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Abstract. Accurate outlier detection is an important matter to consider prior to applying
data to predict 
ow patterns. Identifying these outliers and reducing their impact on
measurements could be e�ective in presenting an authentic 
ow pattern. This paper
aims to detect outliers in 
ow pattern experiments along a 180-degree sharp bend channel
with and without a T-shaped spur dike. Velocity components have been collected using
3D velocimeter called Vectrino in order to determine the 
ow pattern. Some of outlier
detection methods were employed in the paper, such as Z-score test, sum of sine curve
�tting, Mahalanobis distance, hierarchical clustering, LSC-mine, self-organizing map, fuzzy
C-means clustering, and voting. Considering the experiments carried out, the methods
were e�cient in outlier detection; however, the voting method appeared to be the most
e�cient one. Brie
y, this paper calculated di�erent hydraulic parameters in the sharp
bend and made a comparison between them for the sake of studying how e�ective running
the voting method is in mean and turbulent 
ow pattern variations. The results indicated
that developing the voting method in the 
ow pattern experiment in the bend would cause
a decrease in Reynolds shear stress by 36%, while the mean velocities were not signi�cantly
in
uenced by the method.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

A true understanding of the 
ow pattern further
improves the recognition of 
ow characteristics and the
parameters e�ective in it. It is of high importance
and results in creating optimum designs in the case
of hydraulic structures such as spur dikes, preventing
huge compensation and fatality. Spur dikes are hy-
draulic structures constructed to protect canals and
rivers against scour and erosion [1]. Whenever a spur
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dike is located in the outer bank of a bend, the scour
process becomes a complex phenomenon. The 
ow
�eld at a spur dike is coupled with a complex 3D
separation of approach 
ow upstream and a periodic
vortex shedding downstream of the spur dike [2,3].

The experimental data are considered as prelim-
inary data for further numerical analyses and math-
ematical modeling; therefore, they need to be error-
free. In practice, measuring error-free data is nearly
impossible, and some data inconsistent with the normal
pattern of the statistical population arise for di�erent
reasons. Data collection for 
ow pattern determination
is no exception and may encounter inaccuracies and
inconsistencies as well. Such data play a pivotal
role in predicting 
ow patterns. As they might have
arisen due to an error in measurement, detecting and
eliminating them from the collected values are the
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requirements which help obtain high-reliability data;
then, the results obtained from the data analysis would
be perfect and reliable. An outlier can indicate any
errors in data that may arise due to the natural behav-
ior of the 
ow under unique circumstances. Therefore,
detecting them can provide highly useful information
on the nature of the 
ow unknown so far. Accordingly,
detecting outlier, while collecting required data to
determine 
ow pattern, is considered an inevitable
necessity.

Outlier detection is a primary step in many data
mining applications. Outlier detection has been used
for centuries to detect and, where appropriate, remove
anomalous observations from data. There are some
factors involved in the existence of outliers consisting
of mechanical faults, changes in system behavior,
fraudulent behavior, human mistake, instrument error
or simply through natural deviations in populations [4].
Goring and Nikora [5] suggested a new method for
detecting spikes in acoustic Doppler velocimeter data
sequences. The new method was shown to have supe-
rior performance compared to various other methods,
along with the added advantage that it required no
parameters. Of the methods considered, the phase-
space thresholding method is the most suitable one
for detecting spikes in the data related to a down-
looking ADV. They concluded that for ADV data
with sampling frequencies from 25 to 100 Hz, the best
solution is to use 12 points on either side of the spike
to �t a third-order polynomial that was interpolated
across the spike. Mori et al. [6] examined the ADV
velocity measurements in bubbly 
ows. They applied
the despiking algorithm based on the 3D phase space
method and discussed bubble e�ects on ADV velocity.
The results showed that there is no clear relation-
ship between velocity and ADV's correlation/Signal-
to-Noise Ratio (SNR) in bubbly 
ow. Moreover, spike
noise �ltering methods based on low correlation and
signal-to-noise ratio were not adequate for bubbly 
ow,
and the true 3D phase space method signi�cantly
removed spike noise of ADV velocity in comparison
with the original 3D phase space method. Duncan et
al. [7] developed a new method of outlier detection
for both PTV and PIV data based on the original
algorithm of Westerweel and Scarano [8]. The current
method takes two to three times as long as the universal
outlier detection method of Westerweel and Scarano
(2005), which is mainly due to the time taken by the
tessellation process. The changes included a di�erent
de�nition of neighbors based on Delaunay tessellation,
weighting of neighbor velocities based on the distance
from the point in question, and an adaptive tolerance
to account for the di�erent distances to neighbors. The
new algorithm worked equally well for PIV and PTV
up to a level of spurious data of about 15%, far higher
than should be encountered with good experimental

techniques. Razaz and Kawanisi [9] presented several
di�erent techniques for detecting and replacing multi-
point spikes in the acoustic Doppler sensor data time
series. Among the methods considered, the modi�ed
wavelet method was con�rmed to be the most suitable
approach for detecting spikes. To improve the per-
formance of the wavelet method, cuto�s, consisting of
the universal threshold and a robust measure of scale,
were employed. The developed methods for replacing
identi�ed spikes combine times series analyses with a
straightforward method, i.e. polynomial interpolation,
to generate substitutions retaining both the trends
and 
uctuations in the surrounding clean data. The
results indicated that the methodology was capable of
restoring the contaminated signal in such a way that its
statistical and physical properties correlate well with
those of the original record.

