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Abstract. Di�erent approaches are utilized for dynamic analysis of concrete gravity
dam-reservoir systems. The rigorous approach to solving this problem employs a two-
dimensional semi-in�nite 
uid element (i.e., hyper-element). Recently, a technique has
been proposed to perform the dynamic analysis of dam-reservoir systems in the pure �nite-
element programming context, referred to as the wavenumber approach. Of course, certain
limitations have been imposed on the reservoir base condition in the initial form of this
technique to simplify the problem. However, this is presently discussed for the general
reservoir base condition, contrary to the previous study which was merely limited to the
fully re
ective reservoir base case. In this technique, the wavenumber condition is imposed
on the truncation boundary or the upstream face of the near-�eld water domain. The
method is initially described. Subsequently, the response of an idealized triangular dam-
reservoir system is obtained by this approach, and the results are compared against those
of the exact response. Based on this investigation, it is concluded that this approach can be
envisaged as a great substitute for the rigorous type of analysis under the general reservoir
base condition.

© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Dynamic analysis of concrete gravity dam-reservoir
systems can be carried out rigorously by FE-(FE-HE)
method in the frequency domain. This means that the
dam is discretized by plane solid �nite elements, while,
the reservoir is divided into two parts: a near-�eld
region (usually an irregular shape) in the vicinity of
the dam and a far-�eld part (assuming uniform depth)
which extends to in�nity in the upstream direction.
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The former region is discretized by plane 
uid �nite
elements and the latter part is modelled by a two-
dimensional 
uid hyper-element [1-3]. It is well-known
that employing 
uid hyper-elements would lead to
the exact solution of the problem. However, it is
formulated in the frequency domain and its application
in this �eld has led to many special purpose programs,
which are demanding from the programming point of
view.

On the other hand, engineers have often managed
to solve this problem in the context of pure �nite-
element programming (FE-FE method of analysis). In
this approach, an often simpli�ed condition is imposed
on the truncation boundary or the upstream face of
the near-�eld water domain. Thus, the 
uid hyper-
element is actually excluded from the model. Some of
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these widely used simpli�ed conditions [4,5] may result
in signi�cant errors if the reservoir length is small,
and it might lead to high computational cost if the
truncation boundary is located at far distances. The
main advantage of these conditions is that it can be
readily used for time domain analysis. Thus, they
are vastly employed in nonlinear seismic analysis of
concrete dams.

Of course, many studies in the last three decades
have developed more accurate absorbing boundary
conditions to apply to similar 
uid-structure or soil-
structure interaction problems. Perfectly matched
layers [6-11] and high-order non-re
ecting boundary
condition [12-18] are among the two main popular
groups of methods which researchers have applied in
their attempts. It is emphasized that these techniques
have become very popular in recent years because they
could be applied to the time and frequency domains.
However, it should be realized that they are not very
attractive in the frequency domain. This is well
understood that they are not very simple to use and,
more importantly, they are compared with the hyper-
element alternative which produces exact results, no
matter how small the near-�eld reservoir length is.

In the present study, the FE-FE analysis tech-
nique is employed as the basis of the proposed method
for dynamic analysis of the concrete dam-reservoir
system in the frequency domain, which is referred to as
the wavenumber approach. The method simply applies
an absorbing boundary condition on the truncation
boundary which is referred to as the wavenumber
condition. It is as simple as employing the Sommerfeld
or Sharan condition on the truncation boundary. It
should be mentioned that this is an extension and
generalization of a previous study which was merely
limited to the fully re
ective reservoir base case [19,20].
This is presently discussed for the general reservoir base
condition.

In the following sections of the article, the method
of analysis is initially explained. Subsequently, the
response of an idealized triangular dam is studied due
to the horizontal ground motion for several alternatives
employed as an absorbing boundary condition. In each
case and regarding the proposed option, the results
are compared against the exact solution. The results
are provided for the medium- and short-sized reservoir
lengths. Moreover, both fully re
ective and absorptive
reservoir base conditions are studied.

2. Method of analysis

As mentioned, the analysis technique utilized in this
study is based on the FE-FE method, which is applica-
ble to a general concrete gravity dam-reservoir system.
The coupled equations can be obtained by considering

each region separately and, then, combining the result-
ing equations.

2.1. Dam body
Concentrating on the structural part, the dynamic
behavior of the dam is described by the well-known
equation of structural dynamics [21]:

M�r + C _r + K r = �M J ag + BT P; (1)

where M, C, and K in this relation represent the
mass, damping, and sti�ness matrices of the dam
body. Moreover, r is the vector of nodal relative
displacements, J is a matrix with each of two rows
being equal to a 2 � 2 identity matrix (its columns
correspond to a unit of horizontal and vertical rigid
body motions), and ag denotes the vector of ground
accelerations. Furthermore, B is a matrix which relates
vectors of hydrodynamic pressures (i.e., P) and their
equivalent nodal forces.

