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Abstract. In this paper, a collocated Mixed Discrete Least Squares Meshless (MDLSM)
method is proposed and used to attain an e�cient solution to engineering problems.
Background mesh is not required in the MDLSM method; hence, the method is a truly
meshless method. Nodal points are used in the MDLSM methods to construct the shape
functions, while collocated points are used to form the least squares functional. In the
original MDLSM method, the locations of the nodal points and collocated points are the
same. In the proposed Collocated Mixed Discrete Least Squares Meshless (CMDLSM)
method, a set of additional collocated points is introduced. It is expected that the accuracy
of results may improve by using the additional collocated points. It is noted that the size
of coe�cient matrix is not increased in the proposed CMDLSM method compared with
the MDLSM method. Therefore, the required computational e�ort for solving the linear
algebraic system of equations is same as that in MDLSM method. A set of benchmark
numerical examples, cited in the literature, is used to evaluate the performance of the
proposed method. The results indicate that the accuracy of solutions is improved by using
additional collocated points in the proposed CMDLSM method.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Compared with mesh-based methods, Meshless meth-
ods are e�cient alternatives for solving Partial Dif-
ferential Equations (PDEs). Di�erent versions of
the mesh-based numerical methods, such as Finite
Volume Method (FVM) [1] and Finite Element Method
(FEM) [2], have been used for solving various en-
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gineering problems. A nonlocal �nite element ap-
proach is presented and used for the simulation of
nanobeams [3,4]. The convergence and stability prop-
erty of nonlocal FEM method for the solution to elasto-
plasticity problem are also studied by a variational
formulation [5]. Although the mesh-based methods
are shown to be capable of accurately simulating
the physical problems, these methods are faced with
some di�culties when dealing with problems contain-
ing discontinuity and/or moving boundaries. These
di�culties can be overcome or at least moderated by
using meshless methods [6]. Although meshless meth-
ods are generally more e�cient than standard FEM,
they are generally more expensive and complicated [7].
Hence, some researchers have combined the FEM with

http://scientiairanica.sharif.edu/article_4203.html
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the proper meshless methods to take advantage of
the simplicity and computational e�ciency of these
methods [7]. Smoothed Finite Element Method (S-
FEM) is one of the most well-known ones among these
methods, which has been e�ciently used for solving
some engineering problems [8-10]. Recently, Mixed
Discrete Least Squares Meshless (MDLSM) method, as
a truly meshless method, was proposed and e�ciently
used to solve PDEs. In the current study, the concept
of collocated points is introduced in MDLSM method,
leading to Collocated Mixed Least Squares Meshless
(CMLSM) method. Performance of the proposed
method is then compared with the existing MDLSM
method.

Unlike the mesh-based methods, only a set of
nodes is used in meshless methods to discretize the do-
main. Therefore, time-consuming element-generation
procedure is not needed in meshless methods. Further-
more, adaptive re�nement procedures are conveniently
carried out in meshless methods due to the fact that
no element connectivity is required by them. In the
last three decades, several meshless methods have
been proposed and developed to solve PDEs. These
methods are mainly categorized into two major classes
regarding the approximation procedure: 1) Kernel
function method; and 2) Polynomial series method.
Smoothed Particle Hydrodynamics (SPH) and Moving
Particle Semi-implicit (MPS) are the known meshless
methods, which are based on the Kernel function
method. The SPH method was primary proposed by
Gingold and Monaghan (1977) and used for solving
various uid mechanics problems such as multiphase
ows [11], free surface solid-uid [12], and free surface
ow in hydraulic structures [13] problems. In the MPS
method, which is mainly similar to the SPH method,
the partial spatial derivatives are calculated without
using the gradient of Kernel function. This method
has been successfully applied to solve free surface ow
problem [14] and multi-phase ow problems [15]. Since
the original MPS method did not ensure continuity
of the �rst derivatives [14], a modi�ed version of the
method was presented [16]. Although the computa-
tional e�ort required for function approximation in the
Kernel method is less than that in the polynomial series
method, higher order consistency and accuracy can be
obtained using the latter one [6].

