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Abstract. Accurate prediction of earthquake duration could control seismic design of
structures. In this paper, a new simple method was developed to estimate such an important
parameter by employing Arti�cial Neural Networks (ANN) capability. A Generalized
Regression Neural Network (GRNN) as a special class of RBF networks was implemented
in this study to reduce the number of computation steps required for the searching process
on sparse datasets. This network with quick-design capability does not need to impose
a prescribed form to map the observed data. The independent variables used in the
predictive model of this study included earthquake magnitude, distance measure, and site
conditions. The designed models were trained using the 950 accelerograms recorded at
Iranian plateau. The performance of the proposed approach was compared with predicted
results of feedforward backpropagation networks. Analyses show that the designed GRNN
performs well in estimating earthquake record duration and can be applied to predict
common measures of earthquake ground-motion duration.

© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Amplitude parameters, such as peak ground accelera-
tion or spectral acceleration, are widely used param-
eters in most seismic design codes. Nevertheless, the
duration of strong motions could enlarge the extent
of earthquake damage to structures. According to
various studies, seismic response of a structure de-
pends on a structural framing system and earthquake
characteristics including amplitude and duration [1-4].
Ground-motion duration signi�cantly a�ects ductility
measure, the amount of cumulative damage incurred
by the structures, dissipated energy [5,6], input energy
amount, and the level of damage done to a structure.
It is noted that the role of duration depends on several
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factors such as the structural model and damage metric
used in the analysis [7]. From a geotechnical point of
view, duration of input motion is expected to play an
instrumental role in evaluating soil's seismic response,
liquefaction potential, and lateral spread displacement
resulting from soil liquefaction [8-10]. Ground-motion
duration has also an imperative role in the assessment
of potential losses in future earthquakes as in the
HAZUS standardized framework, where duration is
explicitly taken into account [11,12].

Several researches, conducted in the past, at-
tempted to obtain the earthquake ground-motion du-
ration based on regional (local) predictive equations.
These predictive equations, typically �t into a strong
ground-motion data by conventional regression meth-
ods, could be developed for typical de�nitions of the
ground-motion duration. Kempton and Stewart [3]
proposed signi�cant duration prediction equations
based on a random e�ects regression procedure with
respect to di�erent parameters: magnitude, distance
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from site to source, soil site condition, and one more
factor that re
ects near-�eld e�ects. Bommer et al. [2]
employed the global database of Next Generation of
Attenuation (NGA) to present new updated empirical
equations. Recently, Yaghmaei-Sabegh et al. [13] devel-
oped a new predictive model by a nonlinear regression
analysis based on earthquake ground-motion records
obtained in Iran. According to the basic seismological
theory, earthquake record duration depends on the
complex fracture mechanism on the fault plane and
seismic wave radiation characteristics. Thus, utilizing
an appropriate physically based representation for such
a multi-faceted parameter would be very di�cult and
may require a deep understanding of di�erent param-
eters that control ground-motion duration. For this
reason, di�erent mathematical functions often in the
nonlinear forms have been adopted in the associated
literature. To overcome this concern, the purpose of
this paper is to develop a simple tool for estimating
the duration of earthquake records. To this end, a
simple and e�cient framework is designed based on
high capability of GRNN neural networks.

By increasing the computational power of engi-
neering software, di�erent computer-based searching
algorithms, including K-means, Genetic Programming
(GP), Arti�cial Neural Networks (ANNs), and au-
toregressive integrated moving average (ARIMA), are
vastly used in both seismology and earthquake engi-
neering [14-17]. This paper shows that the nonlinear
nature and high �tting ability of a special class of
networks, named Generalized Regression Neural Net-
works (GRNN), make it very suitable particularly while
di�erent factors in
uence the prediction results. As
an advantage for a GRNN, design-decisions about the
layers numbers and unit number of the hidden layers
could be removed.

