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Abstract. Castellated beams and composite action of beams are widely applicable
methods to increase the capacity of the beams. Semi-rigid connections can also redistribute
internal moments in order to attain a better distribution. Combination of these methods
helps to optimize the cost of the beam. In this study, some meta-heuristic algorithms
consisting of the particle swarm optimization, colliding bodies optimization, and enhanced
colliding bodies optimization are used for optimization of semi-rigid jointed composite
castellated beams. Pro�le section, cutting depth, cutting angle, holes spacing, number of
�lled end holes of the castellated beams, and rigidity of connection are considered as the
optimization variables. Constraints include the construction, moment, shear, de
ection,
and vibration limitations. E�ects of partial �xity and commercial cutting shape of a
castellated beam for a practical range of beam spans and loading types are studied through
three numerical examples. The e�ciency of three meta-heuristic algorithms is compared.

© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Optimizing the structural elements to achieve the best
economical and serviceable result is one of the most
desirable aims of the structural designers. A typical
example of such a trend is the e�orts of researchers
to e�ciently increase the capacity of beams. Castel-
lated beams and composite beams can increase beams
moment of inertia and this e�ect increases the bending
moment capacity of the beams. However, both of them
have some limitations and produce secondary e�ects
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that limit their usage. For example, in order to face the
secondary shear e�ect of the castellated beams, some
end hole should be �lled.

One of the �rst studies that evaluated the e�ect
of web opening on composite beams was performed by
Redwood and Cho [1]. They also surveyed the failure
modes of the hexagonal composite castellated beams.
Several tests were performed by Jackson [2] showing
that the AISC design guide procedures for composite
prismatic beams could be used for calculating the
natural frequency of the beams.

The e�ect of edge constraint component on 
ex-
ural strength of composite beam was studied by Wang
and Li [3]. Ellakani and Tablia [4] developed a
numerical model for static and free vibration analysis
of elastic composite beams with end shear restraint.
They found that the end shear restraint played an
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important role when the composite beam interaction
was not complete.

There have been several e�orts for cost optimiza-
tion of composite beam. Morton and Webber [5]
optimized the composite I beams. They found that
the �xed-end conditions led to lighter beams. Senouci
and Al-Ansari [6] used the genetic algorithm for opti-
mizations.

Optimization of castellated beams with several
variables has been performed by many researchers.
Sorkhabi et al. [7] optimized the castellated beams
by PSO and Genetic Algorithm (GA) and found that
PSO was better than GA. Kaveh and Shokohi [8,9]
optimized castellated beam with hexagonal and cellular
opening by CBO and Charged System Search (CSS)
meta-heuristic algorithms. They also considered the
e�ect of end �lled plates [10].

Semi-rigid composite connections have been mod-
eled and tested by some researchers in recent years.
Modeling of beam to girder semi-rigid composite
connection with angles, including the e�ects of con-
crete tension sti�ness, was studied by Oliveira and
Batista [11]. They calibrated a modi�ed theoretical
model based on the component method and found a
good agreement between the experimental and theo-
retical results. They observed the role of the concrete
before and after crack development and stabilization
and the shear lag e�ect in the slab. Fu et al. [12] mod-
eled a 3D �nite element model of semi-rigid composite
end-plated connections. They presented the e�ects of
longitudinal bar, thickness of the endplate, thickness of
beam 
ange, etc. on capacity of the connection. Gil et
al. [13] validated the design procedures experimentally
and numerically. They found that the load level in the
minor column axis had no in
uence on the behavior of
the major one. Rex and Easterling [14] developed a
simple method of approximating the moment-rotation
behavior of composite beam-girder connection. They
presented the e�ect of pre-loading on the moment
rotation behavior.