This study mainly aims to detect outliers in 
ow
pattern data collected via Vecterino velocimeter using
various outlier detection methods and, consequently, to
suggest solutions for identifying such data in a sharp
bend. A variety of de�nitions have been proposed
for outliers so far, although none of them have been
comprehensive and they have been only described
rather than de�ned; actually, providing a de�nition
of outliers depends on the type of data and their use.
In this paper, outliers are considered as the data not
consistent with the normal pattern of the total data,
and they signi�cantly di�er from other observations in
a way that they appear to be generated with a di�erent
mechanism [10].

Researchers have categorized outlier detection
methods in di�erent categories. In this paper, they
are classi�ed in four groups as follows:

1. Statistical methods [11]: These approaches are
based on speci�c distribution of observations, or
statistical estimations of distribution of unknown
parameters, mostly with high-dimensional data,
and when there is no information available on
distribution of data, these methods are useless;

2. Distance-based methods [12]: These methods
detect outliers by calculating the distance between
the points by means of a distance metric function
such as Euclidian function;

3. Cluster-based methods [13]: In these methods,
the data are �rst classi�ed in clusters due to homo-
geneity. If data do not belong to any clusters, or
the cluster is considerably smaller than the others
are, it seems to be an outlier candidate;

4. Density-based methods [14]: These methods
have proven to be very e�ective in determining the
density of the nearest neighbors in order to detect
outliers.

For the sake of comparison and elaboration, at
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least one outlier detection method is selected from each
of the categories mentioned above to be employed un-
der two conditions: with a T-shaped spur dike located
in the bend and without spur dike. Therefore, Z-score
test, sum of sine curve �tting, Mahalanobis distance,
hierarchical clustering, LSC-mine, self-organizing map,
fuzzy C-means clustering, and voting are the methods
employed in this study. In the following, these methods
and characteristics of the case study will be introduced,
and the factors or mechanisms causing outliers during
the experiments together with the obtained results
are discussed in the paper. Eventually, di�erent
hydraulic parameters in mean and turbulent 
ows after
eliminating the detected outliers will be compared.

2. Methodologies

This section presents the experimental setup, dataset
under investigation, and methods.

2.1. Experimental setup and procedure
2.1.1. Laboratory 
ume and spur dike
In this research, a bend 
ume with a central angle
of 180 degrees, width of 1 m, and height of 0.7 m,
glass sidewalls, and steel frames was designed and built
in a hydraulic laboratory of Persian Gulf University
of Bushehr, Iran. A plan view of the 
ume and its
geometry is presented in Figure 1. As displayed, the

ume consists of a 6.5 m long upstream straight reach
and a 5.1 m long downstream straight reach. As seen
in Figure 1, these two straight reaches are connected
to each other by means of a 180 degree bend having
external curvature radius of 2.5 m. Considering 1m
width of the channel (B) and 2 m central radius of
the bend (R), based on Leschziner and Rodi classi�ca-
tion [15], the 
ume has a sharp bend. The bed is rigid
and the material with average diameter of 0.001 m is
used to provide the desired bed roughness. To supply
the required water in the channel, storages with the
capacity of 30 m3 and a pump of 0.095 m3/s delivery
capacity are used. It is worth mentioning that the 
ow
depth is of 0.2 m at the start of the bend, and it is

Figure 1. The schematic plan view of the laboratory

ume and its geometry.

controlled using an adjustable butter
y gate located
at the downstream end of track during experiments.
Therefore, Froude and Reynolds numbers are constant
and equal to 0.34 and 119000, correspondingly [16].

As seen in Figure 1, the spur dike is T-shaped
in the plan and installed at the outer wall at a 90-
degree angle of the bend. The spur dike wing and web
are 0.15 m long while their thickness and height are
0.01 m and 0.4 m, respectively. The spur dike used in
laboratory is made of Plexiglas with semi-circle corners
wing.

2.1.2. Velocimeter
In order to measure velocity components and model

ow pattern, a three-dimensional velocimeter called
Vectrino is used. This instrument is a new genera-
tion of ADV series and is considered as one of the
most advanced instruments known due to its high
accuracy and the ability of recording three-dimensional
velocities. Depending upon con�guration of sensors,
they are called either side-looking or down-looking
probes connected to a computer by means of special
cables, on which instrument software is installed. By
connecting the instrument to computer, �les can be
managed simply and velocity monitoring is displayed
using a software product installed on the computer.
Data recorded by Vectrino are adjustable in a range
of �0:01 to �7 m/s and the accuracy equals �0:5%
of data (�1 mm/s) [17]. In this study, to carry out
experiments, frequency and time are assumed 25 HZ
and 1 min, respectively; hence, the instrument is able to
record at most 1500 data of velocity in three directions
(U : velocity component in X-direction, V : velocity
component in Y-direction, and W : velocity component
in W-direction). In Figure 2, arrangement of Vectrino
and its sensors on the channel are presented.