The purpose of this paper is an attempt to
establish a suitable platform to compare capabilities
of Multi-Layer Feed-Forward (MLFF) and GRNN net-
works for accurate prediction of ground-motion record
duration as a complex problem in seismology. The need
for GRNN implementation for the purpose of this study
is demonstrated by presenting the prediction results
of backpropagation multi-layer feed-forward networks.
This paper consists of six di�erent sections. The study
of this paper could facilitate a good condition for read-
ers to compare the prediction abilities of multi-layer
feed-forward neural network and GRNN models with
regard to a complex case study in seismology where
training data are limited. Following the introduction, a
description of the arti�cial neural networks applications
in seismology and earthquake engineering is provided
in Section 2. Theoretical background of implemented
network is laid out in this section, too. Section 3
reviews di�erent de�nitions for ground-motion dura-
tion. Results of analysis in training and testing steps

are discussed in Section 4. This section also includes
the details of the ground-motion records and dataset
analysis. The prediction ability of MLFF network as
the most popular ANN is evaluated and compared with
others in Section 5. Di�erent performance evaluation
indices, i.e., root mean square error, correlation coef-
�cients, and e�ciency factor between estimated and
observed dataset, are used in the analysis. A summary
of conclusions drawn in this study is reported in the
�nal section of the current paper.

2. Arti�cial neural networks and applications

Capability of Arti�cial Neural Network (ANN) to
model complex features was used successfully in the
past when conventional linear functions were not able
to demonstrate high-dimensional inputs. The applica-
tions of arti�cial neural networks as a powerful tool
have been evaluated broadly in seismology, earthquake
and geotechnical engineering, and geosciences.

McCulloch, a neurobiologist, and Pitts, a statis-
tician [18], initiated the �rst arti�cial neuron as a
binary threshold unit in 1943. An ANN deduces
essential features of biological neurons and their inter-
connections and takes a di�erent approach to solve a
speci�c problem than that of conventional algorithmic
computer, which follows a set of instructions in order
to solve the problem. Neurons (or cells) supply parallel
processing nature of arti�cial neural networks to solve
a complex problem [19]. Each neuron is responsible for
carrying out received impulses from input cells to the
other cells. Neural networks are able to learn during
training process to achieve the generalization ability,
which is useful for future predictions. In this regard,
neural networks could be considered as a practical
tool for pattern recognition and function approxima-
tion applications. Multi-Layer Feed-Forward (MLFF)
neural network, referred to as multi-layer perceptron,
Kohenen's Self-Organizing Maps (SOM), and RBF net-
works are di�erent types of neural networks, normally
applied to solve such a problem.

In a MLFF network, which is a most popular
ANN architecture, feedforward style, typically, is used
to form connections among hidden layer neurons with
those of input and output layers. The error backprop-
agation (BP) algorithm as a highly popular algorithm
for feedforward networks uses a local gradient to reach
a minimum value of prediction error. The MLFF was
employed widely in the past researches as a predictor
of unknown functional relations for di�erent applica-
tions in both seismology and earthquake engineering.
Pioneering researches by Dysart and Pulli [20] and Dai
and MacBeth [21] were focused on the application of
BP-MLFF in regional seismic event classi�cation and
identi�cation of seismic arrival types. Application of a
back-propagation neural network in system identi�ca-
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tion (sti�ness and damping coe�cients) and structural
response prediction due to earthquake excitation can
be found in the literature [22,23]. Kuzniar et al. [24]
implemented capability of MLFF neural networks to
construct response spectra based on mining tremors
data. Gentili and Bragato [25] proposed a BP-MLFF
neural network system to forecast earthquakes location
occurred in Italy. Asencio-Corte's et al. [26] evaluated
the e�ciency of neural networks for the prediction of
earthquake sizes according to �ve databases in Japan.
In 2005, in Taiwan, Kern and Ting [27] predicted peak
ground acceleration values by considering MLFF neural
networks as a soft computing tool. Ahmad et al. ap-
plied an arti�cial neural network to develop attenuation
relationships for peak Parameters as Ground Acceler-
ation (PGA) [28]. They considered real earthquake
data to demonstrate the accuracy of designed network
to model local attenuation characteristics. Arjun and
Kumar [29] presented a new application of MLFF
neural network to estimate earthquake record duration
in Japan. Recently, Liu et al. [30] applied a neural
network as a classi�er along with wavelet transform to
structural damage diagnosis. Alari� et al. [31] used
a feedforward neural network (consisting of 3 layers)
to predict earthquakes magnitude in northern Red Sea
area. As another application, high ability of neural
networks was used for earthquake prediction based on
correlated information with earthquake occurrence in
the past [32-34]. Panakkat and Adeli [35] proposed
a neural network model to provide useful information
about events location and time of occurrence for major
earthquakes in the California. Despite wide appli-
cations of this type of neural networks, there are a
number of disadvantages in using BP-MLFF models.
The architectural design of MLFF neural networks,
including optimal number of neurons in each of hidden
layers, is di�cult. For lower number of nodes, the
network does not obtain the right results. In contrast,
increasing the number of units increases the number of
weights [36] and, hence, the processing time in training
step; sometimes, it is weakens the generalization ability
of the network. Typically, it can take a large number
of iterations to converge to the preferred values and,
consequently, require too much time, particularly when
a large-sized network is needed.