Redistribution of internal member forces by semi-
rigid connections can help designers to decrease the
total cost of the building. Simoes [15] was one of
the �rst researchers who optimized frame elements by
semi-rigid connections. He used segmental method
utilizing linear programming to solve optimization
problems. Kameshki and Saka [16] utilized GA to
optimize non-linear steel frame with semi-rigid con-
nections. They considered P � � e�ect in their
analysis. Ramires et al. [17] optimized the composite
and steel endplate semi-rigid joints by GA. They
found that the joint cost could be decreased by 10%
by tuning the sti�ness of the connections. Ali et
al. [18] used the multi-stage design optimization by GA
for semi-rigid steel frames, and their results showed
that the cost of joints might constitute more than

20% of the total cost of an optimized steel frame
structure.

The main objective of the present paper is to
study the composite action, semi rigidity of joint, and
end holes �lling on optimization of the castellated
beams. The optimization algorithms used in this paper
consist of the colliding body optimization, enhanced
colliding body optimization, and particle swarm op-
timization. Optimization variables are pro�le section,
cutting depth (dh), cutting angle (�), holes spacing (s),
number of �lled end holes of the castellated beam, and
rigidity of the connections (Rj).

The present paper is organized as follows: In the
next section, design of the castellated beams is intro-
duced. In Section 3, design of the composite beams is
provided. Semi-rigid connections are introduced brie
y
in Section 4. Some dependence features of semi rigidity,
composite action, and castellated beams are discussed
in Section 5. Three optimization algorithms that are
used in this study are brie
y introduced in Section 6.
Based on these sections, problem de�nition is presented
in Section 7. In Section 8, some examples are optimized
using di�erent metaheuristics, and �nally Section 9
concludes the paper.

2. Design of castellated beams

Increasing beam depth without using additional ma-
terial by cuttings and welding beams is known as the
castellated beam. This method produces a beam web
and shape of the holes may be di�erent depending on
the cutting procedures. Hexagon and circle are two
well-known and common shapes of the cutting. To
avoid the stress concentration at angles of hexagonal
shape, sinusoid cutting can be performed instead of
hexagonal openings. Also, for both shapes of holes,
secondary plates can be placed between two parts of
the beam and increased depth of the beam. In the
present study, simple hexagonal shape of castellated
beam is considered, because this results in better design
in optimization [8-10].

Determining the strength of the castellated beams
is more complex than that of the standard beams.
Interaction between shear and moment, horizontal
shear and radial moment are the main di�erences
between typical beam design process and castellated
beam design procedure.

Unbraced length of the beams plays an important
role in their 
exural capacity. By considering the
concrete on the top of the beam, unbraced length can
be considered as zero and lateral-torsional buckling can
be assumed not to occur.

In the following, the design procedure of the
castellated beams is provided based on Load and
Resistance Factor Design (LRFD) method of the AISC
360-10 [19].
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Figure 1. Details of a composite castellated beam.

2.1. Flexural capacity
Section plastic modulus of a beam identi�es the mo-
ment capacity of the beam and the maximum moment
under applied load should satisfy the following condi-
tion in AISC 360-10 [19]:

Mu < �bMn = �bFyZnet - st; (1)

where Mu is the ultimate moment of beam; Mn is the
nominal moment capacity of the beam; Zn�st is the
plastic module of steel net section; �b is the bending
reduction factor; and Fy is the yield strength of steel.

This equation is related to the general beam
section. At the holes, Vierendeel mechanism identi�es
the 
exural demand of the beam. In Vierendeel
mechanism, two virtual hinges at top and bottom tee
beams between two holes are considered. Vertical
shear forces of these two tee beams produce secondary
moment that is added to essential moment. Because of
linear distribution of moment at depth of the beam, at
points \a" and \c" depicted in Figure 1, sum of the two
moments may be critical. Therefore, 
exural capacity
of the tee beam should satisfy the following equation
in AISC 360-10 [19]:

mu =
Vu � e

4
; (2)

Mu

Znet - st
+
mu

Ztee
< �bFy; (3)

where mu is the ultimate moment of the secondary
shear; Vu is the ultimate shear force; e is the web post
length; Mu is the ultimate moment; Znet-st is the plastic
module of steel net section; and Ztee is the plastic
module of steel tee section. �b for concrete and steel is
considered to be equal to 0.9.