2.1.3. Mesh grids and study area
During the process of carrying out experiments to
predict and present 
ow pattern, a �ner mesh is applied
around and downstream of spur dike, compared to a
bend without spur dike. Overall, the 3D 
ow velocity
pro�le has been measured at 36 cross-sections, 22 lon-
gitudinal sections, and 5 depth levels. In this research,

Figure 2. Location of Vectrino and sensors over the open
channel.
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Table 1. Details of the data points.

No. Speci�cations Velocity
component

Standard
deviation

Mode Median Mean Maximum Minimum Number

1
Z = 8 cm
d = 50 cm
� = 90�

U (cm/s) 3.6886 46.0500 47.4000 47.2510 64.0300 33.2300
V (cm/s) 4.8936 -3.8400 -6.2100 -6.2998 16.9700 -28.8700 1517
W (cm/s) 2.7256 -0.1300 -0.7100 -0.6016 8.3500 -9.9800

2
Z = 0:5 cm
d = 8 cm
� = 100�

U (cm/s) 12.6728 -3.2000 2.1900 1.5203 49.6300 -40.4500
V (cm/s) 9.5091 -3.9900 2.7300 3.4832 70.3200 -38.0100 1517
W (cm/s) 3.9812 0.9300 0.7300 0.3849 16.8700 -18.2600

Figure 3. 3D velocity distributions of the investigated points (U, V, and W).

the performance of the outlier detection methods has
been shown in a case study on the coordinate of two
points (velocity values in U, V, and W directions) of the
recorded points. One of these points has been recorded
in the presence of the T-shaped spur dike along a sharp
bend, whereas the other one has been without it. The
details of the investigated samples are shown in Table 1,
and their diagram is depicted in Figure 3.

In the second column of Table 1 (on the left side),
Z represents distance from the channel bed; � is the
horizontal angle; d is de�ned as the distance from the
outer wall of the bend.

2.2. Statistical methods
2.2.1. Z-score test
Z-score test is a statistical test commonly used for
detecting outliers in univariate data sets. Outliers are
detected using the arithmetic mean and standard devi-
ation; hence, its e�ect depends on sample members [18].
The derived equations are described as follows (Eqs. (1)
and (2)):

Zscore(i) =
xi � x
SD

; (1)

where:

SD =
�

1
n� 1

Xn

i=1
(xi � x)2

�1=2

: (2)

According to a general rule, Zscore (i) values, whose ab-
solute values exceed 3, are candidate outliers. However,
such a threshold limit value has problems in itself [18].
Moreover, the maximum absolute value of Zscore (i) is
de�ned as (n � 1)=

p
n, and none of the outlier data's

Zscore (i) might exceed it. In the case of small data
set, it is more obvious. Totally, selecting the threshold
limit value is generally related to the dataset and the
decision-maker's considerations. The threshold limit
value for datasets is assumed 3.5 in this research.

2.2.2. Sum of sines curve �tting
The curve �tting of the data is one of outlier detection
methods and can be used in both univariate and mul-
tivariate datasets. In order to detect outliers through
this method, the residuals (the di�erence between the
real and estimated values) are �rst calculated and then
the greater values are selected as a candidate outlier.
There are a variety of methods for curve �tting. In this
research, the sum of sines model �ts periodic function
to a series of data points (Eq. (3)):

y =
Xn

i=1
ai sin(bix+ ci): (3)

Here, ai is the amplitude; bi is the frequency; ci is the
phase constant for each sine wave term. In addition,
n is de�ned as the number of terms in the series.
To calculate these parameters, Trust-Region [19] and
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Levenberg-Marquardt [20] are used. The threshold
value for the datasets is 3.5 in this research. Moreover,
there are 5 terms in the series.

2.2.3. Mahalanobis distance
The Mahalanobis distance is a known parametric mea-
sure that relies on the estimate of the multivariate
parameters distribution and the data covariance [21].
The covariance matrix is de�ned as follows (Eq. (4)):

Cov =
1

n� 1

Xn

i=1
(xi � x)(xi � x)T : (4)

Thus, the Mahalanobis distance can be computed by
the following relation (Eq. (5)):

Mi =
q

(xi � x)T Cov�1(xi � x): (5)

In this way, xi can be an outlier candidate if the
calculated value of Mi for xi sample under investigation
is greater than the threshold limit value of t. In order to
apply the Mahalanobis distance method in this paper,
as in two methods previously addressed, the threshold
value is de�ned 3.5. In fact, for the cases in which
the Mahalanobis distance exceeds 3.5, that sample is
considered as an outlier.

