8. Relative air-to-fuel ratio (�)
Figure 11 illustrates � in each case. The cases with
oxygen enrichment had a relatively leaner combustion;
for instance, the values of � in Cases 2, 3, and 4
were 1.01, 1.05, and 1.09, respectively. On the other
hand, the ethanol content in cases with hydrous ethanol
injection resulted in a richer combustion, because no
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Figure 11. Relative air-to-fuel ratio.

feedback was provided for fuel system of the engine in
these cases. The values of � in Cases 7 and 8 were 0.92
and 0.88, respectively.

5.2. ANN training and optimization results
As can be seen in Table 4, di�erent training algorithms
with di�erent numbers of neurons (as discussed in
Section 3) were evaluated based on three criteria (i.e.,
Eqs. (1)-(3)). The results showed that the training
algorithm trainlm with 24 neurons in hidden layer
had the best performance. Thus, it was chosen as the
engine model to be used in the optimization process.
The priority of each input parameter in the cost
function (Eq. (4)) could be determined by changing
the corresponding constants KE , KN , and KC . As
it was discussed in the previous sections, reducing the
exhaust emissions results in reduction in �f . Here, the
mentioned constants were selected in a way that no
more than 2% reduction in �f was allowed to obtain
reduced exhaust emissions. Then, we chose:

KE = �800; KN = 8; KC = 2: (10)

Then, the optimization process was run for the input
parameters within the ranges listed in Table 5.

The results are tabulated in Table 6; optimization
results and experiments indicate that at the maximum
torque speed (i.e., 3000 rpm in this case), both the
performance and emissions, are improved, while at a
mid-range speed, i.e. 2000 rpm, the performance and
CO emission are improved at the expense of slightly
increased NOx emissions.

6. Conclusion

The main objective of this study was to demonstrate
the potential of Arti�cial Neural Networks as a meta-
heuristic model to predict the behavior of IC engines,
and the use of Arti�cial Bee Colony as a swarm
intelligence based algorithm to optimize engine per-
formance and emissions. As a case study, oxygen
enriched combustion was employed to improve the
performance and emissions of an SI engine fueled with
gasoline and hydrous ethanol. The engine was tested
at di�erent rates of hydrous ethanol injection in intake
port, ethanol concentrations, and intake air oxygen
concentrations. The engine test results demonstrated
that injecting hydrous ethanol in the intake port
of an SI engine led to higher volumetric e�ciency,

Table 5. Range of input parameters for optimization.

Parameter Range

Hydrous ethanol 
ow rate ( _mHE) 0-1.3 ml/s
Ethanol concentration in
the hydrous ethanol (CE)

0-30 %

Intake air oxygen concentration (CO2) 21-24.25 %

Table 4. Di�erent ANN setups and training algorithms.

Learning
algorithm

trainlm trainrp trainscg trainbfg

NoN R2 MEP
(%)

RMSE R2 MEP
(%)

RMSE R2 MEP
(%)

RMSE R2 MEP
(%)

RMSE

10 0.9839 3.6976 27.9901 0.9619 9.9328 66.4089 0.9758 16.1983 58.3485 0.9499 15.3753 60.49
12 0.9909 1.9962 18.4177 0.9736 9.592 57.2892 0.9749 15.781 54.8397 0.9315 17.9094 78.2368
14 0.9854 3.523 27.8613 0.9628 10.8818 63.5825 0.9838 15.2527 43.8606 0.9537 16.39 58.5733
16 0.9886 2.5121 26.1302 0.9798 9.0384 50.2893 0.9620 15.9552 51.738 0.9806 14.7625 42.632
18 0.9905 1.7666 22.7058 0.9576 10.1759 57.8719 0.9811 16.2088 48.384 0.9699 16.454 54.141
20 0.9903 2.4607 24.0985 0.9703 9.6016 55.8838 0.9733 16.3098 48.8909 0.9800 16.1211 45.8868
22 0.9917 2.2028 24.6576
24 0.9949 1.709 18.7293
26 0.9933 1.7598 20.3856
28 0.9484 3.6104 43.502
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Table 6. Optimization results.

Condition N (rpm) _mHE (ml/s) CE (%) CO2 (%) �f (%) NOx (ppm) CO (%)

Initial 2000 0 0 0 24.53 602 2.07
3000 0 0 0 24.11 803 3.83

Optimized 2000 0.35 22.5 23.92 25.54 772 1.68
3000 0.94 12.3 22.36 24.40 691 2.46

slightly higher fuel conversion e�ciency, higher CO,
and lower NOx emissions. On the other hand, the
oxygen enrichment of intake air did not a�ect the
volumetric e�ciency, substantially increased the fuel
conversion e�ciency and NOx emissions, and in most
of cases reduced the CO. The behavior of the engine
was modeled by training a meta-heuristic model (ANN)
using the experimental data. This model was then
used in conjunction with an optimization algorithm to
optimize the engine performance and emissions simul-
taneously. Both the optimization and experimental
results demonstrated that at the maximum torque
speed, 3000 rpm in this case, both the performance
and emissions were improved, while at a mid-range
speed, 2000 rpm, the performance was improved and
the CO emission was reduced at the expense of slightly
increased NOx emissions.

Nomenclature

SI Spark Ignition
ABC Arti�cial Bee Colony
ANN Arti�cial Neural Network
_mf Mass 
ow rate of fuel (kg/s)

OEC Oxygen-Enriched Combustion
BTE Brake Thermal E�ciency
BSFC Brake Speci�c Fuel Consumption

(g/kWh)
QHV Heating Value of fuel (kJ/kg)
SOHC Single overhead camshaft
P Brake power (kW)
�f Fuel conversion e�ciency
_ma Mass 
ow rate of air induced into the

cylinder
�a;i Inlet air density (kg/m3)
�v Volumetric e�ciency
N Engine speed (rpm)
Vd Displacement volume of the cylinder

(m3)



�

=
cp
cv

�
Ratio of speci�c heats

R Gas constant

T0 Temperature upstream of the
restriction

p0 Total pressure upstream of the
restriction

AE Flow restriction e�ective area
p Pressure at the throat of the restriction
�c Combustion e�ciency
� Relative air-to-fuel ratio
_mx Mass 
ow rate of pollutant x (g/s)
ni Number of moles of species i in the

reactants or products per unit mass of
working 
uid

�h0f;i Standard enthalpy of formation of
species i at ambient temperature

MEP Mean Error Percentage
RMSE Root Mean Square Error
R2 Absolute fraction of variance
Ns Number of the points in the data set
A Actual output
PO Predicted Output
NoN Number of hidden layer Neurons
trainbfg BFGS quasi-Newton back-propagation
trainscg Scaled conjugate gradient back-

propagation
trainlm Levenberg-Marquardt back-

propagation
Trainrp Resilient back-propagation
tansig Hyperbolic tangent sigmoid
purelin Linear
WOT Wide Open Throttle
CO2 Intake air oxygen concentration
CE Ethanol concentration in the hydrous

ethanol
_mHE Hydrous ethanol 
ow rate
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