The feasibility of using Generalized Regression
Neural Networks (GRNN) is examined in this article to
predict earthquake ground-motion duration. More in-
formation about RBF and GRNN networks is presented
in Sections 2.1, and 2.2. Details of the mathematical
theory of neural networks were extensively documented
in [37].

2.1. RBF-based models
A Radial Basis Function network (RBF) learns using
a supervised training technique and consists of a single

hidden layer associated with basis functions modelling
a Gaussian response surface. Indeed, RBF network
performs a nonlinear mapping when the data are loaded
onto interior con�guration of network. The advanced
capability of RBF networks in civil engineering and
seismological problems has been shown in estimating
design parameters [38], identi�cation and control of
structures [39,40], prediction of building interference
e�ects [41], earthquake magnitude prediction [42],
seismic data inversion problem [43] in stress-strain
approximation of plain concrete [44], and, recently, for
estimation of earthquake occurrence model [45].

2.2. GRNN-based model
A statistical technique called \kernel regression" per-
forms a fundamental role in the proceeding core of
GRNN, which will be used for prediction herein. As
a main advantage over traditional regression methods,
GRNN, like kernel methods in general, does not need to
impose a prescribed form to map the observed data. In
fact, GRNN model is able to construct an appropriate
representation based on probability density function of
the input data, facilitating smooth transition amongst
di�erent observations [46]. Training time of GRNN
which is a memory-based network is short, because the
bandwidths of the parameters used in the analysis are
simply considered [47]; therefore, the precise setting
is not needed [48]. Figure 1 demonstrates a typical
architecture of GRNN consisting of four layers. The
input and output layers in GRNN are similar to
those of most neural networks. However, there is no
computational role in the neurons of input layer in
this type of network, where data are simply passed to
the pattern layer units. Pattern and summation layers
are two computational parts of GRNN that complete
the structure of GRNN. Neurons are assigned to all of
training datasets in the pattern layer to compute the
Euclidean distance based on the center-point position
of neurons. Finally, the RBF kernel function has been
applied to this processing layer. The summation layer
contains two neurons: S-summation and D-summation
neurons, which compute the sum of weighted and un-
weighted outputs, respectively. The summation and
output layers produce a normalization of output set.

The predicted target value (ŷ) can be explained
as follows:

Figure 1. A typical architecture of generalized regression
neural network.
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ŷ =
Pn
j=1 yj exp[�D(xi; xij)]Pn
j=1 exp[�D(xi; xij)]

; (1)

where yi is the weight connection between the ith unit
in the pattern layer and the summation layer, n is the
number of training cases (xij), parameter xi is input
value for testing cases, and function D is described as
follows:

D(xi; xij) =
pX
i=1

(xi � xij)2

2�2 ; (2)

in which p indicates the unit number of each in-
put vector, � is called \smoothing" or \bandwidth"
parameter which a�ects prediction performance of a
GRNN and is frequently calibrated for each model [49].
More information about GRNN model can be found
in [48,50]. The main features of GRNN in function
approximation could be summarized as follows:

i) The simplicity in design where there is no need to
de�ne a learning rule;

ii) Anticipating high performance often even based on
small amount of data;

iii) Low cost of CPU processing;
iv) Removing the decision-making step on architec-

tural design of network.