Element-Free Galerkin (EFG) method is the most
well-known method that uses the polynomial series
approach. Several solid mechanics [17,18] and heat
transfer [19] problems were e�ciently solved by the
EFG method. Since EFG uses the weak form of
governing equations, the use of background mesh is
unavoidable for numerical integration procedure. For
this, the EFG method is not considered as a truly
meshless method. Therefore, Meshless Local Petrov-
Galerkin (MLPG) was proposed by Atluri and Zhu to

alleviate the problem of background mesh in weak-
form formulations. The method was used for sim-
ulating various solid [20] and uid [21,22] mechanics
problems. Although the problem of background mesh
was overcome by the MLPG method, the method
still su�ered from a major drawback of asymmetric
coe�cient matrix and di�culties associated with the
numerical integration procedure on and around the
boundary nodes.

Another group of the meshless methods are also
available, which use the strong form of the governing
equations based on the collocation approach. SPH,
Finite Point Method (FPM) [23-25], and Radial Point
Interpolation Collocation Method (RPICM) are some
of the meshless methods using the strong formula-
tion [26-28]. Unlike the weak form, by using the strong
form, the numerical integration procedure and the
background mesh are not required. The strong form
methods, however, may face the instability problem
if the number and position of the collocation points
are not suitably chosen. Therefore, several techniques
have been proposed for improving the stability of the
strong form methods, such as the upwind method
used in the FPM when solving convection dominated
problems [29]. The least-square technique used in LS-
RPCM is shown to be a natural way to overcome
the instability problems [30,31]. Since adaptive re-
�nement procedures are simple and straightforward
in the meshless methods based on the strong form,
they are frequently combined with adaptive re�nement
algorithms [30-35].

The Discrete Least Squares Meshless (DLSM)
method has recently been proposed by Afshar et
al. (2006). Since it uses the strong-form governing
equations, the method is considered as a truly meshless
method. The DLSM method uses the Moving Least
Squares (MLS) method as a polynomial series method
to construct the shape functions. Since the method
automatically leads to symmetric and positive-de�nite
systems of equations irrespective of the problem type,
it is not subjected to the Ladyzenskaja-Babuska-Brezzi
(LBB) condition. The DLSM method was widely
used to solve the linear elasticity mechanics [34,35]
and free surface [36,37] problems. More recently,
mixed formulation was used in the DLSM method,
leading to the Mixed Discrete Least Squares Meshless
(MDLSM) method [35,38,39] removing the need for
time-consuming computation of the second derivatives
of the MLS shape function. Furthermore, in the
MDLSM method, the gradients are calculated more
accurately than in the DLSM method [35,38,39]. More
recently, the method was also used for solving the linear
and non-linear propagation problems [40].

Firoozjaee and Afshar showed that the accu-
racy of DLSM method could be improved by us-
ing additional sampling points referee to collocated
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points [41]. In the current study, a set of additional
collocated points is used in the MDLSM method;
hence, the method is called Collocated Discrete Mixed
Least Squares Meshless (CMDLSM) method. The
additional collocated points are not used for function
approximation and, therefore, do not change the size
of the coe�cient matrix. A series of benchmark
problems, cited in the literature, is used to evaluate
the performance of the proposed CMDLSM method in
comparison with the MDLSM method and analytical
solutions. Comparison of the results shows that the
additional collocated points improve the accuracy of
the proposed method.

2. Moving Least Squares (MLS)
approximation

Various approximation and interpolation methods are
used in meshless methods to construct the shape func-
tions. In this section, the Moving Least Squares (MLS)
approximation is presented briey. More detailed
explanation of the method is available in [38].

In MLS method, the unknown values (u(X)) are
approximated by:

u(X) = N(X)û; (1)

where X denotes the coordinate of collocated points
and û is the vector of nodal parameters de�ned by:

ûT = [û1; û2; :::; ûns ]; (2)

where ns is the number of nodes in the support domain.
The vector of MLS shape function (N(X)) is de�ned
as:

N(X) = PT (X)E�1(X)G(X); (3)

where E(X) and G(X) are de�ned as follows:

E(X) =
nsX
j=1

wj(X�Xj)P(Xj)PT(Xj); (4)

G(X) =[w1(X�X1)P(X1);w2(X�X2)P(X2);

:::;wns(X�Xns)P(Xns)]; (5)

where wj denotes the weight coe�cient. In this study,
a cubic spline weight function is used as follows:

wj(d) =

8><>:
2
3 � 4d2 + 4d3 d � 1

2
4
3 � 4d+ 4d2 � 4

3d
3 1

2 � d � 1
0 d � 1

d = kX�Xjk =dwj : (6)