Let us now consider harmonic excitation with fre-
quency ! and limit the present study to the horizontal
ground motion only. It is well known that the response
will also behave harmonically (i.e., r(t) = r(!)ei!t).
Thus, Eq. (1) can be expressed as follows:��!2 M + (1 + 2� i) K

�
r=�M J ahg + BT P: (2)

In this relation, it is assumed that the damping matrix
of the dam is of hysteretic type. This means that:

C = (2�=!) K: (3)

Moreover, it should be emphasized that superscript h
on the acceleration vector refers to the horizontal type
of excitation. That is:

ahg =
�
axg
0

�
: (4)

2.2. Water domain
Assuming that water is linearly compressible with
intentional disregard for its viscosity, its small irro-
tational motion (Figure 1) is governed by the wave
equation [22,23]:

@2p
@x2 +

@2p
@y2 � 1

c2
�p = 0 in 
 and D; (5)

where p is the hydrodynamic pressure, and c is the pres-
sure wave velocity in water. The boundary conditions
for reservoir's surface and bottom are as follows:

p = 0 on the water surface; (6a)

@p
@n

= �� ang � q _p at the reservoir's bottom: (6b)

Herein, � is the water density, and n denotes the
outward (with respect to 
uid region) perpendicular
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direction at the reservoir's bottom. Moreover, the
admittance or damping coe�cient q utilized in the
above equation may correspond to a more meaningful
wave re
ection coe�cient � [24]:

� =
1� q c
1 + q c

; (7)

which is de�ned as the ratio of the amplitude of the
re
ected hydrodynamic pressure wave to the amplitude
of a vertically propagating pressure wave incident on
the reservoir bottom. For a fully re
ective reservoir's
bottom condition, � is equal to 1 which leads to q = 0.

One can apply the weighted residual approach
to obtaining the �nite-element equation of the 
uid
domain, which may be written as follows:

Ge�Pe + HePe = Re; (8)

with the following de�nitions:

Ge =
1
� c2

Z

e

N NT d
; (9a)

He =
1
�

Z

e

�
NxNT

x + NyNT
y
�

d
; (9b)

Re =
1
�

I
�e

N (@np) d�e; (9c)

where N is the vector of element's shape functions, and
Nx, Ny denote its partial derivatives with respect to x,
y, respectively. It is also worthwhile to emphasize that
superscript (e) states that these matrices are related to
the element level. Directional derivative @np in Eq. (9c)
can take three forms on di�erent boundaries of the
reservoir (Figure 1):

� On the upstream boundary of the reservoir (�I):
One can apply di�erent absorbing boundary con-
ditions which will be discussed in the next section.

Figure 1. Schematic view of a typical dam-reservoir
system. The near-�eld reservoir domain, 
, truncation
boundary, �1, and far-�eld region, D (excluded in the
FE-FE type of analysis).

� At the bottom of the reservoir (�II), one can utilize
Eq. (6b) as mentioned previously:

@np = �� ang � q _p: (10a)

� On the dam-reservoir interface (�III):

@np = �� �un; (10b)

where �un is the total acceleration of 
uid particles
normal to the dam-reservoir interface. It is also
noted that there must be acceleration compatibility
between the 
uid and solid particles in that direc-
tion.

In general, an element may have all the three above-
mentioned boundary condition types. Thus, one can
write Re vector as follows:

Re = Re
I + Re

II + Re
III: (11)

Of course, it is possible that some of these boundary
condition types are not applied to a certain element,
which that part should be eliminated for that speci�c
element. It is easily shown that one would obtain the
following relations by utilizing Eqs. (10a) and (10b) in
Eq. (9c), respectively:

Re
II = �Be

II Jeahg � qLeII _Pe; (12a)

Re
III = �Be

III (�re + Jeahg ); (12b)

with the following de�nitions:

Be
i =

Z
�ei

N nTNT
s d�e; i 2 fII ; IIIg ; (13a)

LeII =
1
�

Z
�eII

N NTd�e: (13b)

Herein, n represents a unit outward normal vector.
Moreover, Ns is the matrix of adjacent solid element
shape functions utilized to interpolate accelerations in
horizontal and vertical directions. It is worthwhile to
mention that, from a practical standpoint, the values of
non-zero solid and 
uid shape functions are essentially
equal on the common 
uid-solid interface. Substituting
Eqs. (12a) and (12b) into Eq. (11) will result in:

Re = Re
I � qLeII _Pe �Be�re �Be Jeahg ; (14)

with the following de�nition:

Be = Be
II + Be

III: (15)

It should be also noted that the relative acceleration at
boundary �II is identically equal to zero. Subsequently,
Eq. (14) can be substituted into Eq. (8) which yields:

Ge �Pe+qLeII _Pe + He Pe=Re
I (t)�Be�re�BeJeahg :

(16)
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The equivalent form of this equation in the frequency
domain would be:

�!2Ge Pe + i! qLeII Pe + He Pe = Re
I (!)