2.2.4. Hierarchical clustering
The goal of clustering is to identify a structure in an
unlabeled dataset by objectively organizing data into
homogeneous groups where the within-group-object
similarity is minimized and the between-group-object
dissimilarity is maximized [22]. In clustering through
hierarchical methods, the clusters are determined hier-
archically in a descending or ascending order of size.
In this method, the �nal clusters are given hierarchical
order, normally like a tree, based on their generaliz-
ability. The tree is called a Dendrogram. In this
research, the single-link divisive clustering algorithm
[23] is employed. It is one of the oldest and simplest
clustering methods, known as the nearest neighbor
method. The following measure is used to calculate
how similar c1 and c2 clusters are (Eq. (6)):

dc1;c2 = min
i2c1;j2c2(di;j); (6)

where i is a sample from c1 cluster and j from c2 cluster.
Since the hierarchical clustering methods provide

both more detailed and accurate information, they
seem to be suitable for analysis in detail. However, they
are highly complicated and not appropriate in terms of
calculation for larger data sets. One way to evaluate
the quality of the formed cluster tree in re
ecting the
data is to compare the cophenetic distance with the
main distance between the data. If the clustering is
valid, there is a strong correlation between the data
link in the cluster tree and the data distance in the

distance vector. The cophenetic correlation coe�cient
can be used to compare these two distances. The closer
calculated coe�cient is to 1, the better re
ector cluster
tree will be. The cophenetic correlation coe�cient can
be calculated thorough Eq. (7) [24]:

c =
P
i<j (Yij � y)(Zij � z)P

i<j (Yij � y)2P
i<j (Zij � z)2 ; (7)

where Yij represents the main distance between i and
j points in Y direction; Zij is cophenetic distance
between i and j in Z direction; y and z are averages of
the values of Y and Z data groups, respectively.

In this research, to apply the hierarchical clus-
tering method to the datasets, with regard to the
conducted experiments and after trial and error, the
values of two parameters of k (the number of clusters)
and t (threshold) are assumed as 5 and 30, correspond-
ingly. Euclidean function is selected for measuring the
distance between data points.

2.2.5. LSC-mine
LSC-mine [25] is a density-based outlier detection
method in multivariate data sets. In the pursuit of
implying LSC-mine method, the following steps must
be taken:

� Calculating k-distance of p;

� Finding k-distance neighborhood of p (Nk(p));

� Calculating local sparsity ratio of object p (lsrk(p));

� Calculating the pruning factor;

� Calculating the local sparsity coe�cient of p
(LSCk(p)).

The local sparsity coe�cient of k is de�ned as the
proportion of the mean of local sparsity ratio of p to
k-nearest neighbors (Eq. (8)):

LSCk(p) =

P
o2Nk(p)

lsrk(o)
lsrk(p)

jNk(p)j : (8)

A high coe�cient of local sparsity indicates that the
neighborhood around the point is not dense and,
accordingly, it seems to be an outlier. In this study,
the value of K equals 100. The reason why a great
value is attributed to K is to ascertain the accuracy
of the algorithm's performance. It is a fact that the
greater value of K is, the more accurate the results
are. It is a point of note that k parameter value can
be increased up to a speci�c value above which it may
not change the results and will just rise the volume
of calculations, resulting in longer time taken by the
process. The threshold limit parameter based on the
type of input data and trial and error is de�ned 7.6.
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2.2.6. Self-organizing map
Self-Organizing Maps (SOM) [26] are unsupervised
neural networks that cluster the input data into a
�xed number of nodes. They learn to cluster data
based on similarity, topology, with a preference (but no
guarantee) for assigning the same number of instances
to each class. Kohonen's SOM are called a topology-
preserving map because there is a topological structure
imposed on the nodes in the network. A topological
map is simply a mapping that preserves neighborhood
relations. SOM apply competitive learning and use
a neighborhood function to preserve the topological
properties of the input space. In a competitive learn-
ing, the output neurons compete amongst themselves
to be activated, with the result that only one is
activated at any one time. This activated neuron is
called a winning neuron. SOM consist of components
called nodes or neurons. Associated with each node are
a weight vector of the same dimension, as the input
data vectors, and a position in the map space. The
neurons in the layer of SOM are arranged originally
in physical positions according to a topology function.
The usual arrangement of nodes is a two-dimensional
regular spacing in a hexagonal or rectangular grid.
The performance of the network is not sensitive to
the exact shape of the neighborhoods. The procedure
of placing a vector from data space onto the map
is to �nd the node with the closest (the smallest
distance metric) weight vector to the data space vector.
Distances between neurons are calculated from their
positions with a distance function. There are several
ways to calculate distances from a particular neuron
to its neighbors. In this research, Euclidean distance
function is used to �nd the distances between the
layer's neurons considering their positions.