Here, dwj de�nes the radius of the support domain at

j-th node. The �rst order derivatives can be obtained
by the following equations:

@N
@x

=
@PT

@x
E�1G + PT @E�1

@x
G + PTE�1 @G

@x
; (7)

@N
@y

=
@PT

@y
E�1G + PT @E�1

@y
G + PTE�1 @G

@y
: (8)

3. Collocated Mixed Discrete Least Squares
Meshless (CMDLSM) method

Consider the following PDE as a typical quadratic
equilibrium equation on a domain with the dimension
of nd:

ndX
j=i

ndX
i=1

aij
@2T
@x2

ij
+

ndX
i=1

bi
@T
@xi

+ cT = g; j � i; (9)

subject to the following boundary conditions:

T (X) = �T (X);

rT (X) = �q(X); (10)

where aij , bi, and c denote the coe�cients of governing
PDE; �T and �q are the prescribed Dirichlet and Neu-
mann boundary conditions, respectively; and r is the
gradient operator.

In the mixed formulation, the �rst derivatives of
the problem are primarily unknown and de�ned by:

rT = q = [q1; q2; :::; qi; :::; qnd ]: (11)

q is considered as secondary unknown, which is com-
puted simultaneously. Rewriting the governing equa-
tion along with the boundary conditions in terms of
the new unknowns leads to the following system of
di�erential equations:

ndX
j=i

ndX
i=1

aij
@qj
@xi

+
ndX
i=1

biqi + cT = g;

rT � q = 0; (12)

subject to the Dirichlet type boundary conditions as:
T (X) = �T (X) and q(X) = �q(X).

The compact form of the equations can be rewrit-
ten as:

ndX
i=1

Ai
@'
@xi

+B' = G; G = [0; 0; :::; 0; g]T ; (13)

where G denotes the vector of right-hand-side and '
is the vector of the unknown, de�ned as:

'(X) =[T1(X); T2(X); :::; Ti(X); :::; Tnd(X); q1(X);

q2(X); ::::; qi(X); :::; qnd(X)]T : (14)

Ai and B are de�ned by the following matrices:
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Ai =

2666664
�i1 0 0 ::: 0
�i1 0 0 0 0
...

... 0
. . .

...
�i1 0 0 ::: 0
0 ai1 ai2 ::: aind

3777775 ;
�ij =

(
1 i = j
0 i 6= j

B =

2666664
0 �1 0 ::: 0
0 0 �1 0 0
...

... 0
. . .

...
0 0 ::: 0 �1
c b1 b2 ::: bnd

3777775 : (15)

By using the MLS approximation, the value of the
problem unknown (�) at an arbitrary collocated point
is approximated by Eq. (16), in terms of the unknown
nodal parameters (�̂), as shown in Box I, where nt is
the total number of nodes and Nl(X) is the shape func-
tion of the l-th node at collocated point X as de�ned in
Eq. (3). Figure 1 schematically shows collocated and
nodal points in an arbitrary support domain.

Similarly, the gradient of the nodal values can be
approximated by Eq. (17) as shown in Box II. The
residuals of di�erential equation (R
) and boundary
condition (R�) at each collocated point are de�ned as
follows:

R
(X) =

 ndX
i=1

Ai
@M(X)
@xi

+ BM(X)

!
'̂�G;

R�(X) = M(X)'̂� �'(X): (18)

The least square functional of the residuals is de�ned

Figure 1. Nodal points and collocated points on an
arbitrary support domain.

'(X) = M(X)'̂; (16)

M(X) =

264N1(X) 0 0 ::: Nl(X) 0 0 ::: Nnt(X) 0 0

0
. . . 0 ::: 0

. . . 0 ::: 0
. . . 0

0 0 N1(X) ::: 0 0 Nl(X) ::: 0 0 Nnt(X)

375
(nd+1)�((nd+1)�nt)

'̂ = ['̂(X1); '̂(X2); � � � ; '̂(Xi); � � � ; '̂(Xnt)]T ;

'̂(Xi) = [T (Xi); q1(Xi); � � � ; qi(Xi); � � � ; qnd(Xi)]T ; i = 1; 2; � � � ; nt:

Box I

@'(X)
@xi

=
@M(X)
@xi

'̂;