By �lling the hole, Vierendeel mechanism can be
neglected.

2.2. Shear capacity
Three types of shear forces must be controlled in
castellated beam.

First, overall shear capacity of the general section

must satisfy the following equations in AISC 360-
10 [19]:

AW = ds � tw; (4)

Vu < �vVn�w = �v � 0:6FyAWCv; (5)

where Aw is the area of the net section web; tw is
the thickness of the web; ds is height of the internal
castellated beam; Vu is the ultimate shear force; Vn�w
is the nominal web shear capacity of net section; �v
is the shear reduction factor; and Cv is the web shear
coe�cient.

Second, vertical shear capacity of the tee beams
must satisfy the following equations:

Atee = dt � tw; (6)

Vu
2
< �vVn�tee = �v � 0:6FyAteeCv; (7)

where Atee is the area of each tee section and Vn�tee is
the nominal web shear capacity of tee section.

Third, horizontal shear capacity of post web must
satisfy the following equations:

Ahe = e� tw; (8)

Vh=
Vu �Qg

Ig
� s < �vVn�p=�v � 0:6FyAheCv; (9)

where Vh is the horizontal shear at post web; Qg and Ig
are the �rst and second moments of inertia of general
section, respectively; s is the spacing between the holes
(Figure 1); Vn�p is the nominal shear capacity of post
web; Ahe is web post horizontal shear area; and �v and
Cv are equal to 1.

Because of the penetration of web welding, weld-
ing capacity is not critical at horizontal shear check.
By �lling the hole, horizontal shear can be controlled.

2.3. Web post buckling
Due to the horizontal shear, which was discussed above,
web post plate performs similar to a cantilevered beam
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without 
ange, and at one side of it, compression forces
produce instability by out of plane buckling [20]. The
radial moment and capacity of the web post, according
to Structural Stability Research Council (SSRC), must
satisfy the following equations:

Cb = 1:75 + 1:05
M1

M2
+ 0:3

�
M1

M2

�2

< 2:3;

rT =
twp
12
;

Cc =
2�2E
Fy

;

Lb = 2dh;

frb =
3
4
Vh tan �
tw�2e

< �bFrb =

2641�
�
Lb
rT

�2

2Cc2Cb

375�bFy;
(10)

where �, e, and dh are the cutting angle, hole pure
distance, and cutting depth of castellated beam (Fig-
ure 1), respectively; tw is the thickness of the web; M1
and M2 are the moment at each beam end; Es is steel
module of elasticity; and �b is equal to 0.9, similar to
the moment equation.

By �lling the hole, radial moment can be con-
trolled.

3. Design of composite beams

In composite beam with complete interaction, the
center line should be found and then moment of inertia
of the composite section should be calculated. In this
study, temporary shores are considered for use during
construction and only composite section is designed for
the total live and dead loads. E�ective width of the
concrete slab should not exceed the limits as described
in AISC 360-10 [19]:

1. One-eighth of the beam span, center-to-center of
the connections;

2. One-half of the distance to the centerline of the
adjacent beam;

3. The distance to the edge of the slab.

According to the height to web thickness ratio,
Mn should be determined from the superposition of
elastic stresses or from the plastic stress distribution
on the composite section. In this study, superposition
of elastic stresses is considered because behavior of the
composite castellated beam plastic is unpredictable.

In order to consider the e�ect of di�erential
shrinkage and creep on a composite steel-concrete
structure, e�ective length can be divided by 3 [21].

Shear studs are designed for transforming shear
forces between steel and concrete completely. Shear
and strength of the steel channel anchors, without
considering compression steel e�ect, are determined
according to AISC 360-10 as follows [19]:

Qu = min(0:85Fcbehc; AsFy) < Nc�vQn = Nc � �v
� 0:3(ts�f + 0:5ts�w)La

p
FcEc; (11)

where Fc and Ec are compression strength and elastic-
ity module of concrete, respectively; be and hc are the
e�ective width and height of concrete, respectively; As
is the steel section area; ts�f , ts�w, and La are 
ange
thickness, web thickness, and width of the channel
shear studs, respectively. Considering linear shear
diagram, Nc is half of the total number of shear studs
and �v is equal to 0.75.