+ !2 Be re �BeJeahg : (17)

Herein, LeII is a matrix that corresponds to the ab-
sorption of energy at reservoir's bed. By assembling
the element equations and imposing the free surface
condition in Eq. (6a), one would obtain the overall FE
equation of the 
uid domain:

�!2G P + i! qLII P + H P = RI + !2B r�B J ahg :
(18)

In this equation, RI is obtained by assembling the
boundary integrals of Eq. (9c) on �I.

2.3. Dam-reservoir system
The necessary equations for both dam and reservoir
domains were developed in the previous sections. Thus,
combining the main relations (18) and (2) would result
in the FE equations of the coupled dam-reservoir
system in its initial form for the frequency domain:� �!2M + (1 + 2� i)K �BT

�!2B (�!2G + i! qLII + H)

�
�

r
P

�
=
� �M J ahg

(�B J ahg + RI)

�
: (19)

It is noted from the above equation that vector RI still
needs to be de�ned by some appropriate conditions.
This is related to truncated boundary �I which will be
discussed below.

2.4. Modi�cation due to truncation boundary
contribution

The e�ect of truncation boundary will be treated in
this section. For this purpose, let us now assume
that this boundary (i.e., �I) is vertical (i.e., along y-
direction) and consider a harmonic plane wave with a
unit amplitude and frequency ! propagating along a
direction which makes an angle � with a negative x-
direction. This may be written in many di�erent forms
such as:

p = ei(k
0 x+� y+! t); (20a)

p = e ( i!/c)[(cos �)x+(sin �)y+c t]; (20b)

with the following relations being valid:

k0 =
!
c

cos �; (21a)

� =
!
c

sin �; (21b)

k02 + �2 =
!2

c2
: (21c)

It is easily veri�able that the following condition is
appropriate for the truncated boundary based on the
assumed traveling wave (i.e., Eq. (20a)):

@p
@x
� i k0 p = 0: (22)

Employing Eq. (22) in Eq. (9c), it yields:

Re
I = � (i k0 ) LeI Pe; (23)

with the following de�nition:

LeI =
1
�

Z
�eI

N NT d�e: (24)

Assembling Re
I for all 
uid elements adjacent to trun-

cation boundary leads to:

RI = � (i k0 ) LI P: (25)

This can now be substituted into Eq. (19) to obtain
the FE equations of the coupled dam-reservoir system
in its �nal form for the frequency domain as shown in
Box I. It is also noticed that the lower matrix equation
of (26) is multiplied by !�2 in this process to obtain
a symmetric dynamic sti�ness matrix for the dam-
reservoir system.

2.5. Theoretical background pertinent to
parameter k0

The major remaining concept is the determination of
parameter k0. The relevant theoretical background
will be discussed in this section. Of course, there
are di�erent available options which will be actually
presented in the next section. However, prior to
getting into a discussion on that, it is worthwhile to
review some salient aspects of the exact analytical
solution available for the domain D (Figure 1) which
is extremely helpful in this regard. It should be
noted that this domain is actually eliminated from our
problem.

� �!2M + (1 + 2� i)K �BT

�B !�2(�!2G + i k0 LI + i! qLII + H)

��
r
P

�
=
� �M J ahg
!�2(�B J ahg )

�
: (26)

Box I
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This is a regular semi-in�nite region with constant
depth H extending to in�nity in the upstream direc-
tion. The base of this region may be absorptive (i.e.,
� 6= 1) or fully re
ective (i.e., � = 1 or q = 0). As
mentioned, this was limited merely to the latter case
in a previous study [19]. However, the more general
case will be treated herein (i.e., no restriction on �).
Of course, it should be emphasized that we are still
considering merely horizontal ground excitation similar
to that study. Under these circumstances, the exact
solution for this region may be written as follows [23]:

p(x; y; t) =
1X
j=1

Bj
�
cos(�jy) +

i!q
�j

sin(�jy)
�

ei(k
0
j x+! t): (27)

It is noted that the solution is composed of di�erent
modes, and amplitude Bj depends on the existing
conditions on the downstream face of that region.
Parameters �j are calculated through the following
Eigenvalue problem:

cos(�jH) +
i!q
�j

sin(�jH) = 0: (28)

Herein, H represents the water depth. Moreover,
parameters �j and k0j are related as follows:

k0j
2 + �j2 =

!2

c2
: (29)

By employing Eq. (29), one would obtain:

k0j = � i
r
�j2 � !2

c2
: (30)

Although there are two options in this de�nition, the
negative sign is merely admissible for a semi-in�nite
region extending to in�nity in the negative x-direction
as in our present case. This is due to the fact that we
are only interested in the modes which are decaying
and propagating towards the upstream direction.