Using the same procedure as employed by a
competitive layer, SOM identify winning neuron i�.
However, instead of updating only the winning neuron,
all neurons within certain neighborhood Ni�(d) of the
winning neuron are updated by the Kohonen rule.
Speci�cally, all such neurons, i 2 Ni�(d), are adjusted
as follows (Eq. (9)):

iw(q) = (1� �)iw(q � 1) + �p(q); (9)

where w is node's weight vector; � is learning rate;
and q is the step index. Here, neighborhood Ni�(d)
contains the indices for all of the neurons that lie
within a radius d of winning neuron i�(d). Thus, when
vector p is presented, the weights of the winning neuron
and its close neighbors move toward p. Consequently,
after many presentations, neighboring neurons would
acquire vectors similar to each other.

2.2.7. Fuzzy C-means clustering
The purpose of clustering is to identify natural group-
ings of data from a large dataset to produce a concise

representation of a system's behavior. There are two
basic types of clustering algorithms [27]: partitioning
and hierarchical algorithms. Partitioning algorithms
are considered here. These algorithms construct a par-
tition of dataset X = fx1; x2; :::; xng of n objects into a
set of c clusters. c is an input parameter and speci�ed
by users. Partitioning algorithms typically start with
an initial partition of the dataset and then iteratively
optimize the objective function until it reaches the
optimal state for the dataset. Consequently, parti-
tioning algorithms use a two-step procedure. First,
determine c representatives to minimize the objective
function. Second, assign each object to the cluster with
its representative \closest" to the considered object.
Fuzzy C-Means (FCM) is a partitioning data clustering
technique in which a dataset is grouped into C =
fc1; c2; :::; cng clusters with every data point in the
dataset belonging to every cluster to a certain degree.
In FCM, data elements can belong to more than one
cluster, and assigning membership to each data point
corresponds to each cluster center based on the distance
between the cluster center and data point. Objective
function in FCM is:

arg min
c

Xn

i=1

Xc

j=1
!mij kXi � cjk2; (10)

where:

!mij =
1Pc

k=1

� kXi�cjkkXi�ckk
� 2
m�1

: (11)

Partition matrix (membership values) W = !i;j 2
[0; 1], i = 1; :::; n; j = 1; :::; c, where each element Wi;j
tells the degree to which element Xi belongs to cluster
cj . Fuzzi�er m is any real number equal to or greater
than 1. The fuzzi�er determines the level of cluster
fuzziness. m is commonly set to 2. jj � jj is any norm
expressing the similarity between any measured data
and the center.

In FCM, the centroid of a cluster is the mean of
all points, weighted by their degree of belonging to the
cluster (Eq. (12)):

ck =
P
x !k(x)mxP
x !k(x)m

: (12)

The degree of belonging, !k, is related inversely to
the distance from data point x to the cluster center
as calculated on the previous pass.

2.2.8. Voting method
Voting method is not new and performs using other
methods' outcomes to detect and deal with outliers.
In fact, the data, which are commonly recognized as
outliers by most of methods, are most likely to be
considered as outliers in this method. As such, the
voting method leads to more accurate and reliable
results.
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Table 2. Outliers detected in datasets using Z-score.

No. Velocity component Outlier index Number

1

U 151 744 1305 1306 1437 5
V 496 1313 1437 3
W | 0
U 469 546 2

2 V 86 120 226 469 478 617 671 730 845 845 1237 10
W 115 175 204 468 706 830 834 845 1237 9

Table 3. Outliers detected in datasets using sum of sines curve �tting method.

No. Velocity
component

Outlier index Number

1

U 744 1305 1306 1437 4
V 496 1437 2
W 1511 1

2
U 128 169 469 546 598 5
V 86 120 176 226 469 478 548 549 617 668 714 730 845 1237 1252 15
W 175 204 467 468 706 830 834 845 866 9

3. Results and discussion

This section undertakes the detection of outliers in the
collected data through experiments for the sake of the

ow pattern determination experiments (data provided
in Table 1) using the methods elaborated above. A
program has been written using MATLAB software in
order to detect outliers based on each method, and the
consequences of process are presented as follows.

Table 2 provides the results of running Z-score
test on the data sets. As obvious in the table, the
maximum e�ect of the method is evident in Point 2 in
both lateral and vertical directions. Moreover, outlier
detection in such directions and at the downstream
of spur dike extremely in
uences the secondary 
ow
strength variation and provides their true values at
lower layers where the 
ow is exceedingly turbulent.

The outliers detected in the datasets are circled
in Figure 4. This �gure properly shows the necessity
of outlier detection and its elimination from the time
series of 
ow velocity components.

The results obtained thorough running curve �t-
ting method applying the sum of sines to the datasets
are accessible in Table 3. By comparing Table 3
with Table 2, it can be stated that this method has
marked more data as outlier candidates than Z-score.
In order to indicate outlier detection using sum of sine
curve �tting, Figure 5 demonstrates the residuals of 3D
velocity data after running the method on Point 2 as a
dataset.

