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Abstract. An adaptive mesh-free approach is developed to compute the lower bounds of
limit loads in plane strain soil mechanics problems. There is no pre-de�ned connectivity
between nodes in the mesh-free techniques, and this property facilitates the implementation
of h-adaptivity. Nodes may be added, moved, or discarded without complex changes in
the data structures involved. In this regard, the Shepard mesh-free method is used in
conjunction with the nodal stress rate smoothing technique and the lower bound limit
analysis theory to establish a non-linear optimization problem. This problem is solved
by the second-order cone programming technique, and the result is a stress �eld that
satis�es the lower bound requirements in a non-rigorous manner. The lack of rigorousness
arises from relaxation during nodal stress rate smoothing process. An error estimator
is introduced by the application of Taylor series expansion, and by controlling the local
error via a user-de�ned tolerance, the adaptive re�nement strategy is established. To
demonstrate the e�ectiveness of the proposed method, the procedure is applied to the
examples of purely cohesive and cohesive-frictional soils.

© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Limit theorems of classical plasticity [1] can be very
powerful for estimating collapse loads of geo-structures.
However, their applications by hand are restricted to
simple problems where it is possible to assume obvious
failure mechanisms or stress discontinuities. Therefore,
much progress has been made over the last three
decades on the development of numerical limit analysis
techniques using the combination of �nite-element
method and limit theorems. These methods, known as
�nite-element limit analyses, are very general and can
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deal with complex practical problems, where the failure
load is di�cult to estimate by the other methods.
A complete review on the development of di�erent
�nite-element limit analysis techniques for geotechnical
stability analysis was provided by Sloan [2].

In the �nite-element limit analysis, the discretiza-
tion of domain is carried out by the �nite-element
method. However, in some recent studies, the mesh-
free methods have been used as the discretization tool
with the goal of computational e�ciency improvement.
For example, Chen et al. [3] developed a lower bound
approach using the element-free Galerkin method and
reduced-basis technique to construct an admissible
stress �eld. Chen et al. [4] also applied the element-free
Galerkin method to the lower bound shakedown anal-
ysis of structures under variable repeating loads. Le et
al. [5,6] used element-free Galerkin method to discretize
the moment �eld in the limit analysis of plates. Liu and
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Zhao [7] used the radial point interpolation method
and nonlinear programming to develop a technique for
upper bound limit analysis of solid structures. Binesh
and Raei [8] combined the theory of limit analysis with
the stabilized nodal integration scheme and the radial
point interpolation method to provide an approach for
estimating the upper bound of the limit loads in purely
cohesive soils. Binesh and Gholampour [9] introduced a
mesh-free lower bound limit analysis approach by the
application of the Shepard's shape functions and the
linear programming technique.

To improve the accuracy of numerical limit anal-
ysis solutions, the automatic h-re�nement is often
performed, so the density of spatial discretization is
increased in plastic zones. This adaptive procedure
has been proposed for the �nite-element limit analy-
sis [10-15] as well as the mesh-free limit analysis [16]
approaches. The main policy in these methods is
de�ning a posteriori error estimator and establishing
an adaptive re�nement strategy based on the reduction
of this error.

In the present paper, the mesh-free lower bound
method proposed by Binesh and Gholampour [9] is
improved by considering the nonlinearity of yield crite-
rion. Besides, by introducing an error estimator based
on Taylor series expansion, an adaptive technique has
been o�ered to advance the e�ciency of computations.
In this context, the outline of the present paper is
established as follows: in Section 2, a brief description
of mesh-free lower bound formulation is presented; in
Section 3, the establishment of nonlinear optimization
problem and its conversion to the second-order cone
programming form is discussed. Section 4 consists of
the description about the adaptive procedure, so that
the details of error estimation and re�nement strategy
are explained in this section. To validate the proposed
method, numerical study is performed in Section 5.
Finally, the summery and conclusion of the paper is
presented in Section 6.

2. Mesh-free lower bound formulation

According to the lower-bound theory, the limit load
calculated from a statically admissible stress �eld is
a lower bound on the true collapse load. In this
context, a statically admissible stress �eld is the one
that satis�es the local equilibrium equations within the
problem domain and its boundary and does not violate
the plastic yield criterion [1].

