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Abstract. In the present study, various Higher-order Shear Deformation beam Theories
(HSDTs) are applied in order to achieve the exact analytical solution to bending, buckling,
and free vibration of Functionally Graded (FG) nanobeam lying on the Winkler and
Pasternak elastic foundations. HSDTs are those in which the e�ect of transverse shear
strain is included. The displacement �eld of these theories involves a quadratic variation
of transverse shear strains and stresses; hence, this hypothesis leads to the diminishing of
transverse shear stresses at the top and bottom surfaces of a beam. Thus, necessarily, there
is no need to use a shear correction factor in the HSDTs. Nanobeam has been made of
FG materials in which the properties of these materials are changed through the thickness
direction of nanobeam according to the power-law distribution. Hamilton's principle is
used to derive the equation of motions and the related boundary conditions of simply
supported nanobeam. The present study shows that the stability and vibration behaviors
of FG nanobeam are extremely dependent on the Winkler and Pasternak elastic foundation,
gradient index, aspect ratio, and nonlocal parameter. The obtained results of the present
study might be useful in the advanced �eld of micro/nano electromechanical systems.

© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Nanotechnology is principally concerned with manu-
facturing of advanced materials at a nanoscale, which
presents a novel class of structures with innovative
properties and improved performance devices. The
identi�cation of mechanical behavior of nanostruc-
tures is critical in designing such structures for tech-
nological applications. Among these nanostructures
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are nanobeams which attract increasing concentration
owing to their numerous possible applications, such
as nanoprobes, nanowires, Atomic Force Microscope
(AFM), nanosensors and nanoactuators. Also, size
e�ects are important on the mechanical performance of
nanostructures in which sizes are small and analogous
to molecular distances. This inspired many researchers
to �nd a new model to predict the mechanical behavior
of these nanostructures.

Sun and Zhang [1] examined the weaknesses of
continuum models in the nanometer length scale. They
observed that material properties were in
uenced by
the length of plate structure. These results show
that disconnected material structure at the nano-scale
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cannot be homogenized into a continuum. Currently,
the nonlocal elastic continuum models are taken into
account in the investigation of nanostructures. The
nonlocal elasticity theory was �rst presented by Erin-
gen [2-4]. This theory states that the stress �eld at a
point of a body is a function of the strain �eld at every
point of the continuum body.

Many studies used the nonlocal elasticity theory
to take into account nanoscale in
uences on the nanos-
tructures [5-13]. Civalek and Akg�oz [7] used nonlo-
cal Euler-Bernoulli theory and DQ method for static
analysis of carbon nanotubes with various boundary
conditions. S�im�sek and Yurtcu [9] used nonlocal Euler-
Bernoulli and Timoshenko beam model for bending and
buckling evaluations of the FG nanobeam. Uymaz [10]
used the nonlocal elasticity to analyze the free and
forced vibration behavior of FG nanobeams. In this
study, it is seen that the nonlocal parameter plays an
important role in vibration modes. Torsional and axial
vibration behavior of microtubules was investigated
using nonlocal elasticity theory for both continuous and
discrete modeling by Demir and Civalek [14]. It was
concluded that the nonlocal e�ects play an important
role in the static and buckling responses of the FG
nanobeam.

A new generation of innovative inhomogeneous
materials, constituted of two parts with dissimilar
material properties and continuously changing compo-
sition spreading, has been established which is stated
as Functionally Graded Materials (FGMs). Such mate-
rials have been presented to take bene�t of the desired
material properties of each component material with-
out interface di�culties. Nowadays, FGMs have been
massively applied into micro or nano elements such
as micro-switches [15,16], micro-piezoactuator [17],
micro/nano-electro mechanical systems (MEMS and
NEMS) [18,19], and thin �lms in the form of shape
memory alloys [20,21].

Beams resting on elastic foundations have ex-
tensive applications in engineering structures. This
inspired many scientists to examine the performance
of structures in di�erent kinds of elastic foundations.
The Winkler-type elastic foundation is estimated as
a series of closely spaced, mutually independent, and
vertical linear elastic springs. The foundation modulus
is characterized by sti�ness of the springs. However,
this model is considered as a rough approximation of
the real mechanical performance of the elastic material.
This is due to failure of the model to consider the
continuity or cohesion of the medium. The interaction
among the springs is not taken into account in Winkler-
type foundations. A more accurate and generalized
modeling of the elastic foundation can be achieved by
the way of a two-parameter foundation model. One
such physical foundation model is the Pasternak-type
foundation model [22]. The �rst factor of Pasternak