In positive moment area, compression stress in top
of the concrete must be less than allowable compression
stress of concrete and tensile stress in the bottom of
steel must be less than the allowable tensile stress of
steel:

Mu < min(Mn�con;Mn�st)

= min(�b0:7FcZn�com�top; �bFyZn�com�bot);
(12)

where Mn�con and Mn�st are the nominal moment ca-
pacities of composite beam according to concrete part
and steel part of the beam, respectively; Zn�com�bot
and Zn�com�top are section modules of bottom part
and top part of the composite net section, respectively.

�b for concrete and steel is considered to be equal
to 0.9 (AISC 360-10) [19].

In negative moment area, cracked concrete cannot
sustain tensile stress and only steel section should be
considered as presented in Eq. (1).

The available shear strength of the composite
beams will be determined based upon the properties
of the steel section alone as presented in Eq. (5), AISC
360-10 [19].

4. Semi-rigid connection

Considering partial �xity in connection and redistribu-
tion of internal member forces by semi-rigid connec-
tion can help designers to decrease the total cost of
building, Figure 2. Modeling, analyzing, and testing
of this type of connections have been the subject of
many research e�orts. Linear, bi-linear, and tri-linear
moment-rotation models can be adopted to describe
the connection behavior. The component method is
applied to de�ne and estimate the properties of the
connection [22]. It is usual to consider the web angles
subjected to plastic behavior under construction loads
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Figure 2. Model of a semi-rigid connection.

that do not contribute to the initial sti�ness of the
composite joint. Initial sti�ness of joint (Sj;ini) can be
estimated by:

Sj;ini =
P
Mi

d 
=
P
Fi � di
d 

=
Fs � ds
d 

=
EsAreb
Leff

drd � dr
d 

=
EsAreb

Le�
(dr)

2; (13)

where Mi, Fi, and di are the moment, force, and
distance, respectively, and  is rotation of semi-rigid
joint. Areb, dr, and Le� are the area, distance, and
e�ective length of the rebars, respectively.

This equation is based on small rotation of con-
nection and calculates the force and moment of the
e�ective component.

In this study, the bilinear model presented in Mur-
ray et al. [23] is considered for semi-rigid connection,
Figure 3. According to Silva et al. [22], the factor � for
beam to beam joint is considered 3:

Sj =
Sj;ini

�
; (14)

where Sj is the e�ective sti�ness of semi-rigid connec-
tion.

After calculating Sj , from the basic equation for
calculating rotation of the beam, the �xity factor, Rj ,

Figure 3. Bending moment-rotation curve of a joint [23].

for the distributed load is de�ned as:

Rj =
1

1 + 2EsIdef
SjLT

=
1

1 + 2EsIdef
EsAreb
Leff

(ds)2LT
� �

=
1

1 + 2IdefLeff
Areb(ds)2LT

� � ; (15)

where Idef is the e�ective moment inertia for de
ection
calculation.

According to this equation, the properties of rebar
can be determined. But, in the present study, only
optimal �xity factor is calculated.

The common shrinkage and temperature rein-
forcements parallel to beam can help to have su�cient
partial �xity. If there is no su�cient reinforcement,
partial �xity will be limited.

Moment resistance of the semi-rigid joint must be
controlled as:

Mu < �bMj�Rd = �bFy�rebArebds; (16)

where Mj:Rd is the moment resistance of semi-rigid
joint.