2.5.1. Fully re
ective reservoir base condition (i.e.,
special case)

Let us now concentrate on the special case of the
fully re
ective base condition (i.e., � = 1 or q = 0).
Under these circumstances, Relations (27) and (28) are
simpli�ed as follows:

p(x; y; t) =
1X
j=1

Bj [cos(�jy)] ei(k
0
j x+! t); (31)

cos(�jH) = 0: (32)

Moreover, eigenvalues �j are readily obtained:

�j =
(2j � 1)�

2H
: (33)

It is also noted that the jth wavenumber (k0j) becomes
zero at a cut-o� frequency referred to as the jth natural
frequency of the reservoir (i.e., !rj ). This is obtained by
substituting Eq. (33) into Eq. (30) under that condition
which results in:

!rj =
(2j � 1)� c

2H
: (34)

Eq. (30) with the admissible negative sign may be also
written as follows:

k0j =
!
c

 � i (2j � 1)



s
1� 
2

(2j � 1)2

!
: (35)

By means of dimensionless frequency 
, we have:


 =
!
!r1
: (36)

2.6. Di�erent options for de�ning parameter
k0

Let us now describe some of the available options for
selecting parameter k0 in Eq. (26).

Alternative 1

As the �rst option, one presumes that the assumed
planar wave is impinging on the truncation boundary
perpendicularly. Thus, angle � is zero, and k0 is readily
found from Eq. (21a):

k0 =
!
c
: (37)

Accordingly, this may be envisaged as a limiting
case for each k0j (Eq. (35)) as 
 goes to in�nity.
Substituting Eq. (37) into Eq. (22) leads to what is
known as the Sommerfeld boundary condition for the
frequency and time domains, respectively [4]:

@p
@x

=
i !
c
p; (38a)

@p
@x

=
1
c
@p
@t
: (38b)

Alternative 2

The second option is to de�ne k0 based on an ap-
proximation of the �rst wavenumber assuming the full
re
ective base condition as a simpli�cation. Thus, let
us consider the �rst wavenumber for that special case
(i.e., substituting j = 1 into Eq. (35)):

k01 =
!
c

� � i



p
1� 
2

�
: (39)

By employing the estimate
p

1� 
2 � (1 + i
) on
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Eq. (39) and utilizing Eqs. (34) and (36), the following
can be yielded:

k0 =
!
c
� i �

2H
: (40)

Substituting Eq. (40) into Eq. (22) leads to what is
known as Sharan boundary condition for the frequency
and time domains, respectively [5]:

@p
@x

=
i !
c
p+

�
2H

p; (41a)

@p
@x

=
1
c
@p
@t

+
�

2H
p: (41b)

Alternative 3

The third option is what is proposed in this study.
That is to de�ne k0 based on di�erent wavenumbers for
various frequency ranges. In particular, the following
strategy is used:

k0 = k01; initially as a default value: (42a)

k0 = k0j

if
�
Real(�2

j � !2

c2
) � 0 and Real(�2

j+1 � !2

c2
) > 0

�
for j � 2; (42b)

where k0j is solved through Eq. (30) with a negative
sign option. Of course, this requires the computation
of �j which is solved through the Eigenvalue problem
Eq. (28) by the well-known Newton-Raphson approach.

It should be mentioned that for the special case
of the full re
ective base condition, the strategy may
be equivalently written as follows:

k0 = k01; for [0 � 
 � 3 or (0 � ! � !r2)] ; (43a)

k0 = k0j ; for
�
(2j � 1) � 
 � (2j + 1) or

(!rj < ! � !rj+1)
�

and j � 2; (43b)

where k0j is solved through Eq. (35), as proposed in the
previous study [19]. It is also worthwhile to mention
that, for the special case, k0 would be either a real
number or a pure imaginary number. While, in the
general case, it could be a complex number having both
real and imaginary components.

As mentioned above, in general, eigenvalues �j
are solved through Eq. (28) by utilizing the Newton-
Raphson algorithm. This is carried out herein for
the �rst �ve modes, and the results are depicted in
Figure 2, similar to the work of Fenves and Chopra [24].