@M(X)
@xi

=

2664
@N1(X)
@xi 0 0 � � � @Nnt(X)

@xi � � � 0

0
. . . 0 � � � 0

. . . 0
0 0 @N1(X)

@xi � � � 0 � � � @Nnt(X)
@xi

3775
(nd+1)�((nd+1)�nt)

i = 1; 2; � � � ; nt:
(17)

Box II
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as follows:

Re=
1
2

 
ncX
i
=1

(R
(Xi
))2+�
nbX
i�=1

(R�(Xi�))2

!
;
(19)

where Xi
 and Xi� are the coordinates of collocated
points arbitrarily distributed over the domain and its
boundaries, respectively, nc is the total number of
collocated points, and nb is the number of nodes on
the boundaries. Here, the penalty method is used
to impose the essential boundary conditions with �
denoting the penalty coe�cient that should be large
enough to satisfy the boundary conditions [6,42].

Minimizing Eq. (19) with respect to the unknown
nodal parameters leads to:

ncX
i
=1

@(R
(Xi
))
@'̂

(R
(Xi
))

+ �
nbX
i�=1

@(R
(Xi�))
@'̂

(R
(Xi�)) = 0: (20)

Eq. (20) represents a symmetric positive-de�nite sys-
tem of linear algebraic equations de�ned as:

K'̂ = F: (21)

The coe�cient matrix (K) and right-hand-side vector
(F) are de�ned as follows:

K=
ncX
i
=1

LT (Xi
)L(Xi
)+�
nbX
i�=1

MT (Xi�)M(Xi�);

L(Xi
) =
ndX
i=1

Ai
@M(Xi
)

@xi
+ BM(Xi
); (22)

F =
ncX
i
=1

LT (Xi
)G + �
nbX
i�=1

MT (Xi�) �'(Xi�); (23)

which should be solved for unknown nodal parameters.
Since the Kronecker delta function property is not sat-
is�ed by the MLS shape function, the nodal parameters
are not equal to the nodal values. The nodal values
should be retrieved using Eq. (16) [6,42].

In the MDLSM method, collocated points and
nodal points are the same. However, in the CMDLSM
method, some additional collocated points are used.
Since the number of nodal points determines the size
of coe�cient matrix, the size of the coe�cient matrix is
not increased by using the additional collocated points.
This clearly means that the computational cost for
solving the linear algebraic system of equations in the
CMDLSM method is the same as that in MDLSM
method. However, it is expected that the accuracy
of results may be improved by using the CMDLSM
method.

In the following, a set of numerical examples
is solved to evaluate the performance of the pro-
posed CMDLSM method compared with the MDLSM
method.

4. Numerical experiments

In this section, a series of benchmark examples from
the literature is used to evaluate the e�ciency of
the proposed CMDLSM method compared with the
MDLSM method. A value of � = 108 is used for
the penalty coe�cient. The linear/quadratic basis
function is used to construct the MLS shape functions
for one/two-dimensional examples. The following error
norms are used as the error indicator:

error =

Cexact �Cnumerical


2kCexactk2 ; (24)

where Cexact and Cnumerical are the vectors of exact and
numerical values, respectively, and jj:jj is the L2-norm.

4.1. One-dimensional problem
Consider the following one-dimensional equation:

@2T
@x2 +

@T
@x

= � sin(x) + cos(x); (25)

where x denotes the coordinate. The Dirichlet type of
boundary conditions determined by the exact solution
is used to solve the problem. Three sets of uniformly
distributed collocated and nodal points are used to
solve the problem using MDLSM and CMDLSM meth-
ods to study the convergence characteristics of the
methods for this problem. Convergence curves are
shown in Figure 2 and the error norms of MDLSM
and CMDLSM methods are presented in Table 1 for
di�erent nodal distributions. The results indicate that
the accuracy of solutions is improved by using the

Figure 2. Convergence curves of the MDLSM and
CMDLSM methods (�rst example).
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Table 1. Error norms of the MDLSM and CMDLSM results for the �rst example.

Number of
nodes

Number of additional
collocated points

MDLSM method CMDLSM method

5 4 0.0147 0.0069
6 5 0.0108 0.0046
11 10 0.0025 0.0012

Table 2. The e�ect of the number of additional collocated points on the error norms of CMDLSM for the �rst example.