Now, consider a domain of rigid-perfectly plastic
body, 
, with boundary � (e.g., � = �u + �t)
shown in Figure 1, and let (f; g) denote the external
loading. Under these conditions, the objective of a
lower bound calculation is to �nd a stress distribution,
which satis�es equilibrium throughout 
, balances the
boundary conditions on �, violates the yield criterion

Figure 1. Rigid-perfectly plastic body under external
loading.

in no way, and maximizes the integral:

Q =
Z

�
gd� +

Z


fd
; (1)

where functional Q depends on the case which is
investigated.

To apply the above formulation, the stress �eld
must be discretized and the admissibility conditions
must be satis�ed for the discretized �eld.

2.1. Discretization tool
By the application of mesh-free method as a discretiza-
tion tool, the problem domain can be just simulated
by a �nite number of nodes. An in
uence domain is
de�ned around each node (see Figure 2) and continuous
stress function �(X) is expressed as follows:

�(X) = �(X)�s =
NX
i=1

�i(X)�i; (2)

where:

�s = [�1; �2; :::; �N ]T ; (3)

is a vector, consisting of �(X) values at N discrete
nodes located in the support domain of typical point
X, and:

�(X) = [�1(X);�2(X); :::;�N (X)] ; (4)

Figure 2. In
uence domain of a typical point.
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is a matrix that contains the Shepard's shape functions
for N local nodes, in which �i(X) is as follows [17]:

�i(X) =
�j 6=irajPN
k=1 �j 6=kraj

j = 1; 2; :::; N; (5)

where rj indicates the spatial distance between point
X and node Xj . a is a positive exponent which can
a�ect the shape of interpolated function. Gordon and
Wixom [18] suggested a > 1 for smoothness of the
interpolated functions.

The shape functions constructed by the Shep-
ard method have the Kronecker delta function prop-
erty [18], which allows for the simple imposition of
the boundary conditions. Besides, the interpolated
values by the Shepard method always lie between the
maximum and minimum nodal values used for the
interpolation process [18]. The derivatives of Shepard's
shape functions also satisfy the consistency conditions
in two dimensions as follows [19]:

NX
i=1

�i;x = 0;
NX
i=1

�i;y = 0; (6a)

NX
i=1

�i;xxi = 1;
NX
i=1

�i;yxi = 0; (6b)

NX
i=1

�i;xyi = 0
NX
i=1

�i;yyi = 1; (6c)

where a comma denotes the derivative with respect to
the following subscript.

2.2. Admissibility conditions
In every lower bound solution, the equilibrium equa-
tions, the boundary conditions, and the non-violating
yield conditions must be satis�ed. Each condition is
brie
y discussed in the following sub-sections. For
more details, the reader is referred to [9].

2.2.1. Equilibrium equations
The equilibrium equations are stated as follows:

@�ij
@xj

+ bi = 0; (7)

where �ij and bi are the stress tensor and body force
vector, respectively. By de�ning Voronoi cell around
each node and smoothing the stress gradient in the cell,
Eq. (7) converts to:

1
AL

Z
�L
�ijnjd� + bi = 0; (8)

where AL is the area of Voronoi cell, �L is the boundary
of Voronoi cell, and nj is the normal unit vector in j

Figure 3. Voronoi cell around node q.

direction (see Figure 3). By the application of Eq. (2)
into Eq. (8), the discretized form of Eq. (8) can be
written as:X
z2K

1
AL

Z
�L

�z(X)nj�ij(Xz)d� + bi = 0; (9)

where �ij(X) is the stress value at spatial coordinate X,
�z(X) is the shape function de�ned by Eq. (3), �ij(Xz)
is the nodal stress value at spatial coordinate Xz, and
K is the group of nodes located at the in
uence domain
of point X.

Finally, satisfaction of Eq. (9) at all Voronoi cells
gives the following matrix form:

Aeq� = Beq; (10)

where Aeq is the coe�cient matrix, � is the matrix
that consists of stress tensors, and Beq is the body
force matrix.

2.2.2. Boundary conditions
As the Shepard's shape functions have the Kronecker
delta function property, the tractions at the bound-
aries can be imposed easily by considering segments
with constant stress. In this regard, the gradient
of smoothed stress along each segment of boundary
with constant stress equates to zero and the values of
stresses are imposed at the boundary nodes. These
manipulations lead to a system of equations as follows:

Abo� = Bbo; (11)

where Abo is the coe�cient matrix and Bbo is the vector
of speci�ed values of stresses along the boundary.