It is well known that, similar to an RBF network,
GRNN model is not able to extrapolate. For this
reason, a GRRN designer should be aware of this
important matter to control the range of the selected
training data used in the analysis.

A review of the past research works illustrates
di�erent applications of GRNN in seismology and
earthquake engineering. GRNN was applied to eval-
uate soil composition based on CPT data by Kurop
and Gri�n [51]. Hanna et al. [52] used high capacity
of GRNN to estimate soil liquefaction potential based
on earthquake database of Turkey and Taiwan. In
2011 and as an important procedure in site-speci�c
seismic hazard assessment, a GRRN-based procedure
was suggested for site classi�cation [47]. The results
of Yaghmaei-Sabegh and Tsang [47] were validated
with borehole data that are normally used in the soil
classi�cation procedure. Their results revealed high
e�ciency of GRNN model used for this purpose [47,53].

3. Overview of di�erent ground-motion
duration de�nitions

As mentioned before, ground-motion duration may
involve many variables from source, path and site
e�ects; consequently, there is no general de�nition
for this complex-multifaceted phenomenon among seis-
mologists. Di�erent typical de�nitions, presented for

earthquake record duration in the past, could be
put into three main groups: bracketed, uniform, and
signi�cant durations.

The bracketed duration measure (DB) is the time
duration of ground shaking that is de�ned as the time
length from the �rst and last excursions rather than a
precise pre-de�ned threshold of acceleration [1]. This
simple de�nition is a sensitive measure for the accelera-
tion threshold and can be unstable in some cases [1]. It
should be noted that bracketed duration has been used
by di�erent researchers, taking into account di�erent
levels of acceleration as a threshold [2,54,55].

Uniform duration (DU ) is measured as the sum of
numbers of discrete time intervals at the points where
acceleration is greater than a pre-de�ned threshold. It
is noted that the sensitivity of this de�nition is lower
compared with that of bracketed duration. Figures 2
to 4 demonstrate the acceleration time history as well
as bracketed and uniform durations for a destruc-
tive earthquake occurred at Tabas, northeast of Iran
(recorded at Deyhook station).

Finally, signi�cant duration (DS) as an energy-
based measure describes a continuous time window,
which is de�ned based on two pre-de�ned Arias inten-

Figure 2. Acceleration time history of 1978 Tabas
ground-motion recorded at Deyhook station.

Figure 3. Bracketed duration (DB) estimated for 1978
Tabas earthquake recorded at Deyhook station (Acc2 is
the square of the ground acceleration).
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Figure 4. Uniform duration (DU ) estimated for 1978
Tabas earthquake recorded at Deyhook station (Acc2 is
the square of the ground acceleration).

sity thresholds. The signi�cant duration illustrates the
time interval of ground-motion time history when the
main part of input energy is imposed on the buildings
and is more stable than the bracketed and uniform
duration measures. For these reasons, two generic
measures of this de�nition are used in the prediction
procedure of this research as the time intervals of
Arias Intensity between 5-95% and 5-75% (Ds�5�95%
and Ds�5�75%), respectively. Figure 5 presents these
two common measures of signi�cant duration for the
selected record at Deyhook station.

4. Estimating earthquake ground-motion
duration

4.1. Model development
The primary step to design a GRNN model is to
provide a suitable large database used in learning and
testing process. The ground-motion records applied in
this work corresponded to 950 ground-motion records
obtained at important earthquakes occurred in Iran,
provided by Building and Research Center (BHRC).
A review of the historical earthquakes in Iran demon-
strates this fact that Iran has been located in one of

Figure 6. Magnitude versus closest site-source distance
of dataset used in this study.

the world's signi�cant seismic belt that has experienced
many large events in the past [56].