foundation model characterizes the normal pressure,
while the second one accounts for the transverse shear
stress caused by interaction of shear deformation of
the surrounding elastic medium. Numerous researchers
have studied the mechanical performance of nanoscale
materials, particularly carbon nanotubes embedded in
di�erent surroundings, which can be modeled with
various kinds of elastic foundations. Yoon and Mido-
duchowski studied the internal vibration of multi-wall
carbon nanotubes surrounded by an elastic medium
based on multiple-elastic beam model [23]. A combined
method for bending and free vibration of arbitrary
thick beams lying on Pasternak elastic foundation
was presented by Chen et al. [24]. The in
uence of
Winkler and Pasternak elastic foundations on bending
and free vibration of FG beams was investigated by
Ying et al. [25]. Murmu and Pradhan investigated
a thermal vibration of single-carbon nanotube lying
on single-elastic medium using thermal nonlocal elas-
ticity theory [26]. Soltani et al. [27] proposed a
Timoshenko elastic model to predict the vibrational
behavior of a multi-wall carbon nanotube embedded
in a Pasternak medium. They used a generalized
di�erential quadrature method to solve the governing
equations with di�erent boundary conditions. The
e�ect of elastic foundation on nonlinear vibration anal-
ysis and buckling of FG nanobeam has been presented
recently by Niknam and Aghdam [28]. An Euler-
Bernoulli nonlocal beam model was used to analyze
the buckling behavior of protein microtubules lying
on elastic foundation by Civalek and Demir [29].
Also, di�erent boundary conditions were investigated
using a �nite element method. It may be concluded
that the elastic foundation coe�cients have direct
relation with both natural frequency and buckling
load.

Beams are the elementary structures largely used
in MEMS, NEMS, and AFM with the order of microns
or sub-microns, and their properties are thoroughly
related to their microstructure. By the increase of us-
ing FGM in structures, many beam theories have been
proposed to predict the performance of FG beams [30].
The Classical Beam Theory (CBT), identi�ed as Euler-
Bernoulli beam model, is the simplest one and is
suitable just for slender FG beams. In place of
moderately deep FG beams, the CBT overestimates
natural frequency and underestimates de
ection due to
overlooking the transverse shear e�ect [22,31,32]. The
Timoshenko beam model (First-order shear deforma-
tion Beam Theory-FBT) has been suggested to reduce
the limitations of the CBT by taking into account
the transverse shear in
uence. As the transverse
shear strain and consequently stress are assumed to
be constant through the thickness coordinate in FBT,
a shear correction factor is necessary to explain the
inconsistency between the supposed constant stress
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state and the real stress state [33-36]. To avoid the
utilization of a shear correction factor and have an
improved computation of FG beams behavior, HSDTs
have been proposed. HSDTs can be set based on the
assumption of a higher-order variation of axial displace-
ment through the thickness direction of the beam [37-
39] or both axial and transverse displacements through
the thickness of the beam [40-42].

Many investigations have been conducted trying
to develop static and dynamic analyses of nanobeams
based on various HSDTs. Thai and Vo focused on
bending and free vibration behavior of FG beams using
HSDTs in the microscopic scale [30]. Also, bending
and vibration behavior of FG micro-beams based on
the sinusoidal shear deformation theory was proposed
by Lei et al. [43]. In addition, analytical solutions
to bending and buckling of FG nanobeams via the
nonlocal Timoshenko beam theory were presented by
S�im�sek and Yurtcu [9]. Besides, the Euler-Bernoulli
beam theory was used to obtain static de
ection and
buckling response of FG nanobeams by Eltaher et
al. [44]. Furthermore, the size e�ect on the vibrational
behavior of FG nanobeams was studied based on
nonlocal Timoshenko beam theory by Rahmani and
Pedram [45]. Recently, vibrational analysis of FG
nanobeams using various HSDTs has been presented
by Refaeinejad et al. [46].

With all due respect to the author's knowledge,
the bending, buckling, and free transverse vibration
behavior of FG nanobeams embedded in an elastic
foundation, involved in both Winkler and Pasternak
elastic foundations, have not been considered in the
previous studies. So, the ultimate aim of this study is
to cover these issues in the literature.

This paper is the �rst comprehensive study in
which nonlocal elasticity theory has been implemented
to investigate the bending, buckling, and free trans-
verse vibration of FG nanobeam. The Winkler and
Pasternak elastic foundation models have been used
to simulate the substrate medium. Also, HSDTs have
improved so as to predict the static and dynamic
behaviors of nano-structures accurately. The suggested

models accommodate quadratic variation of transverse
shear strains (and hence stresses); consequently, a shear
correction factor is not necessary. Hamilton's principle
is applied to derive the equations of motion and the re-
lated BCs. The Navier solution is employed for simply
supported BCs, and analytical solutions to the bend-
ing, buckling, and free transverse vibration are pre-
sented for FG nanobeams. In the following, the in
u-
ence of gradient index, Winkler and Pasternak parame-
ters, size-scale parameter, and aspect ratio on the bend-
ing, buckling, and free transverse vibration character-
istics of FG nanobeams are examined, and achieved
results are compared with those in available literature
to validate the accuracy of the present solution.