According to Figure 5, the sparsity of lateral
velocity data due to higher turbulence and disorderly

ow is estimated to be greater than those of the other
two directions. Hence, the maximum number of the
detected outliers related to lateral velocities in the
experiment of bend with spur dike is identi�ed by this
strategy.

Table 4 presents details of the outlier detected
through running the Mahalanobis on datasets. A point
worth mentioning about Table 4 is that the results of
this method are in accordance with those of Z-score
test.

Figure 4. Outliers detected for 3D velocity components in datasets using Z-score.
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Table 4. Outliers detected in datasets using the Mahalanobis distance method.

No. Velocity
component

Outlier index Number

1

U 151 744 1305 1306 1437 5
V 496 1313 1437 3
W | 0

2
U 469 546 2
V 86 120 226 469 478 617 671 730 845 1237 10
W 115 175 204 468 706 830 834 845 1237 9

Figure 5. The residuals of the sum of sine curve �tting (the horizontal line is the threshold parameter) in Point 2.

The results of running hierarchical clustering
method on datasets are provided in Table 5, and
cophenetic correlation coe�cient is given for each
dataset, separately, in Table 5. As obvious in Table 5,
this method fundamentally di�ers from the previous
methods in terms of outlier detection through the

ow pattern experiment along the bend (Point 1).
Regarding the experiment with spur dike inside the
bend, unlike previous methods, the longitudinal com-
ponent of 
ow velocity bears the greatest proportion
of outlier candidates. In addition, Figure 6 depicts the
dendrogram of data sets. With regard to this �gure
and the comparison of correlation coe�cients provided
in Table 6, it is evidently observed that the clustering
tree and the re
ection of data of low coe�cient (such

as V in Point 1) and relatively appropriate coe�cients
(such as W in Point 2) are in correlation. Since
displaying all the indices on the horizontal axis in
the dendrogram was impractical, the lower clusters
were disregarded and only their 30 leaf nodes were
represented. Consequently, some of the leaves in the
diagram belong to more than one point.

LSC-mine method results on data sets are shown
in Table 7. A comparison between the results of this
technique and the previous ones suggests that, by and
large, the method has detected the minimum number
of outliers in various directions.

Similarly, Figure 7 demonstrates the Local Spar-
sity Coe�cient (LSC) values (data with a local sparsity
ratio greater than the pruning factor (Pf)) in all the

Table 5. Outliers detected in datasets using hierarchical clustering method.

No. Velocity
component

Outlier index Number

1
U 1305 1306 744 151 1437 5
V 1313 23 497 496 1437 5
W 559 1193 2432 1431 872 1167 1511 7

2
U 45 46 70 74 86 186 188 549 558 671 676 845 317 598 779 469 546 17
V 226 478 617 671 730 1237 845 86 469 9
W 467 204 830 115 175 706 834 845 468 1237 10
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Figure 6. Dendrogram of data sets.

datasets along with the threshold limit value (horizon-
tal line). The values falling above the horizontal line
have been considered as the �nal outlier candidates.

To cluster the input vector using self-organizing
map, an 11-by-5 two-dimensional map of 55 neurons

is used. The two-dimensional map is of eleven by �ve
neurons, with distances calculated according to the link
distance neighborhood function. Link distance is a
layer distance function in MATLAB software used to
�nd the distances between the layer's neurons, given
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Figure 7. Local Sparsity Coe�cient (LSC) for datasets.

Table 6. Cophenetic correlation coe�cient calculated for
datasets.

No. Velocity component Cophenetic

1
U 0.509
V 0.3151
W 0.5386

2
U 0.4474
V 0.5837
W 0.6493

their positions. The two-dimensional self-organizing
map has considered the topology of its inputs' space
with parameters in Table 8. After training the SOM
network, the data will be divided into 55 clusters. Here,
as in fuzzy C-means clustering method, clusters whose

number of their members is less than 7 are considered
as outlier candidates. Table 9 provides the results of
running SOM on the data sets. Figure 8 indicates
distances between neighboring neurons for Point 1,
velocity component, U . This �gure uses the following
color coding:

� The blue hexagons represent the neurons;
� The red lines connect neighboring neurons;
� The colors in the regions containing the red lines

indicate the distances between neurons;
� The darker colors represent larger distances;
� The lighter colors represent smaller distances.

Figure 9 shows how many data points are asso-
ciated with each neuron. It is best if the data are
distributed fairly and evenly across the neurons. In
this example, overall, the distribution is fair even.

Table 7. Outliers detected in datasets using LSC-mine method.

No. Velocity
component

Outlier index Number

1
U 744 1305 1306 3
V 496 1313 1437 3
W | 3

2
U 469 546 2
V 86 120 469 617 668 730 841 845 8
W 468 1237 2
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Table 8. Self-organizing map network parameters.

Map dimensions 11� 5
Number of neurons 55

Layer topology function Hexagonal
Neuron distance function Link distance function

Training algorithm Batch unsupervised weight/bias training
Performance function Mean squared normalized error

Initial neighborhood size 3

Number of training steps for initial
covering of the input space

100

Number of epochs 200

Table 9. Outliers detected in datasets using self-organizing map method.