5. Semi-rigid composite castellated beam

5.1. De
ection of semi-rigid composite
castellated beam

Simple equations govern the elastic 
exural de
ection
of a typical beam. In the castellated beam, shear defor-
mation should be considered. According to Jackson [2],
real moment of inertia for de
ection is close to the
composite moment of inertia of net section. However,
AISC design guide for 
oor vibration indicates that
the shear studs are not su�ciently sti� to justify the
fully transformed moment of inertia assumption for the
composite beams; the following equation determines
the e�ective moment of inertia [23]:

Idef = 0:85In +
(Icom � 0:85In)

4
; (17)

where Icom and In are the composite section and net
section moments of inertia for de
ection calculation.
Also, the coe�cient 0.85 identi�es the shear e�ect for
typical open web beam.

In negative moment area, three parts are impor-
tant for calculating the de
ection:

1. De
ection from changing end slope of the beam:

def1 = tan � Lneg: (18)

2. De
ection of semi-cantilevered beam at negative
moment part:

def2 =
WLneg

4

8EsIn
+

(WLpos
2 )Lneg

3

3EsIn
: (19)
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3. De
ection of semi-pinned beam at positive moment
part:

def3 =
5WLpos

4

384EsIdef
; (20)

def = def1 + def2 + def3 < defall =
Lpos

360
; (21)

where Lneg and Lpos are the lengths of the negative
and positive parts of the beam, respectively.

For concentrated loading, similar calculation must
be performed.

5.2. Vibration of semi-rigid composite
castellated beam

Frequency of the load carrying system of a 
oor is
the most important factor to identify the level of
serviceability of the 
oor. Frequency is related to
the sti�ness of the beam, boundary condition, and
distribution of the mass.

The maximum initial amplitude of the beam is the
other important parameter to identify the serviceability
level of a 
oor.

Frequency of beam can be estimated by [24]:

defvib =
def1 + def2

+
def31:5 + defcol; (22)

f =
1

2�

r
Sti�ness

Mass
=

1
2�

vuut W
defvib
W
g

r
g

defvib

=
1

2�

r
g

defvib
; (23)

where W and g are the e�ective weight and gravity
acceleration, respectively.

defcol is considered zero and W can be calculated
by 0.2 time the live load in addition to dead loads.

The maximum initial amplitude (inch) of the
beam is determined as [24]:

Aot =(DLF)max

�
 

0:6(Lpos � 0:393)3

48(Es � 14:22� 10�3)(Idef�0:3934)

!
;
(24)

Ne� =2:97� 0:0578�
�
Sb
hc

�
+ 2:56� 10�8

�
�
Lpos

4

Idef

�
+ 0:0001

�
L
Sb

�3

; (25)

A0 =
Aot
Ne�

: (26)

where Sb is beam spacing and hc is concrete height.
(DLF)max values for various natural frequencies are
presented in [24].

The required damping ratio for the speci�ed
amplitude and frequency is determined by [24]:

Dreq = 35Aof + 2:5 < Dall = 0:035: (27)

For a damping ratio above 3.5%, designer must
either identify an exact source of damping or arti�cially
provide additional damping to be sure that the 
oor
system is satisfactory [24].

6. Optimization algorithms

There are many methods for solving the optimization
problems. Mathematical programming based methods
solve these problems when the objective function and
constraints have linear or non-linear relationship and
gradients of the functions are easily accessible. Because
of complexity of the structural optimization, many
problems in this �eld cannot be easily handled by
mathematical programming methods. After 1988,
meta-heuristic based methods were gradually devel-
oped and increasing the power of the computers helped
the researchers to solve optimization problems more
e�ciently. Genetic Algorithm (GA) [25] and Particle
Swarm Optimization (PSO) [26] are the most common
ones.

In this paper, the PSO, CBO, and ECBO algo-
rithms are used. In order to have reasonable com-
parison, the number of iterations and the number of
population sizes are selected to be the same in all three
algorithms.

PSO is based on sharing information between
each pair of particles in the swarm and updating each
particle's position based on its memory and the data
gained regarding other particles.