Number of additional collocated points 50 100 250 300

Error norm of CMDLSM method 3.9959e-004 1.6469e-004 4.3822e-005 6.3789e-005

additional collocated points. However, the convergence
rates of MDLSM and CMDLSM methods are the same.
The problem is resolved using di�erent distributions of
the additional collocated points with the same number
of 11 nodal points, and the results are presented in
Table 2, emphasizing the role of additional collocated
points for improving the accuracy of the proposed
method. Although the obtained results prove the
e�ect of additional collocated points on the accuracy
of the proposed method, more studies are required
to investigate the best locations of the additional
collocated points [41].

4.2. Two-dimensional problem in square
domain

In this section, the following two-dimensional PDE is
solved:

@2T
@x2 +

@2T
@xy

+
@2T
@y2 + (ku2)T = g(x; y);

g(x; y) =
��
ku2 � 2u2� sin(ux) cos(uy)

�
� �u2 sin(uy) cos(ux)

�
: (26)

The exact solution to this problem is available as
follows:

Texact = sin(ux) cos(uy); (27)

where x and y denote the coordinates. Constant
coe�cients are assumed to be k =

p
10 and u = 8,

and the problem is solved on a square domain with
length one. The Dirichlet type boundary condition of
the exact solution is used. First, a set of 121 uniformly
distributed nodal points is used to solve the problem
using MDLSM method. The same number of nodal
points along with 100 additional collocated points is
then used to solve the problem using CMDLSM method
so that the results can be fairly compared. Using
the nodal and collocated points distributions shown
in Figure 3, the results of MDLSM and CMDLSM
methods are compared on y = 0:4 and illustrated in
Figure 4. The problem is also solved by the MDLSM

Figure 3. Distribution of 121 nodes and 100 additional
collocated points (second example).

Figure 4. Results of CMDLSM and MDLSM on y = 0:4
for 121 nodes and 100 collocated points (second example).

method on a uniform distribution of 441 nodal points,
and by the CMDLSM on a uniform distribution of
441 nodal points and 400 additional collocated points
as shown in Figure 5. Figure 6 compares the results
obtained on y = 0:4. The error norms of the results
produced by the MDLSM and CMDLSM methods



2006 S. Faraji Gargari et al./Scientia Iranica, Transactions A: Civil Engineering 25 (2018) 2000{2011

Table 3. Comparison of the errors of MDLSM and CMDLSM methods for the second example.

Number of nodes Number of additional
collocated points

MDLSM method CMDLSM method

36 25 0.5196 0.4683
121 100 0.1491 0.0681
441 400 0.0401 0.0168

Figure 5. 441 nodes and 400 additional collocated points
(second example).

Figure 6. Results of CMDLSM and MDLSM on y = 0:4
for 441 nodes and 400 additional collocated points (second
example).

are also presented and compared in Table 3. The
results clearly show the e�ect of additional collocated
points on the performance of the proposed CMDLSM
method. The convergence curves of the MDLSM
and CMDLSM methods are compared in Figure 7.
Although Figure 7 indicates high rate of convergence
for the proposed CMDLSM method compared with

Figure 7. Convergence curves of the MDLSM and
CMDLSM methods (second example).

the MDLSM method, the super-convergence of the
proposed CMDLSM method cannot be �rmly claimed.

4.3. Two-dimensional Laplace problem in
circular domain

The following Laplace equation de�ned on a circular
disk with unit radial is solved in this section:

@2T
@x2 +

@2T
@y2 = 0: (28)

The exact solution can be calculated by the following
equation [43]:

Texact = r6 cos(6�); (29)

where r is the radial coordinates de�ning the distance
from the center of the circle and � denotes the polar
angle. The Dirichlet type boundary conditions are
again used to solve the problem. In this problem, the
collocated points are located at the center of Delaunay
triangles formed on the nodal points as shown in
Figure 8. A set of 102 nodal points along with 169 col-
located points as shown in Figure 9 is used to solve the
problem by the MDLSM and CMDLSM methods. The
contours of results are presented in Figure 10. Another
set of 359 nodes and 652 additional collocated points
shown in Figure 11 is used to solve the problem with the
results compared in Figure 12. Table 4 compares the
error norms of the results obtained on di�erent sets of
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Table 4. Error norms of the MDLSM and CMDLSM results for the third example.