2.2.3. Non-yielding condition
As the interpolated values (i.e., stresses) by Shepard
method always lie between the maximum and minimum
nodal values [18], it is su�cient for the yield condition
to be checked only at the nodes. Considering the Mohr-
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Coulomb failure criterion in 2D space X = (x; y), under
plane strain condition, the yield function can be written
as follows:

F =
q

(�xx � �yy)2 + (2�xy)2 + (�xx + �yy) sin'

� 2C cos'; (12)

where C and ' are cohesion and friction angles of the
soil, respectively. For plastically admissible stress �eld,
we have:

F � 0; (13)

at every point in the problem domain.

3. Establishment of the optimization problem

Considering the objective function and the required
constraints, the lower bound limit analysis problem can
be expressed as a non-linear optimization problem in
the following format:

Minimize �Q(�)

Subject to: Atot� = Btot;

F (�) �; 0 (14)

where Atot and Btot are the matrices obtained by
the assemblage of equilibrium and boundary condition
constraints.

As it is shown, the objective function and equality
constraints arising from the equilibrium and boundary
conditions are linear equations, with the only non-
linearity arising from the yield inequalities. To avoid
the local smoothing of the yield function, the second-
order cone programming approach [20] is used to solve
the obtained non-linear optimization problem. In this
context, X = (x; y) in two dimensions, and stress space
� = [�xx �yy �xy]T converts to equivalent stress space
S = [�m Sxx Sxy]T as follows [21]:

S = P�1�; (15)

P =

241 1 0
1 �1 0
0 0 1

35 : (16)

Using the obtained equivalent stress space, the yield
function (i.e., Eq. (12)) can be re-written as follows:q

S2
xx + S2

xy + �m sin'� C cos' � 0: (17)

By introducing variable Z as:

Z = C cos'� �m sin'; (18)

the yield function becomes:q
S2
xx + S2

xy � Z; (19)

and thus, the nonlinear optimization problem can be
re-written in the form of second-order cone program-
ming problem as follows:

Minimize �Q(S)

subject to : A�totS = B�totq
S2
xx;i + S2

xy;i � Zi i = 1; :::; N; (20)

where subscript i denotes the node at which the non-
yielding condition should be checked and N indicates
the total number of nodes. A�tot and B�tot are the
modi�ed versions of matrices Atot and Btot to be
consistent with the new stress space, respectively. The
obtained optimization problem is solved by the interior
point method [22].

4. Adaptive procedure

To improve the e�ciency of computations, a technique
is proposed here to develop adaptive con�guration of
nodes. An important part of any adaptive procedure
is to establish an error estimator with which the
re�nement strategy can be de�ned.

4.1. Error estimation
The method proposed by Liu et al. [23] is used here
to de�ne an error estimator in two dimensions. On
this subject, using Eq. (2), the di�erence between the
derivatives of approximated function, �h;x(X), and real
function, �;x(X), can be written as follows:

�h;x(X)� �;x(X) =
NX
i=1

�i;x(X)�(Xi)� �;x(X): (21)

Using Taylor series expansion in two dimensions, X =
(x; y), �(Xi) may be expanded around X:

�(Xi) =�(X) + �;x(X)(xi � x) + �;y(X)(yi � y)

+
1
2
�;xx(X)(xi � x)2 + �;xy(X)(xi � x)

(yi � y) +
1
2
�;yy(X)(yi � y)2 +O(h3): (22)

Substituting Eq. (22) into (21) and ignoring higher
order terms, we can write �h;x(X)� �;x(X) as:
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�h;x(X)� �;x(X) =
NX
i=1

�i;x(X)�(Xi)� �;x(X)

= �(X)
NX
i=1

�i;x(X)

+ �;x(X)

 
NX
i=1

�i;x(X)(xi � x)� 1

!
+ �;y(X)

NX
i=1

�i;x(X)(yi � y)

+
1
2
�;xx(X)

NX
i=1

�i;x(xi � x)2

+ �;xy(X)
NX
i=1

�i;x(X)(xi � x)(yi � y)

+
1
2
�;yy(X)

NX
i=1

�i;x(X)(yi � y)2: (23)

Eqs. (6a), (6b), and (6c) simplify Eq. (23) to:

�h;x(X)� �;x(X) =
1
2
�;xx(X)

NX
i=1

�i;x(xi � x)2

+ �;xy(X)
NX
i=1

�i;x(X)(xi � x)(yi � y)

+
1
2
�;yy(X)

NX
i=1

�i;x(X)(yi � y)2: (24)

Therefore:�����h;x(X)� �;x(X)
���� � 1

2
j�;xx(X)j

����� NX
i=1

�i;x(xi � x)2

�����
+ j�;xy(X)j

���� NX
i=1

�i;x(X)(xi � x)(yi � y)
����

+
1
2
j�;yy(X)j

���� NX
i=1

�i;x(X)(yi � y)2
����:

(25)

Since all of the shape functions have a compact support
(i.e., in
uence domain), there exists constant RI , such
that for any X = (x; y):

jxI � xj < RI ; jyI � yj < RI : (26)

The value of RI can be estimated by:

RI = �dc; (27)

where � is a dimensionless coe�cient that lies between
2 and 3, and dc is a characteristic length which is
associated with the nodal spacing near the point. If
the nodes are uniformly distributed, dc is simply the
distance between two neighboring nodes. In case where
the nodes are non-uniformly distributed, dc can be
de�ned as an average nodal spacing in the in
uence
domain. There is also a bound on the values of the
shape functions in each in
uence domain, and hence
the following relation exists:����� NX

i=1

�i;x(X)

����� < �; (28)

where � is a bounded constant.
Considering Eqs. (25) to (27), L2-norm of error

estimate can be written as:

jj�h;x(X)� �;x(X)jjL2(
) � C1jj12�;xx(X) + �;xy(X)

+
1
2
�;yy(X)jjL2(
); (29)

where C1 is a constant de�ned as:

C1 = hR2
I : (30)

4.2. Re�nement criteria
Based on the error estimate discussed in Section 4-1,
the local error is computed at each Voronoi cell from
the obtained stress �eld. This local error is controlled
by a dimensionless user-de�ned error tolerance value �
as follows:

jj1
2
�;xx(X) + �;xy(X) +

1
2
�;yy(X)jjL2(
) � �: (31)

To calculate �;��(X) numerically, a smoothing tech-
nique, similar to the one introduced by Chen et al. [24],
has been used. In this regard:

~�;��(X) =
1
AL

Z

L

�;��(X)d
; (32)

where �;��(X) can be written in a discrete form by the
application of Shepard's shape functions as follows:

�;��(X) =
X
Z2K

�Z;���(XZ); (33)

where K is the group of nodes located in the support
domain of point X. In the above equation, the
smoothed version of shape function's derivative (i.e.,
~�Z;��) can be used instead of �Z;�� . The smoothed
version over a Voronoi cell (i.e., 
L) can be obtained
by:
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~�Z;��(Xq) =
1
AL

I
�q

�
�Z;�(Xq)n�

+ �Z;�(Xq)n�
�
d�; (34)

where:

~�Z;�(Xq) =
1
AL

I
�q

(�Z(Xq)n�) d�

=
1
AL

NsX
k=1

�
nD� L

D + nD+1
� LD+1

�
�Z(XD+1

q ); (35)

where Ns is the total number of segments of Voronoi
cell that contains node q; XD

q and XD+1
q are the two

end points of boundary segment �Dk ; and LD is the
length of �Dk . nDx and nDy are, respectively, x and y
components of the normal vector to �Dk .

Using Eqs. (31) to (35), the local error at each
Voroni cell can be estimated directly. If this local
error exceeds prede�ned value, �, new nodes are added
at the vertices of speci�ed Voronoi cell. The process
is repeated for each Voronoi cell until all local errors
become smaller than pre-de�ned error tolerance, �.

5. Numerical study

The e�ciency of the proposed adaptive method is
investigated here by solving some examples on purely
cohesive and cohesive-frictional soils. In all examples,
the shape functions are constructed by considering a
circle support domain around each node and su�cient
number of nodes covered by the support domain in
an automatically self-tuned value of radiuses devised
in the code. The boundaries of the models are also
su�ciently distant from the loading area to ensure
that the discretized domain always contains the entire
plastic zones.