6.1. CBO and ECBO
Colliding Bodies Optimization (CBO) is a recently de-
veloped meta-heuristic algorithm [27]. In this method,
one object collides with another object and they move
towards a minimum energy level. The CBO is simple in
concept and depends on no internal parameter. Each
Colliding Body (CB) has a speci�ed mass related to
the �tness function. In order to select pairs of objects
for collision, CBs are sorted according to their mass in
a decreasing order and they are divided into two equal
groups: stationary and moving. Moving objects collide
with stationary objects to improve their positions and
push stationary objects towards better positions.

In order to improve the CBO to get faster and
more reliable solutions, Enhanced Colliding Bodies Op-
timization (ECBO) is developed by utilizing a memory
to save a number of historically best CBs as well as by
using a mechanism to escape from local optima [28].
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7. Problem de�nition

7.1. Cost function
Total cost function is de�ned in the following form:

Costini = Costp + CostW + Costc + Costs: (28)

Each sub-cost is determined by multiplying the cor-
responding weight (for Costp and Costs) or length
(Costw and Costc) by appropriate coe�cient. Values
of these coe�cients are determined either by other
researchers [9] or by engineering experiences:

Pp = 2� ((s� 2e) + (Hs � 2dt)) ; (29)

Nh =
�
LT
s

�
; (30)

Lw = (Nh + 1� 2�Nfh)� e+ Pp �Nfh � 4; (31)

Costw = (Lw)� Cw; (32)

Costp = (As � LT )� Cp; (33)

Costc=
�

2�Lw + 2�Nh�dh
Sin(�)

+ Pp�Nfh�4
�
�Cc;

(34)

Costs = (La �Ass �Nss � �s)� Cs; (35)

where p, w, c, and s are pro�le, welding, cutting, and
shear studs, respectively. Nss and Ass are the number
and area of channel shear studs, respectively. �, s, e,
Hs, dh, and dt are represented in Figure 1. Nh and
Nfh are the total and �lled hole numbers, respectively.

As described in pervious equations, the cost of
�lling end holes by plates is considered by adding their
weights, cutting length, and welding length to the total
cost. Cost coe�cients are given in Table 1.

7.2. Variables
In this study, 6 variables are used for �nding optimum
results consisting of pro�le section, cutting depth (dh),
cutting angle (�), holes spacing (s), number of �lled
end holes of the castellated beams, and rigidity of
the connection (Rj). The minimum and maximum
magnitudes of the variables must be clear for avoiding
non-acceptable results and for fast convergence to the
global optimum. Pro�le section is the sequence number

Table 1. Cost coe�cients.

Coe�cient Value Unit

Cp 0.3 $ per each kg
Cw 1 $ per each m
Cc 0.8 $ per each m
Cs 2.4 $ per each kg

of the rolled steel pro�le in the standard steel section
list (British Standards) starting from 127�76�13 UB
and ending in 914 � 419 � 388 UB. Cutting angle is
limited between 40� to 64�. Other bounds for variables
are presented in the constraints.

In a real structure, it is not common to have
di�erent cutting shapes for one beam. Commercial
cutting shapes for castellated beams vary in di�erent
countries. The characteristic properties of one of the
most popular commercial shapes are as follows:

1. Cutting angle is equal to 63.4�;
2. Cutting depth is half of the beam height;
3. Holes spacing is three times the cutting depth.

7.3. Constraints
As mentioned in the previous section, there are some
design constraints as follows:

g1 = dh � 3
8

(Hs � 2tf ); (36)

g2 = (Hs � 2tf )� 10(dt � tf ); (37)

g3 =
2
3
dh cot(�)� e; (38)

g4 = e� 2dh cot(�); (39)

g5 = 2dh cot(�) + e� 2dh; (40)

g6 = Mu � �bMn�st; (41)

g7 =
Mu

Zn�com�bot
+

mu

Ztee�com
� �bFy; (42)

g8 = Mu � �bMn�con; (43)

g9 = Mu �Mj�Rd; (44)

g10 = Vu � �vVn�w; (45)