No. Velocity
component

Outlier index Number

1
U 744 1305 1306 151 1437 5
V 23 497 1313 496 1437 5
W 559 1193 1431 1432 1511 5

2
U 469 546 2
V 469 120 668 839 841 845 6
W 467 468 1237 3

Figure 8. Neural network training SOM neighbor weight
distances for Point 1, velocity component U.

To apply the fuzzy C-means clustering method to
a given dataset, it is needed to determine the number
of clusters (C parameter), exponent for the partition
matrix, maximum number of iterations, and minimum

Figure 9. Neural network training SOM sample hits for
Point 1, velocity component U.

amount of improvement. In this research, C parameter
value is selected by trial and error equal to 55. Other
parameter values are as follows, respectively: 2.0, 1000,
1e-5. Clusters whose number of their members is less
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Table 10. Outliers detected in datasets using fuzzy C-means clustering method.

No. Velocity
component

Outlier index Number

1
U | 0
V 13 159 299 540 960 1437 6
W | 0

2
U 45 46 70 549 558 845 6
V 187 706 828 1238 1252 5
W 467 468 669 717 721 1237 115 175 204 706 834 845 12

than 7 are considered as outlier candidates. Table 10
provides the results of running FCM on the data sets.

Evidently, employing di�erent approaches has led
to various results. Some methods identi�ed a data as
an outlier, whereas the same sample was considered
as normal by other techniques. Therefore, realizing
whether a sample is a real outlier or not appeared to
be a complicated problem; a substantial way to identify
an outlier by the voting method. The outliers utilizing
most of the methods can be potentially considered as
outliers. In this way, the accuracy of the obtained
results surprisingly increases.

In this paper, the samples marked as outliers
in three methods are selected as the �nal outlier
candidates. In consideration of searching the points
and calculating the frequency of each data, the binary
search algorithm [28] is used. Table 11 presents
the datasets' outlier identi�ed by the voting method.
Depending upon the nature of each algorithm, di�er-
ent methods result in various outcomes. One factor
e�ective in the performance of each algorithm is taking
correct parameters. To this end, it is attempted to
select the best parameters for each algorithm regarding
the nature of the data. As the voting method uses
a comparability of the results obtained through the
methods, its results can be taken as more accurate and
reliable. In this study, further investigations have been
based on the results (Table 11).

As seen in Table 11, Point 1 has fewer outliers

rather than Point 2. This is due to the installation
of spur dike making the pattern of the turbulent 
ow
around spur dike in the sharp bend more disorderly.
Having detected outliers, they can be totally removed
if there are few such data. Otherwise, they would be
recti�ed or measured multiple times.

A noteworthy fact is that the outlier candidates
chosen via such methods are not always indicative of
error occurrence or fault in measurements. Perhaps,
they are necessarily caused by variations of the system's
nature circumstances (e.g., in 
ow conditions). The
data may suggest an unknown behavior of the system
under study so far. Indeed, detecting them can provide
highly important information on the nature of the
problem and lead to an even better understanding.
Therefore, detecting outliers and the causes leading
to such outliers must be investigated and the best
approach be introduced; the strategy has been taken
into account in this study.

In general, in this research, regarding various
experiments, many critical factors probably involved
in arising outliers are listed below:

� Changes in 
ow condition;
� Trivial 
uctuations of power and concluded e�ect on

the discharge of the pump system;
� Observational errors;
� Spurious errors;
� Systematic errors;

Table 11. Outliers detected in datasets using the voting method.

No. Velocity
component

Outlier index Number

1
U 151 744 1305 1306 1437 5
V 496 1313 1437 3
W | 0

2
U 469 546 2
V 86 120 226 469 478 617 730 845 1237 9
W 115 175 204 467 468 706 830 834 845 1237 10
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� Random errors;
� Not following the correct measurement instructions;
� Other factors such as environmental operative fac-

tors, di�culties with measurement devices, non-
calibrated devices, human factors, such as optical
illusions, the user's lack of experience and skill in
using the measurement devices.

We should keep in mind that one method cannot
always surpass other methods. One method may be
e�ciently employed for a particular sort of data, while
it is not e�cient for another type. Therefore, this
paper o�ers a process and while doing so, just the data
selected by other methods as outliers are identi�ed as
the �nal outlier candidates.

Figure 10 illustrates a dataset of vertical and
lateral components of 
ow velocity in the case of bend
with spur dike (Point 2) after running the voting
method. As seen in the �gure, employing the voting
method integrates velocity time-series data and less
disparity is evident through them.

Concerning the accurate study of the e�ect of the
detected outliers on 
ow pattern variations in the sharp
bend, it is essential that di�erent hydraulic parameters
in turbulent 
ows be discussed. In Tables 12 and 13,
kinetic energy and shear stress (using Reynolds [29],

TKE [30], and modi�ed TKE [16,30]) parameters'
values are compared with regard to the two considered
points with and without a spur dike in the bend.
Additionally, to observe mean 
ow pattern variations,
the mean values of 
ow velocity components before and
after outlier elimination from data sets are presented in
these tables.