Figure 2. Variation of �j with excitation frequency for
the general case of reservoir base condition.

3. Modelling and basic parameters

The introduced methodology is employed to analyze
an idealized dam-reservoir system. The details about
modeling aspects, such as discretization, basic parame-
ters, and the assumptions adopted, are summarized in
this section.

3.1. Models
An idealized triangular dam with vertical upstream
face and a downstream slope of 1:0.8 is considered on a
rigid base. The dam is discretized by 20 isoparametric
8-node plane-solid �nite elements.

As for the water domain, two strategies are
adopted (Figure 3). For the FE-FE method of anal-
ysis which is our main procedure, only the near-�eld
reservoir is discretized and the absorbing boundary
condition is employed on the upstream truncation
boundary according to di�erent alternatives discussed.
The length of this near-�eld region is denoted by L
and water depth is referred to as H. Three cases are
considered. These are in particular the L=H values
of 0.2, 1, and 4 which represent low, medium, and
high reservoir lengths. This region is discretized by
5, 25, and 100 isoparametric 8-node plane-
uid �nite
elements for the three above-mentioned L=H values,
respectively.
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Figure 3. The dam-reservoir discretization for (a) FE-FE
model (L=H = 1), (b) FE-FE model (L=H = 0:2), and (c)
FE-(FE-HE) model (L=H = 1).

For the FE-(FE-HE) method of analysis, the
reservoir domain is divided into two regions. The near-
�eld region is discretized by 
uid �nite elements, and
the far-�eld region is treated by a 
uid hyper-element.
Of course, it should be emphasized that this option
is merely utilized to obtain the exact solution [25].
Moreover, it is well known that the results are not
sensitive in this case to the length of the near-�eld
reservoir region or L=H value.

3.2. Basic parameters
The dam body is assumed to be homogeneous and
isotropic with linearly viscoelastic properties for mass
concrete:

- Elastic modulus (Ed) =27.5 GPa;

- Poison's ratio = 0.2;

- Unit weight = 24.8 kN/m3;

- Hysteretic damping factor (�d) = 0.05;

- The impounded water is taken as inviscid and
compressible 
uid with a unit weight equal to 9.81

kN/m3, and pressure wave velocity is c = 1440
m/sec.

4. Results

It should be emphasized that all presented results
herein are obtained by the FE-FE method discussed
in di�erent absorbing conditions applied on the trun-
cation boundary. The only exception is for what is
referred to as the exact response. That special case is
carried out by the FE-(FE-HE) analysis technique.

The initial part of the study relates to a dam-
reservoir system with a medium near-�eld reservoir
length (i.e., L=H = 1 (Figure 3(a))). This is examined
for two di�erent assumptions of fully re
ective and
absorptive reservoir base conditions (i.e., � = 1 and
0.75). For each model, three cases are considered.
The only di�erence between these cases is a type
of the absorbing boundary condition imposed on the
truncation boundary. These are in particular based on
alternatives I, II, and III (i.e., Sommerfeld, Sharan, and
wavenumber conditions, respectively).

The transfer function for the horizontal accelera-
tion at dam crest with respect to the horizontal ground
acceleration is presented in Figure 4 for these three
cases with the fully re
ective reservoir base assumption
(� = 1). It is noted that the response in each case
is plotted versus the dimensionless frequency. The
normalization of excitation frequency is carried out
with respect to !1, which is de�ned as the natural
frequency of the dam with an empty reservoir on the
rigid foundation. Moreover, it is noticed that all cases
are compared with the exact response.

It is observed that the response for the Sommer-
feld condition case (i.e. the �rst case) has signi�cant
error near the fundamental frequency of the system,
where the �rst major peak occurs. For the second
case (Sharan B.C.), the error reduces at the �rst
major peak (compared to the �rst case); however, it is
observed that the response maintains a similar pattern.
Moreover, error increases at the second major peak for
this case, which shows the de�ciency of the Sharan
condition with respect to Sommerfeld B.C. for that
frequency range.

The third case is related to the wavenumber
approach. It is observed that the response agrees very
well with the exact response, and the initial result of
this technique reveals the promising behavior of this
alternative.

Subsequently, similar plots are illustrated in Fig-
ure 5 for the same three alternatives with the absorp-
tive reservoir base assumption (� = 0:75).