g11 =
Vu
2
� �vVn�tee; (46)

g12 = Vh � �vVn�p; (47)

g13 = frb � �bFrb; (48)

g14 = def� defall; (49)

g15 = Dreq �Dall; (50)

g1 to g5 are related to constructional procedure of
manufacturing the castellated beams [9]. Also, in order
to have a good comparison between constraints, they
are normalized.
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7.4. Penalty function
In order to avoid non-acceptable results, penalty func-
tion increases the cost of results that do not satisfy
the constraints. The constraint is satis�ed when gi
is greater than zero. Thus, sum of the non-satisfying
constraints can show the degree of non-acceptability.
According to the above sentences, penalty factor is
de�ned by the following equation:

PF = 10NAC ; (51)

NAC = sum(gi > 0); (52)

Cost�n = Costini � PF; (53)

where Cost�n and Costini are the �nal and initial costs,
respectively.

Normalizing constraints also helps to have good
results when they are summed together.

8. Design examples

In order to compare the fabrication cost of the semi-
rigid joint composite castellated beams with those of
di�erent methods, three examples are selected. Modu-
lus of elasticity is taken 205 kN/mm2 and grade 50 is
selected for the steel of the beam, which has the design
strength of 355 MPa. Concrete design strength is equal
to 25 MPa. The combinations for live and dead loads
are de�ned as those in ASCE [29].

Figure 4. Schematics of the beam in Example 1.

8.1. Example 1
A simply supported beam with 4 m span, shown in
Figure 4, is selected as the �rst design example. The
beam is subjected to 5 kN/m dead load, including
its own weight, and concentrated live load of 50 kN.
E�ective width and height of concrete are 150 cm
and 10 cm, respectively. Number of iterations and
population size are considered 80 and 100, respectively,
for all the utilized algorithms.

8.2. Example 2
A simply supported beam with 9 m span, shown in
Figure 5, is selected as the second design example. The
beam is subjected to 40 kN/m dead load, including
its own weight, and two concentrated live loads of
50 kN. E�ective width and height of concrete are
150 cm and 15 cm, respectively. For all the considered
algorithms, the number of iterations and population
size are considered 120 and 150, respectively.

Table 2 summarizes the main objectives of the
performed optimizations. Four methods are presented

Table 2. Comparison of the optimum designs for the considered examples.

Combination
type

Castellated
beam

Composite
beam

Semi-rigid
connection

Filled hole
at end

Cost
($)

% Critical
constraint�

Example 1
Kaveh and

Shokohi [10]
p

{ {
p

96.04 1.24

1
p

{ {
p

77.72 1.00 HS FM
2

p
{

p
{ 77.53 1.00 HS

3
p p

{ { 67.74 0.87 DE
4

p
{

p p
77.53 1.00 HS

5
p p

{
p

67.74 0.87 DE
6

p p p
- 67.74 0.87 DE

7
p p p p

61.61 0.79 FM DE
Example 2

Kaveh and
Shokohi [10]

p
{ {

p
1031 1.59

1
p

{ {
p

647 1.00 DE RM FM
2

p
{

p
{ 613 0.95 HS RM FM

3
p p

{ { 605 0.94 HS RM DE
4

p
{

p p
489 0.76 HS RM

5
p p

{
p

605 0.94 HS RM DE
6

p p p
{ 605 0.94 HS RM DE

7
p p p p

431 0.67 HS RM DE
�HS: Horizontal Shear, DE: De
ection, FM: Flexural Moment, RM: Radial Moment.
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Figure 5. Schematics of the beam in Example 2.

at each column and their combinations are marked at
each row by

p
. Net cost and relative cost are displayed

in two columns. Over 90% ratio constraint is called
critical constraint and the ratio constraints are shown
in the last columns.

The results of the examples are shown in Table 3.
Figure 6 shows the variation of cost versus the number
of iterations for Example 2.

Figure 6. Variation of cost versus the number of
iterations in Example 2.