5.1. Example (1): Smooth strip footing resting
on purely cohesive soil

The exact collapse pressure for a smooth strip footing
resting on weightless purely cohesive soil is given by the
well-known Prandtl solution [25] as qult = 5:14C, where
C is the soil cohesion. The geometry and boundary
conditions used to analyze this problem are shown in
Figure 4. Due to the symmetry, only one half of the
geometry is modeled in the numerical study.

Both uniform and adaptive nodal re�nement tech-
niques are used in the proposed mesh-free lower bound
method to �nd the collapse load. Uniform nodal
re�nement is carried out by considering four mesh-free
models shown in Figure 5. The obtained results from

Figure 4. The geometry and boundary conditions for
undrained loading problem.

Figure 5. Uniform re�nement with (a) 196, (b) 379, (c)
726, and (d) 1117 nodes (undrained loading problem).

lower bound limit analysis with linear and nonlinear
programming are shown in Table 1. As shown, the
application of nonlinear programming improves the
accuracy of results, and that all evaluated values are
lower than those of the exact solution are. It is also
evident that the higher density of nodes provides better
results.

In order to assess the e�ciency of the proposed
adaptive procedure, the model shown in Figure 5(b)
is selected as the base model to carry out adaptive
nodal re�nement. Once the optimization process is
�nished, the local error of the obtained stress �eld is
computed at each Voronoi cell. In the regions where
error exceeds the pre-de�ned tolerance, new nodes are
added at the vertices of the cell. It is noteworthy
that based on the numerical tests performed by Le
et al. [16], the optimum value of pre-de�ned local
error tolerance is selected as 0.001. The restructuring
process continues until the error tolerance is satis�ed at
all nodes. As depicted in Figure 6, the density of nodes
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Table 1. Normalized collapse pressure ( qultC ) obtained using uniform re�nement (undrained loading problem).

Model
shown in

Number of
nodes

Exact
solution

Lower
bound (linear

programming [9])

Lower
bound (nonlinear

programming)
Figure 5(a) 196 5.14 3.140 3.160
Figure 5(b) 379 5.14 4.351 4.378
Figure 5(c) 726 5.14 4.678 4.709
Figure 5(d) 1117 5.14 4.939 4.967

Figure 6. Adaptive re�nement with (a) 379, (b) 466, and
(c) 708 nodes (undrained loading problem).

Table 2. Normalized collapse pressure ( qultC ) obtained
using adaptive re�nement (undrained loading problem).

Model
shown in

Number of
nodes

Exact
solution

Lower bound
solution

Figure 6(a) 379 5.14 4.378

Figure 6(b) 466 5.14 4.625

Figure 6(c) 708 5.14 5.134

increases in the vicinity of high-stress gradient beneath
the footing, where the plastic points are expected to
take place. Table 2 shows the results of di�erent steps
of adaptive analysis, and a comparison between the
results of uniform and adaptive nodal re�nement is
depicted in Figure 7. It can be seen that the proposed
adaptive procedure converges to the exact solution with
the smaller number of nodes, con�rming the e�ciency
of the method.

5.2. Example (2): Smooth strip footing resting
on cohesive-frictional soil

In order to study the e�ciency of the proposed adap-
tive procedure for cohesive-frictional soils, the drained

Figure 7. Comparison between normalized collapse
pressures obtained using uniform and adaptive re�nement
(undrained loading problem).

loading of a smooth strip footing is investigated here.
According to [26], the ultimate load of a smooth strip
foundation resting on a semi-in�nite cohesive-frictional
soil can be estimated by:

qf = CNc + 0:5B
N
 ; (36)

Nc = (Nq � 1) cot'0; (37)

Nq = exp(� tan'0) tan2(
�
4

+
'0
2

); (38)

where qf , C, and '0 are the ultimate pressure, the soil
cohesion, and the e�ective internal friction angle of soil,
respectively. B and 
 are the width of foundation and
the soil unit weight, respectively. N
 is evaluated by
the well-known Brinch Hansen [27] formula as follows:

N
 = 1:5(Nq � 1) tan'0: (39)

As known, by increasing the value of '0, the extent of
failure zone beneath the foundation increases. Thus,
in the present example, the boundaries of the model
in both directions are extended to the distance of
10B from the edges of the foundation to ensure that
the considered domain encloses the failure zone, and
that there is no intersection between the plastic zone
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Figure 8. Adaptive re�nement with (a) 3660, (b) 5100,
and (c) 10193 nodes (drained loading problem).