It is observed that both Sommerfeld and Sharan
cases still have noticeable errors near the fundamental
frequency of the system, although it is reduced in
comparison with the fully re
ective cases mentioned
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Figure 4. Horizontal acceleration at dam crest due to
horizontal ground motion for the medium reservoir length
and fully re
ective reservoir base condition (L=H = 1,
� = 1) under di�erent absorbing boundary condition
alternatives: (a) Sommerfeld, (b) Sharan, and
(c) wavenumber.

above. For the wavenumber approach, the response is
predicted very well, and the agreement with the exact
result is almost perfect for this case.

In the second part of this study, it is decided
to investigate the behavior of three alternatives I, II,
and III (i.e., Sommerfeld, Sharan, and wavenumber
approaches) for low near-�eld reservoir lengths. For
this purpose, a very low reservoir length (i.e., L=H =
0:2 (Figure 3(b))) is considered that is a challenging

Figure 5. Horizontal acceleration at dam crest due to the
horizontal ground motion for the medium reservoir length
and absorptive reservoir base condition (L=H = 1,
� = 0:75) under di�erent absorbing boundary condition
alternatives: (a) Sommerfeld, (b) Sharan, and
(c) wavenumber.

test for examining any type of the absorbing boundary
condition.

Similar to the medium reservoir length, this is ex-
amined for two di�erent assumptions of fully re
ective
and absorptive reservoir base conditions (i.e., � = 1
and 0.75).

The responses for the fully re
ective reservoir base
condition (� = 1) are presented in Figure 6. It is
observed that there are signi�cant errors in the re-
sponses for the Sommerfeld and Sharan condition cases.
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Figure 6. Horizontal acceleration at dam crest due to the
horizontal ground motion for the low reservoir length and
fully re
ective reservoir base condition (L=H = 0:2, � = 1)
under di�erent absorbing boundary condition alternatives:
(a) Sommerfeld, (b) Sharan, and (c) wavenumber.

Moreover, the errors have increased in comparison with
the medium reservoir length results (Figure 6 versus
Figure 4). For the wavenumber approach, the response
is still close to the exact response in most frequency
ranges. However, there exist errors in the range of 5%
at the major peaks of the response. This is still believed
to be a remarkable result for such a challenging test.

Similar plots are illustrated in Figure 7 for the
same three alternatives with the absorptive reservoir
base assumption (� = 0:75). It is observed that

Figure 7. Horizontal acceleration at dam crest due to the
horizontal ground motion for the low reservoir length and
absorptive reservoir base condition (L=H = 0:2, � = 0:75)
under di�erent absorbing boundary condition alternatives:
(a) Sommerfeld, (b) Sharan, and (c) wavenumber.

there are still signi�cant errors for the Sommerfeld and
Sharan condition cases. However, as expected, the
errors have decreased with respect to the fully re
ective
reservoir condition (Figure 7 versus Figure 6). For the
wavenumber approach, it is observed that the error at
the �rst major peak of the response diminishes with
respect to the fully re
ective reservoir base condition
(Figure 7 versus Figure 6), and the response agrees
relatively well with the exact response for the whole
frequency range.
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In the last part of this study, it is worthwhile
to investigate the behavior of three alternatives I, II,
and III (i.e., Sommerfeld, Sharan, and wavenumber
approaches) for high near-�eld reservoir lengths. For
this purpose, a relatively high reservoir length (i.e.,
L=H = 4) is considered. Similar to the previous
reservoir lengths, this is examined for two di�erent
assumptions of fully re
ective and absorptive reservoir
base conditions (i.e., � = 1 and 0.75).

The responses for the fully re
ective reservoir base
condition (� = 1) are presented in Figure 8. It is
noticed that responses for the sommerfeld and Sharan
condition cases have improved greatly in comparison
with the low or even medium length results discussed
previously (Figure 8 versus Figure 6 or 4). However,
some kinds of noise or distortion are noticed in the
response of both these cases, especially for higher
frequencies. As for the wavenumber approach, it is
noticed that the response agrees very well with the
exact response, similar to the behavior noticed for the
medium reservoir length. Moreover, there are few signs
of distortions in the response for the high reservoir
length, contrary to what was noticed for the other two
well-known alternatives I and II (the Sommerfeld and
Sharan condition cases).

Similar plots are also illustrated in Figure 9
for the same three alternatives with the absorptive
reservoir base assumption (� = 0:75). It is observed
that all three alternatives reveal good behavior, and
very close agreement is obtained with respect to the
exact response for the whole frequency range under
these circumstances (i.e., high reservoir length and
absorptive reservoir base assumption (� = 0:75)).