8.3. Example 3
In this example, a simply supported composite beam
with di�erent spans (600, 750, and 900 cm) is subjected
to 50 kN/m to 100 kN/m dead load, including its own
weight, having no concentrated load. E�ective width of
the concrete is 150 cm and concrete heights are 15 cm
and 10 cm. In order to study the e�ect of partial �xity
and use of commercial cutting shape, the following
conditions are considered.

8.3.1. Optimum value of partial �xity
For neglecting the e�ect of cutting shape and focusing
on the partial �xity, a commercial shape of the castel-
lated beams is considered. Also, two holes of each end
are considered to be �lled. Thus, only partial �xity
and beam section are variables. Due to the reduction
in the number of variables, the maximum number of
iterations and population size are considered 30 and
20, respectively. Here, only ECBO algorithm is used
to �nd the optimum result.

Figure 7 shows that the optimum partial �xity can
be changed from 40 to 100 percent, and there is no clear
relationship among �xity and beam span, intensity of
distributed load, and concrete thickness.

8.3.2. Cost saving of the use of partial �xity
connection

Similar to the previous section, to ignore the e�ect of
cutting shape and to focus on the e�ect of partial �xity,
commercial shape of castellated beam is considered.
Also, two holes of each end are considered to be
�lled. Hence, only partial �xity and beam section
are variables. For each choice of span and load,
two optimum results are found; one for the partial
�xity condition and the other for simple connection

Figure 7. Optimum partial �xity percent versus the intensity of distributed load with 10 cm and 15 cm concrete
thicknesses in Example 3.

Table 3. Results of the examples.

Section Cutting
depth

Cutting
angle

Holes
number

Composite Number of �lled
end holes

Partial
�xity

Cost

Example 1 152� 89� 16 6.06 cm 60� 26
p

1 0.22 61.6$
Example 2 457� 152� 52 14.3 cm 64� 20

p
4 0.65 431.4$
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Figure 8. Cost saving percent of using partially �xed connections versus the intensity of distributed load with 10 cm and
15 cm concrete thicknesses in Example 3.

Figure 9. Cost saving percent of using non-commercial cutting shape versus the intensity of distributed load with 10 cm
and 15 cm concrete thicknesses in Example 3.

condition. Relative di�erence between the costs of
two conditions is considered as the amount of cost
saving. Algorithm parameters are similar to those in
the previous case.

Figure 8 shows that reduction in optimum cost
can be changed from 5 to 25 percent.

8.3.3. Cost saving of using non-commercial cutting
shape

Di�erence between the costs of commercial shape
and non-commercial shape of the castellated beam is
considered as the cost saving of using non-commercial
shape of the castellated beam. All variables in non-
commercial shape of castellated beam are considered.
Number of �lled holes is limited to 2. Only ECBO
algorithm is used and maximum numbers of iterations
and population size are considered 100 and 80.

Figure 9 shows that the percentage of cost saving
can be changed from 6 to 30.

9. Discussion and conclusions

In this paper, the PSO, CBO, and ECBO algorithms
were utilized to optimize the process of �nding the best
property of semi-rigid jointed composite castellated
beam.

Comparison of the observations is as follows:

1. Semi-rigid joint composite castellated beam can be
viewed as the best choice in the �rst three examples,
and it can decrease the cost by 21% to 35%;

2. E�ect of partial �xity cost saving is estimated 5 to
25 percent;

3. In many problems, horizontal shear at the end of
beam controls the optimization problem. Filling
the end holes can improve these constraints and
it works better in some problems with distributed
load. Also, �lling the end holes, as far as the
�rst non-�lled holes are placed in positive moment
length of the beam, can adequately control the
horizontal shear and radial moment;

4. The ECBO algorithm seems to result in better
design in a higher number of iterations. This
e�ciency is more sensible when the problem has
wide variable bounds and it is more complex;

5. Use of commercial cutting shape for composite
castellated beam can increase the cost by 6 to 30
percent.
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