and the domain boundaries. The problem is solved
for 
B=2C = 1 and '0 = 30� to account for the
presence of soil unit weight, cohesion, and friction angle
simultaneously. As depicted in Figure 8, the adaptivity
analysis begins with a uniform arrangement of nodes
located at a distance of 0.35 m from each other. The
total number of nodes in the �rst model is 3660. By
the continuation of adaptive re�nement, the number of
nodes gets into 5100 and 8193 for the third and �fth
steps of analysis, respectively. The comparison between
the Brinch Hansen's solution and the results obtained
at di�erent steps of the adaptivity analysis (depicted in
Table 3) shows that the adaptive procedure can provide
very good results for a problem associated with the
cohesive-frictional soil.

5.3. Example (3): Trapdoor problem
Some practical problems, such as the stability of
temporary tunnel roofs or abandoned mining areas, are
simply simulated by plane strain trapdoor problem.
In this problem, a layer of purely cohesive soil, with
undrained shear strength, Su, and thickness H, rests
on a trapdoor of width B (Figure 9). The trapdoor
itself and stratum underlying the soil layer are assumed

Figure 9. Trapdoor problem.

to be non-yielding materials. As shown in Figure 9, in
stable condition, externally applied stress �t must be
su�ciently high to resist the active failure of the soil
above the trapdoor. The stability of trapdoor is usually
studied by de�ning a stability number as follows:

N = (
H + �s � �t)=Su; (40)

where N , 
, H, and Su are the stability number, soil
unit weight, soil layer thickness, and undrained shear
strength of soil, respectively. Stresses �s and �t are
depicted in Figure 9. The stability number is a function
of H=B value; however, the exact value of stability
number cannot be found strictly, and upper or lower
bound solutions are presented by some researchers [28-
30].

In this example, the lower bound values have
been found for the stability numbers of weightless soil
trapdoor problem with H=B = 5 and smooth interface
of soil and trapdoor. According to the authors' survey,
the best lower and upper bound solutions to the
stability number of this problem are found by Sloan
et al. [30] and the values are, respectively, 5.62 and
6.16. As depicted in Figure 10, three successive mesh-
free models with adaptive re�nement are considered. In
these models, a major increase in the density of nodes
occurs in the active failure zone above the trapdoor
where it is expected of the soil to behave plastically.
The stability numbers of all models are also shown in
the �gure. As it is obvious, the lower bound solutions
are all lower than the upper bound value, and the �nal
result is in very good agreement with that of the �nite-
element limit analysis of Sloan et al. [30].

Table 3. Ultimate load obtained using adaptive re�nement (drained loading problem).

Model
shown in

Number of
nodes

Brinch Hansen's
solution [27]

Lower bound
solution

Figure 8(a) 3660 45.21 38.68
Figure 8(b) 5100 45.21 41.61
Figure 8(c) 10193 45.21 44.09
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Figure 10. Adaptive re�nement with (a) 830, (b) 990,
and (c) 3460 nodes (trapdoor problem).

6. Conclusion

An adaptive mesh-free lower bound limit analysis
formulation was proposed for the prediction of limit
loads in soil mechanics problems under plane strain
condition. In the presented approach, the lower bound
theorem of classical plasticity was combined with a
conforming mesh-free technique to render nonlinear
discretized optimization problem. This problem con-
verted to a second-order cone programming problem
and was solved by the interior point method. To
improve the computational e�ciency of the proposed
method, an adaptive approach based on Taylor series
expansion was o�ered. In this approach, h-re�nement
was used and the nodes were adaptively added to the
vertices of Voronoi cells. The results of adaptive anal-
ysis for purely cohesive soil and cohesive-frictional soil
revealed that the addition of nodes mainly occurred in
the expected plastic zones and the acceptable estimates
of lower bound for limit load could be obtained by
relatively small number of nodes. Besides, it seems
appropriate for the proposed method to be extended
for de-remeshing technique in future research studies,
where the nodes are removed in the areas with very
low error estimate. It is worth mentioning that due
to the relaxation occurred during the process of stress
gradient smoothing, the proposed method cannot be
guaranteed to produce rigorous lower bound solutions.
However, for all problems investigated, the obtained
results values were lower than known exact solutions.
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