Overall, it can be concluded that the maximum
error of the wavenumber approach is in the range of 5%
at the major peaks of the response. This occurs only
for the very low reservoir lengths and fully re
ective
reservoir base condition. This is a remarkable result for
any kind of robust truncation boundary simulation that
one may expect. It is also worthwhile to mention that,
in general, the fundamental frequency of the system
is not captured correctly when both Sommerfeld and
Sharan B.C. are employed unless the reservoir length is
selected as a high value. This is true especially for cases
in which low reservoir lengths are utilized in the model
(Figures 6 and 7). However, the fundamental frequency
of the system is captured correctly for the wavenumber
approach, even in cases of the low reservoir length
(Figures 6(c) and 7(c)).

5. Conclusions

The formulation based on the FE-FE procedure for
dynamic analysis of concrete dam-reservoir systems
was reviewed. Moreover, several options were discussed
for imposing a local type of absorbing condition on the

Figure 8. Horizontal acceleration at dam crest due to the
horizontal ground motion for the high reservoir length and
fully re
ective reservoir base condition (L=H = 4, � = 1)
under di�erent absorbing boundary condition alternatives:
(a) Sommerfeld, (b) Sharan, and (c) wavenumber.

truncation boundary of the water domain. A special-
purpose �nite-element program was enhanced for this
investigation. Thereafter, the response of an idealized
triangular dam was studied due to the horizontal
ground motion for di�erent alternatives employed as
an absorbing boundary condition. The main approach
which was emphasized and proposed in this study is
referred to as the wavenumber approach.
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Figure 9. Horizontal acceleration at dam crest due to the
horizontal ground motion for the high reservoir length and
absorptive reservoir base condition (L=H = 4, � = 0:75)
under di�erent absorbing boundary condition alternatives:
(a) Sommerfeld, (b) Sharan, and (c) wavenumber.

Overall, the main conclusions obtained by the
present study can be listed as follows.

With regard to the Sommerfeld and Sharan absorbing
conditions:

� In general, the fundamental frequency of the sys-
tem is not captured correctly for both of these
approaches unless the reservoir length is selected as
a high value. This is especially true for cases in
which low reservoir lengths are utilized in the model;

� There are signi�cant errors occurring on the re-
sponse at the fundamental frequency of the system
for low or even medium reservoir lengths. The error
decreases for the absorptive reservoir base condition,
or as the reservoir length increases;

� Obviously, the main advantage of these two condi-
tions is that both of them can be readily utilized in
the time and frequency domains.

With regard to the wavenumber absorbing condition:

� The fundamental frequency of the system is cap-
tured correctly for the wavenumber approach, even
in cases of a low reservoir length;

� It is concluded that the maximum error for the
wavenumber approach is in the range of 5% at the
major peaks of the response. This occurs only for
the very low reservoir lengths and fully re
ective
reservoir base condition. This is a remarkable
result for any kind of robust truncation boundary
simulation that one may expect;

� Obviously, the main disadvantage of this condition
is that it cannot be utilized in time domain, and it
is only suitable for frequency domain;

� The wavenumber approach is ideal from the pro-
gramming point of view due to the local nature
of wavenumber condition imposed on truncation
boundary. It can also be deemed as a great
substitute for the rigorous FE-(FE-HE) type of
analysis, which is heavily dependent on a hyper-
element as its main core. It is undeniable that the
rigorous approach is signi�cantly more complicated
from the programming point of view and much more
computationally expensive.

References

1. Hall, J.F. and Chopra, A.K. \Two-dimensional dy-
namic analysis of concrete gravity and embankment
dams including hydrodynamic e�ects", Earthq. Eng.
Struct. D., 10(2), pp. 305-332 (1982).

2. Waas, G. \Linear two-dimensional analysis of soil
dynamics problems in semi-in�nite layered media",
Ph.D. Dissertation, University of California, Berkeley,
California (1972).

3. Khazaee, A. and Lot�, V. \Application of perfectly
matched layers in the transient analysis of dam-
reservoir systems", Soil Dynamics and Earthquake
Engineering, 60(1), pp. 51-68 (2014).

4. Sommerfeld, A., Partial Di�erential Equations in
Physics, Academic Press, NY (1949).

5. Sharan, S.K. \Time domain analysis of in�nite 
uid
vibration", Int. J. Numer. Meth. Eng., 24(5), pp. 945-
958 (1987).



M. Jafari and V. Lot�/Scientia Iranica, Transactions A: Civil Engineering 25 (2018) 3054{3065 3065

6. Berenger, J.P. \A perfectly matched layer for the ab-
sorption of electromagnetic waves", J. Comput. Phys.,
114(2), pp. 185-200 (1994).

7. Chew, W.C. and Weedon, W.H. \A 3D perfectly
matched medium from modi�ed Maxwell's equations
with stretched coordinates", Microw. Opt. Techn. Let.,
7(13), pp. 599-604 (1994).