A noteworthy point in Table 12 is that after
running the voting method on data sets, compared to
other methods, the Reynolds shear stress parameter
signi�cantly decreased by about 36%. Since there are
no outliers reported in vertical direction in Table 11,
the modi�ed TKE before using voting method did not
di�er from the one after applying it. Overall, based on
Table 12, it can be stated that in the case of the bend
without a spur dike, running the voting method does
not in
uence the mean 
ow pattern a�ected by mean
velocities, while 3D velocity components are signi�-
cantly exaggerated by spur dike installation at the bend
apex, undergoing numerous variations. Considering
Table 13, due to section constriction and a surge in

ow velocity, in the centrifugal force and, subsequently,
in the secondary 
ow strength, particularly at the
downstream wing area (where Point 2 falls), a highly
turbulent 
ow velocity will be dominant. As a result, it
is not feasible to predict a certain order in 
ow patterns

Figure 10. The distribution of both lateral and vertical components of 
ow velocity by the voting method (Point 2).

Table 12. A comparison between di�erent hydraulic parameters governing the 
ow for the point without installation of
spur dike in the bend (Point 1).

Condition

Mean
longitudinal

velocity
component

(m/s)

Mean
lateral

velocity
component

(m/s)

Mean
vertical
velocity

component
(m/s)

Kinetic
energy
(m2/s2)

Reynolds
(shear
stress)
(N/m2)

TKE
(shear
stress)
(N/m2)

Modi�ed
TKE

(shear
stress)
(N/m2)

Raw data 0.4725 -0.0630 -0.0060 0.0022 0.4290 0.4270 0.3341
Data after

running the
voting method

0.4724 -0.0629 -0.0060 0.0022 0.2748 0.41 26 0.3341
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Table 13. A comparison between di�erent hydraulic parameters governing the 
ow for the point with spur dike in the
bend (Point 2).

Condition

Mean
longitudinal

velocity
component

(m/s)

Mean
lateral

velocity
component

(m/s)

Mean
vertical
velocity

component
(m/s)

Kinetic
energy
(m2/s2)

Reynolds
(shear
stress)
(N/m2)

TKE
(shear
stress)
(N/m2)

Modi�ed
TKE

(shear
stress)
(N/m2)

Raw data 0.0152 0.0348 0.0038 0.0133 3.8884 2.5336 0.7128
Data after

running the
voting method

0.0146 0.0333 0.0043 0.0126 3.9494 2.3852 0.6390

around spur dike. In spite of turbulence parameters,
the mean 
ow parameters also undergo remarkable

uctuations mainly found in resultant 
ow vertical
component of strong up 
ows extant at downstream
of the spur dike. According to Table 13, a 12% growth
in vertical component at Point 2 reduced modi�ed
TKE, carried out using the voting system by 10%.
Regarding other turbulence parameters, it can be said
that running the voting method at Point 2 resulted
in a decrease in all turbulence parameters except the
Reynolds shear stress which increased by 1.5%.

4. Conclusion

Flow pattern analysis can provide highly important
information on 
ow characteristics. Understanding
the 
ow behavior under di�erent circumstances can
be achieved to some extent using experimental mea-
surements. There are many causes of outliers in the
measurements. Outliers may be produced by error
of measurements or variations in the nature of the

ow. Thus, detecting such data is vital from di�erent
viewpoints and can provide highly reliable results of the
data. This paper employed a combination of Z-score
test, sum of sines curve �tting, Mahalanobis distance,
hierarchical clustering, LSC-mine, self-organizing map,
fuzzy C-means clustering, and voting methods to detect
outliers in 
ow pattern experiments in a channel with
a 180-degree bend with and without a T-shaped spur
dike, individually. A comparison between di�erent
outlier detection methods indicates that one of the
advantages of the voting method is that a compara-
bility of the results of the other methods is applied
and processed. It is highly recommended that before
analyzing the collected data through 
ow pattern
experiments, the procedure proposed in this paper be
used in outlier detection. This paper has calculated
di�erent hydraulic parameters consisting of kinetic
energy and shear stresses (using Reynolds, TKE, and
modi�ed TKE methods) in a bend with and without
spur dike, and made comparison between them so as
to study the impact of running the voting method
on mean and turbulent 
ow pattern variations in a

sharp bend. Results showed that in the case of the
bend without a spur dike, the mean velocities were not
signi�cantly in
uenced by the voting method, although
it reduced the Reynolds shear stress by about 36%.
Results were di�erent in the case of the bend with a
spur dike, and both mean and turbulence parameters
of the 
ow underwent alterations, such that after the
elimination of outliers detected through the voting
method, under the in
uence of installing the spur dike
in the bend, a vertical velocity component faced a
12% growth, whereas modi�ed TKE shear stress was
decreased by 10%.
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