Updated database of this paper covers the
ground-motion duration data, recently used by
Yaghmaei-Sabegh et al. [13] to develop a new predic-
tive model in Iran. The overall range for moment
magnitude in the dataset is from 3.75 to 7.7 with
the closest site-source distance ranging from 1.5 to
370 km. Figures 6 and 7 demonstrate the magnitude
of earthquakes used in this study against distance mea-
sure along with the location distribution of important
earthquakes across the study area, Iran. The total
set of 950 values used for the modelling is separated
into two data bins. Eighty percent of dataset has been
adopted as training set and 20% of data can best cover
testing set of analysis.

In the proposed models, an earthquake ground-
motion duration parameter is described as a function
of three independent variables: earthquake size, dis-
tance from source to site, and soil type, i.e., Ds =
f(M;R; S). Two di�erent models have been presented
separately for two generic measures of signi�cant du-
ration (Ds�5�95% and Ds�5�75%). The closest site-
source distance is used also as a distance measure

Figure 5. Signi�cant duration estimated for 1978 Tabas earthquake recorded at Deyhook station (Ds�5�95% and
Ds�5�75%) [13].
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Figure 7. Location distribution of major earthquakes
used in this study for the prediction of earthquake-ground
motion duration [13].

herein. Site e�ect in the proposed duration model is
considered to be based on soil classi�cation scheme
adopted in the Iranian seismic design code (Standard
2800). Four soil classes have been de�ned in this
code based on average shear wave velocity, which is
compatible with site classes in 2003 NEHRP [57].
Dummy variables 0 and 1 are used simply in the
prediction process for rock and soil sites, respectively.

4.2. Results
The only factor that needs to be selected to design
GRNN model is the smoothing parameter that a�ects
the predicted value of the designed neural network.
Generally, smoother prediction would be expected
when the smoothing parameter is larger. In addition,
generalization capability of designed network decreases
for small value of smoothing parameter, which is not
an enviable quality for future predictions. Therefore,
the suitable value of this parameter, which is often
experimentally determined, will play a signi�cant role
in design implementation of this type of networks. In
this study, di�erent values of smoothing parameter
ranging from 0 to 1 have been examined; �nally, based
on prediction performance, the value of � = 0:7 has
been intended through a calibration process. It is
worth noting that choosing an appropriate value for
smoothing parameter will be more important if the
number of observation may be small enough to predict
a complex phenomenon.

The e�ciency and robustness of designed net-
works have been checked based on three statistical
indices named root mean square error, correlation
coe�cients, and e�ciency factor. These indices are

Figure 8. Predicted values of signi�cant duration
Ds�5�95% versus observed values in training set.

Figure 9. Predicted values of signi�cant duration
Ds�5�95% versus observed values in testing set.

de�ned as follows:

RMSE =

sPN
i=1(Xi � Yi)2

N
; (3)

R =
PN
i=1
�
Xi � �X

� �
Yi � �Y

�qPN
i=1
�
Xi � �X

�2PN
i=1
�
Yi � �Y

�2 ; (4)

EF =
PN
i=1
�
Xi � �X

�2 �PN
i=1
�
Yi � �Y

�2PN
i=1
�
Xi � �X

�2 : (5)

In these equations, Xi and Yi are de�ned as the
observed and predicted values; �X and �Y are the mean
values of the observed and predicted data, respec-
tively [58]. N is the number of data in dataset analysis.
The three well-known indices, used in this study, re
ect
the degree of �t for the proposed models and could
evaluate the ANN output error between the actual and
predicted outputs. Figures 8 through 11 illustrate the
ability of designed network while presenting scatter
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Table 1. Performance of designed GRNN for predicting Ds�5�95% and Ds�5�75%.

Duration Training set Testing set
R EF RMSE (sec) R EF RMSE (sec)

Ds�5�95% 0.88 0.77 4 0.79 0.73 4.1
Ds�5�75% 0.89 0.78 2.54 0.76 0.75 2.68

Figure 10. Predicted values of signi�cant duration
Ds�5�75% versus observed values in training set.