Number of nodes Number of additional
collocated points

MDLSM method CMDLSM method

102 169 0.2233 0.1125
359 652 0.0756 0.0395
1345 2561 0.0136 0.0062

Figure 8. Delaunay triangulation of the nodal points
used to locate the additional collocated points.

Figure 9. Distribution of 102 nodes and 169 additional
collocated points (third example).

nodal distributions. The results indicate considerable
improvements in the accuracy of the solutions obtained
by the CMDLSM method compared with the MDLSM
method. The convergence curves of the MDLSM and
CMDLSM methods are also shown in Figure 13.

4.4. Potential ow around a cylinder
Consider the problem of a potential ow around a
cylinder of radius R in an in�nite domain shown in
Figure 14. The governing equation for the problem is:

Figure 10. Exact, MDLSM, and CMDLSM solutions for
102 nodes and 169 additional collocated points (third
example).

Figure 11. Distribution of 359 nodes and 652 additional
collocated points (third example).

@2T
@x2 +

@2T
@y2 = 0; (30)

where T denotes the stream function. Due to symme-
try, the problem is solved on a quarter of the domain,
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Figure 12. Exact, MDLSM, and CMDLSM solutions for
359 nodes and 652 additional collocated points (third
example).

Figure 13. Convergence curves of the MDLSM and
CMDLSM methods (third example).

Figure 14. Flow around a cylinder in an in�nite domain
(fourth example).

Figure 15. Potential ow problem with boundary
conditions (fourth example).

Figure 16. Distribution of 41 nodes and 55 additional
collocated points (fourth example).

Figure 17. Distribution of 72 nodes and 111 additional
collocated points (fourth example).

which is shown in Figure 15. The essential boundary
condition of the problem is de�ned in Figure 15. The
exact solution to the problem is available in polar
coordinates (r; �) as follows:

T = U
�
r � R2

r

�
sin(�); (31)

where U is a constant parameter assumed to be 1. Sim-
ilar to the third example, the centers of the Delaunay
diagrams are used as the locations of the additional
collocated points. Two sets of nodal distributions,
shown in Figures 16 and 17, are used to solve the
problem with the results compared in Figures 18 and
19. The error norms of the results are compared in
Table 5 for the di�erent sets of nodal distributions.
The convergence curves of the methods are also shown



S. Faraji Gargari et al./Scientia Iranica, Transactions A: Civil Engineering 25 (2018) 2000{2011 2009

Table 5. Error norms of the MDLSM and CMDLSM results for the fourth example.

Number of nodes Number of additional
collocated points

MDLSM method CMDLSM method

41 55 0.0349 0.0163
47 66 0.0113 0.0081
72 111 0.0055 0.0029

Figure 18. Comparison of the numerical and exact
solutions for the distribution of 41 nodes and 56 additional
collocated points (fourth example).

Figure 19. Comparison of the numerical and exact
solutions for the distribution of 72 nodes and 111
additional collocated points (fourth example).

in Figure 20. The results clearly indicate the positive
role of additional collocated points in the proposed
CMDLSM method to produce more accurate results
than the results of the MDLSM method.

5. Conclusion

In this paper, a CMDLSM method was proposed
and used to attain an e�cient solution to engineering
problems. As the background mesh is not required in
the MDLSM method, it is a truly meshless method.
The method circumvents the Ladyzenskaja-Babuska-
Brezzi (LBB) condition due to the use of least squares
concept, leading to symmetric and positive-de�nite
system of equations. Nodal points were used in the

Figure 20. Convergence curves of the MDLSM and
CMDLSM methods (fourth example).

MDLSM methods to construct the shape functions,
while collocated points were used to form the least
squares functional. In the original MDLSM method,
the location of the nodal points and collocated points
is the same. In the proposed CMDLSM method, a
set of additional collocated points was introduced. A
set of benchmark numerical examples, cited in the
literature, was used to evaluate the performance of the
proposed method. Applying the proposed CMDLSM
method to the engineering problems showed that the
accuracy of results was notably improved by using the
additional collocated points. More studies are required
to �nd the best location of the additional collocated
points. It is noted that the size of coe�cient matrix was
not increased in the proposed CMDLSM method and,
therefore, the required computational e�ort for solving
the linear algebraic system of equations was the same
as that in the MDLSM method.
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