8. Basu, U. and Chopra, A.K. \Perfectly matched lay-
ers for time-harmonic elastodynamics of unbounded
domains: theory and �nite-element implementation",
Comput. Meth. Appl. Mech. Eng., 192(11-12), pp.
1337-1375 (2003).

9. Jiong, L., Jian-wei, M., and Hui-zhu, Y. \The study of
perfectly matched layer absorbing boundaries for SH
wave �elds", Appl. Geophys., 6(3), pp. 267-274 (2009).

10. Zhen, Q., Minghui, L., Xiaodong, Z., Yao, Y., Cai, Z.,
and Jianyong, S. \The implementation of an improved
NPML absorbing boundary condition in elastic wave
modeling", Appl. Geophys., 6(2), pp. 113-121 (2009).

11. Kim, S. and Pasciak, J.E. \Analysis of cartesian PML
approximation to acoustic scattering problems in R2",
Wave Motion, 49, pp. 238-257 (2012).

12. Higdon, R.L. \Absorbing boundary conditions for
di�erence approximations to the multi-dimensional
wave equation", Math. Comput., 47(176), pp. 437-459
(1986).

13. Givoli, D. and Neta, B. \High order non-re
ecting
boundary scheme for time-dependent waves", J. Com-
put. Phys., 186(1), pp. 24-46 (2003).

14. Hagstrom, T. and Warburton, T. \A new auxiliary
variable formulation of high order local radiation
boundary condition: corner compatibility conditions
and extensions to �rst-order systems", Wave Motion,
39(4), pp. 327-338 (2004).

15. Givoli, D., Hagstrom, T., and Patlashenko, I. \Finite-
element formulation with high-order absorbing condi-
tions for time-dependent waves", Comput. Meth. Appl.
M., 195(29-32), pp. 3666-3690 (2006).

16. Hagstrom, T., Mar-Or, A., and Givoli, D. \High-
order local absorbing conditions for the wave equation:
extensions and improvements", J. Comput. Phys.,
227, pp. 3322-3357 (2008).

17. Rabinovich, D., Givoli, D., Bielak, J., and Hagstrom,
T. \A �nite element scheme with a high order absorb-
ing boundary condition for elastodynamics", Comput.
Meth. Appl. Mech., 200, pp. 2048-2066 (2011).

18. Samii, A. and Lot�, V. \High-order adjustable bound-
ary condition for absorbing evanescent modes of waveg-
uides and its application in coupled 
uid-structure
analysis", Wave Motion, 49(2), pp. 238-257 (2012).

19. Lot�, V. and Samii, A. \Dynamic analysis of concrete
gravity dam-reservoir systems by wavenuber approach
in the frequency domain", Earthquakes and Structures,
3(3-4), pp. 533-548 (2012).

20. Lot�, V. and Samii, A. \Frequency domain analysis of
concrete gravity dam-reservoir systems by wavenumber
approach" , Proc. 15th World Conference on Earth-
quake Engineering, Lisbon, Portugal (2012a).

21. Zienkiewicz, O.C., Taylor, R.L., and Zhu, J.Z., The Fi-
nite Element Method, Butterworth-Heinemann (2013).

22. Chopra, A.K. \Hydrodynamic pressure on dams dur-
ing earthquake", J. Eng. Mech.-ASCE, 93, pp. 205-223
(1967).

23. Chopra, A.K., Chakrabarti, P., and Gupta, S. \Earth-
quake response of concrete gravity dams including
hydrodynamic and foundation interaction e�ects",
Report No. EERC-80/01, University of California,
Berkeley (1980).

24. Fenves, G. and Chopra, A.K. \E�ects of reservoir bot-
tom absorption and dam-water-foundation interaction
on frequency response functions for concrete gravity
dams", Earthq. Eng. Struct. D., 13, pp. 13-31 (1985).

25. Lot�, V. \Frequency domain analysis of gravity dams
including hydrodynamic e�ects", Dam Engineering,
12(1), pp. 33-53 (2001).

Biographies

Mehran Jafari received his MS degree in Civil Engi-
neering from the Amirkabir University of Technology
(Tehran Polytechnic), Tehran, Iran in 2014, where he
also received his BS degree in 2011, respectively. His
research interests include 
uid-structure interaction,
�nite element, and structural analysis.

Vahid Lot� was born on 1960 in Tehran, Iran.
He received his BS, MS, and PhD degrees in Civil
Engineering from the University of Texas at Austin,
USA. He joined Amirkabir University of Technology,
Tehran in 1986, and has been a full professor at that
university since 2005. His research interests include �-
nite element, 
uid-structure interaction, concrete dams
and earthquake engineering.