Figure 11. Predicted values of signi�cant duration
Ds�5�75% versus observed values in testing set.

plots of the predicted values against observed values
for predictive models of Ds�5�95% and Ds�5�75%. Ob-
served/estimated = 1 line is also superimposed on the
�gures. Table 1 indicates the results of comparisons of
GRNN performances for training and testing dataset.
It is revealed that the values of the RMSE and EF
of Ds�5�95% and Ds�5�75% models are close to each
other, and the designed GRNN model could predict
these two parameters almost with similar accuracy.
The total residual as another indicator is employed
to evaluate the performance of soft computing predic-
tions by GRNN. Figures 12 and 13 show the residual
%vspace*0.5cm scattering plot for signi�cant dura-

Figure 12. The distribution of residuals between the
observed and predicted signi�cant durations (Ds�5�95%)
for the proposed model with respect to (a) closest
site-source distance and (b) magnitude.

tions in logarithmic units (ln(observed)�ln(predicted))
based on the predictive models for Ds�5�95% and
Ds�5�75% against magnitude and distance measures.
The spread of residuals in these �gures represents
the variability of individual data values, which could
demonstrate the quality of a predictor. Residuals of
the proposed models for Ds�5�95% and Ds�5�75% vary
in the range of �1:5 to 1 showing less scattering than
the predicted results of models of Bommer et al. [2].
The residuals for both de�nitions of signi�cant duration
do not show any trend with magnitude or distance,
con�rming that the �tting procedure is robust and
appropriate. Similar conclusion was made through
the work of Bommer et al. [2] when their suggested
functional form was used in the analysis (see Figures 1
and 2 in [2]).

The scatter plot of residuals between the observed
and predicted values against soil site conditions is
illustrated in Figure 14. From inspection of this �gure,
the same prediction quality could be recognized for rock
and soil sites.

A more comprehensive comparison made between
di�erent ground-motion duration prediction equations
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Figure 13. The distribution of residuals between the
observed and predicted signi�cant durations (Ds�5�95%)
for the proposed model with respect to (a) closest
site-source distance and (b) magnitude.

Figure 14. The distribution of residuals between the
observed and predicted signi�cant durations for the
proposed model with respect to site conditions.

is shown in Figures 15 and 16. In order to obtain
an accurate evaluation and based on the validity of
predicted values, models prepared in this paper have
been re-examined with respect to the predictions in a
speci�ed distance (taken as 30 km) at rock sites for
di�erent values of magnitude ranging from 4.5 to 8.
Results of the predicted values based on recently
published empirical relationships by Bommer et al. [2]
and Yaghmaei-Sabegh et al. [13] have been superim-

Figure 15. Comparison of the proposed GRNN model for
signi�cant duration Ds�5�95% at a �xed distance measure
(R = 30 km) on rock sites.

Figure 16. Comparison of the proposed GRNN model for
signi�cant duration Ds�5�75% at a �xed distance measure
(R = 30 km) on rock sites.

Figure 17(a). Variation of signi�cant duration Ds�5�95%
in distance for moment magnitude Mw = 7 at rock sites.

posed onto these �gures. According to Figures 15
and 16, the suggested model is well matched with
models of Bommer et al. [2] and Yaghmaei-Sabegh
et al. [13], recon�rming the validity of ANN models
designed in this paper. However, some discrepancy
could be observed among three models which might be
related to the database size and their di�erent features.
Plotting of the logarithmic scale has been adopted for
these �gures consistent with other publications in this
path. Figure 17(a) shows the variation of signi�cant
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Figure 17(b). Variation of signi�cant duration Ds�5�95%
in moment magnitude for rock and soft sites at a �xed
distance measure (R = 30 km).

duration Ds�5�95% in distance for moment magnitude
Mw = 7 at rock sites based on the proposed model
and predictions of Bommer et al. [2]. Good agreement
between the models, particularly for distance larger
than 10 km could be observed in this �gure. Variation
of signi�cant duration Ds�5�95% in moment magnitude
for rock and soft sites at a �xed distance measure
(R = 30 km) is presented in Figure 17(b). This
�gure may possibly highlight soil e�ects on earthquake
duration for strong earthquakes.

5. Comparative analysis of GRNN and
BP-MLFF models

The prediction capability of Multi-Layer Feed-Forward
(MLFF) network as the most popular ANN is evaluated
in this section to show that there is a need for develop-
ing GRNN model. The structure of the implemented
feedforward neural network is shown in Figure 18. As
already discussed in Section 2 of the current paper,
these types of neural networks were extensively applied
in the past; however, �nding the number of neurons
forming hidden layers remains one of the unsolved tasks
in the application of such networks. Neurons number
in hidden layers, which controls the generalization
capability of network, plays an important role in design
of a MLFF. A single hidden layer, although with
di�erent neurons numbers, was used in the analysis
to highlight this matter herein. The Kolmogorov's
theorem [59,60] could be considered as a simple rule

Figure 18. Architecture of MLFF network used in this
study .

(or initial guess) to recommend the neurons number of
hidden layer (NHN):

NHN = 2NIN + 1; (6)

where NIN represents the input neurons numbers.
Thus, the neurons number in the hidden layer based
on Kolmogorov's theorem was taken as 2 � 3 + 1 = 7,
since there are three input neurons. Consequently,
the training analysis started based on seven units in
the hidden layer to learn the target mapping and
continued by increasing neurons numbers to 9, 12,
15, and 18. A trial-and-error approach led to an
optimal network architecture. The backpropagation
(BP) learning scheme [61] which includes two phases of
propagation and weight updating was adopted in this
study as a common training technique in ANNs. The
Levenberg-Marquardt training process as a variation
of the Newton method was followed to train the
designed BP-MLFF networks with di�erent architec-
tures. Weights were selected randomly for each training
analysis. The tan-sigmoid function was adopted herein
as an activation function of neurons in the hidden
layer. Training and testing datasets were chosen similar
to GRNN model. The predicted results of designed
BP-MLFF models with di�erent processing units are
presented in Figures 19 and 20. Results contain the
prediction of two common measures of signi�cant dura-
tion: Ds�5�95% and Ds�5�75% separately. According
to these �gures, when there are few neurons (as the
ANN con�guration of 3-7-1), the network could not
predict large values of signi�cant duration well. Hence,
the designed network does not model nonlinear features
of function and the learning process may fail miserably.
On the other side, with an increase in the neurons
number of the hidden layer, the prediction capacity
is improved; however, the network loses its ability to
generalize.

Similar to GRNN models, the performance of
ground-motion duration predictions resulting from
training and testing data set is evaluated by the three
indices: RMSE, R, and EF. Results are summarized
in Tables 2 and 3 for Ds�5�95% and Ds�5�75%, re-
spectively. The maximum values of EF and R along
with the lowest value of RMSE achieved based on the
results of testing dataset show the higher generalization
ability of networks with 7 and 9 neurons among
others. Comparison of Tables 2 and 3 with Table 1
demonstrates higher performance of GRNN models
obviously. This important result could be concluded
based on the total three evaluation indices used in
this paper. As an example, E�ciency Factor (EF) of
GRNN model for prediction of Ds�5�95% is 0.78 and
0.74 in training and testing datasets where the lower
corresponding values of 0.53 and 0.51 are calculated
for BP-MLFF networks in the best case. Root mean
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Figure 19. Observed values of Ds�5�95% versus predicted values by BP-MLFF networks with di�erent number of neurons
in the hidden layer.

square error increases signi�cantly when the BP-MLFF
networks are applied to the prediction procedure. It is
worth noting that the purpose of this section of paper
is not to suggest a suitable structure for a BP-MLFF
network. However, the results of BP-MLFF networks

con�rm that the prediction ability of such networks
is very sensitive to the structure of designed network
and is lower than GRNN performance. In this regard,
designing and training of various networks to reach
satisfactory results are required. As a result, due to the
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Figure 20. Observed values of Ds�5�75% versus predicted values by BP-MLFF networks with di�erent number of neurons
in the hidden layer.

complex nature of earthquake ground-motion duration,
prediction of such kinds of data with conventional
BP-MLFF is di�cult and requires special care where
GRNN is a powerful technique that could resolve this
problem simply.

6. Summary and conclusions

Improvement of predictive models, which are able
to relate given ground motion characteristics to the
seismological parameters, has been known to be a
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Table 2. Performance of designed BP-MLFF for predicting Ds�5�95%.

BP-MLFF
topology

Training set Testing set

R EF RMSE (sec) R EF RMSE (sec)

3-7-1 0.726 0.47 6.27 0.720 0.52 6.35

3-9-1 0.683 0.53 6.60 0.660 0.51 7.10

3-12-1 0.767 0.41 5.85 0.641 0.33 7.56

3-15-1 0.762 0.42 5.92 0.642 0.49 6.90

3-18-1 0.700 0.34 5.35 0.612 0.15 8.15

Table 3. Performance of designed BP-MLFF for predicting Ds�5�75%.

BP-MLFF
topology

Training set Testing set

R EF RMSE (sec) R EF RMSE (sec)

3-7-1 0.701 0.51 3.85 0.640 0.50 4.20

3-9-1 0.660 0.56 4.06 0.650 0.49 4.10

3-12-1 0.741 0.45 3.60 0.620 0.35 4.40

3-15-1 0.720 0.48 3.75 0.620 0.33 4.42

3-18-1 0.771 0.40 3.44 0.610 0.29 4.48

very imperative step in seismic hazard analysis. In
this article, a new arti�cial network-based scheme was
proposed to estimate earthquake record duration. A
Generalized Regression Neural Network (GRNN) was
implemented in the analysis and examined to pre-
dict a multi-faceted parameter of \earthquake ground
motion-duration". Designed models were presented
for two typical de�nitions of signi�cant ground-motion
duration de�ned based on 5-95% and 5-75% Arias
Intensity (Ds�5�95% and Ds�5�75%). Di�erent models
were trained using the 950 ground motions recorded
at active tectonic regions of Iran. Results of analysis
showed good �tting with the training and testing
records.

Unlike BP-MLFF network that needs too much
convergence time, the time process of designed GRNN
in this work is less than 5 seconds. It should be noted
that the speed of convergence in nonlinear least square
regression algorithm is dependent on the quality of
an initial guess for the solution, which is not easy in
all cases. The proposed method in this paper is able
to remove the main shortcoming of the conventional
method used to develop ground motion prediction
(GMPEs) equations. The only parameter that needs
to be selected for the general regression neural network
is the smoothing parameter, playing a signi�cant role
in reaching an accurate prediction. Di�erent values
of this parameter were examined for general practical
application of the proposed model. According to the
analysis results, the smoothing parameter � = 0:7
was preferred to predict earthquake duration in the
recommended models.

Based on the results of this paper, the easy-
to-use proposed GRNN model is found to be more
e�ective in the prediction purpose of a complex pa-
rameter in seismology, ground-motion duration. This
model could provide more accurate results than the
models established based on BP-MLFF networks. The
GRNN network gives the best generalization perfor-
mance when RMSE takes 4.1, 2.68 values for two
common measures of signi�cant duration: Ds�5�95%
and Ds�5�75%, respectively, whereas the BP-MLFF
network gives higher values of 6.35 and 4.1. E�ciency
factor of GRNN model for prediction of Ds�5�95% is
0.78 and 0.74 in training and testing datasets, respec-
tively, where the lower corresponding values of 0.53
and 0.51 were calculated for BP-MLFF networks in
the best case. Finding the number of neurons forming
the hidden layers of MLFF networks remains as one of
the unsolved tasks in the application of such networks.
Therefore, designing and training of various networks
to reach satisfactory results are required in most cases,
particularly when the nature of data is complex. The
comparative results of this article showed that the
proposed GRNN model could solve such a problem
simply and reduce the analysis time, too. Note that
the proposed GRNN could resolve an unsuccessful
prediction of BP-MLFF in long duration; however, the
predicted duration with GRNN is underestimated for
longer observation.

It is worth noting that the current paper was
focused mainly on the capability of arti�cial neural
networks; as for future works, a comparison of accuracy
of the proposed method and other classical techniques
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as autoregressive integrated moving average (ARIMA)
could be useful.
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