2. Material properties

Figure 1 indicates an FG nanobeam embedded in
Winkler and Pasternak elastic foundations which has
length, l, thickness, h, and width, b. All material
properties such as Young's modulus, E, mass density,
�, and Poisson's ratio, �, are assumed to vary with
thickness z in accordance with the power law which is
evaluated as follows:Y

(Z) =

 Y
1

�Y
2

!�
z
h

+
1
2

�p
+
Y
2

: (1)Q
1 and

Q
2 indicate the material properties at the

upper and lower surfaces of the beam, respectively.
The variation pro�le of material properties across the
thickness of the beam is denoted by p. Based on
distribution function, when p = 0, the material is
homogenous and is assumed to be an isotropic beam
with bulk properties of the upper surfaces.

3. Nonlocal beam theory

Based on Eringen nonlocal theory, the stress �eld at
point X not only depends on the strain �eld of the
same point, but also depends on strains at all points of
the body. The aforementioned fact is proven by the

Figure 1. Schematic of a FG nanobeam lying on Winkler-Pasternak elastic foundation model under a transversed
distributed load and an axial load.
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atomic theory of lattice dynamics and experimental
observation of phonon dispersion. Stress tensor � at
point X is calculated as follows [2]:

�� =
Z



K (jX 0 �X; � j)� (X 0) dX 0; (2)

where � represents the classical, microscopic second
Piola-Kirchho� stress tensor at point X, kernel func-
tion Kj(X 0 � X); � j denotes the nonlocal modulus,
(X 0�X) is the distance, and � stands for material pa-
rameter which depends on internal and external charac-
teristic lengths. Based on the generalized Hooke's law,
macroscopic stress, �, at point X in Hookean solid is
related to strain " at point X which is as follows:

�(X) = C(X) : "(X): (3)

The fourth-order elasticity tensor which denotes
double-dot product is represented by C. Eqs. (2)
and (3) together represent the nonlocal constitutive
behavior of Hookean solid. The weighted average of the
contributions of the strain �eld of all points in the body
to the stress �eld at pointX is indicated by Eq. (2). For
the sake of simplicity, an equivalent di�erential model
is used instead of integral constitutive relation, which
is evaluated as follows [2]:

(1� �2
0r2)�� = �; �0 = �2`2 = e2

0a
2; (4)

where � is the classical stress tensor at point x (�ij =
Cijkl"kl), andr2 is the Laplacian operator. For a beam
type structure, the nonlocal behavior can be ignored
in the thickness direction. Therefore, the nonlocal
constitutive relation takes the following form [3]:

�xx � �@
2�xx
@x2 = E"xx;

�xz � �@
2�xz
@x2 = G
xz: (5)

E and G are elastic and shear moduli of the beam,
respectively. The nonlocal parameter is denoted by
� = (e0�)2, and �xx and �xz represent the normal and
tangential nonlocal stresses, sequentially.

4. The governing equations

Figure 1 shows that the rectangular Cartesian coor-
dinate systems, x, y, z, are assumed to be the length,
width, and height of the nanobeam, respectively. Based
on HSDTs, the displacement �eld states that:

ux(x; z; t) = u(x; t)� z dwb
dx
� f(z)

dws
dx

;

uz(x; z; t) = wb(x; t) + ws(x; t); (6)

where u, wb and, ws are the axial displacement,
bending and shear components of transverse displace-
ment on the neutral axis of the nanobeam; f(z)
determines the transverse shear strain and shear stress
distributions through the thickness direction of the
nanobeam that is called a shape function. The di�erent
shape functions, f(z), used in this study are listed
in Table 1, such as Third-order Beam Theory of
Reddy (TBT) [47], the Sinusoidal Beam Theory of
Touratier (SBT) [48], the Hyperbolic Beam Theory of
Soldatos (HBT) [49], the Exponential Beam Theory
of Karama (EBT) [50], the Aydogdu (generalized)
Beam Theory (ABT) [6]; and the formulations were
proposed by Mantari et al. (HSDT1-HSDT3) [51-
53].

The non-zero strain �elds are given as follows:

"x =
du
dx
� z d2wb

dx2 � f(z)
d2ws
dx2 ;


xz = g(z)
dws
dx

; (7)

where g(z) = 1 � df=dz is the shape function of
transverse shear strains. Through the depth of the
nanobeam, the distribution of the transverse shear
strain and the transverse shear stresses are represented
by these shape functions.

Hamilton's principle de�nes that:

0 =
t2Z
t1

�(U + V � T )dt; (8)

Table 1. Di�erent higher-order shear deformation theories of shape functions used in this study.

Model f(z) Abbreviation Full form of theories

Reddy [47] 4z3

3h2 TBT Third-order Beam Theory
Touratier[48] z � h

� sin
��z
h

�
SBT Sinusoidal Beam Theory

Soldates [49] z � h sinh
� z
�

�
+ z cosh

� 1
2

�
HBT Hyperbolic Beam Theory

Karama et al. [50] z � ze�2(z=h)2 EBT Exponential Beam Theory

Aydogdu [6] z � z � 3
�2

ln(3)�( zh )2

ABT Aydogdu Beam Theory
Mantari and Guedes Soares [51] z � tan(mz) + zm sec2 �mh

2

�
HSDT1 1st Mantari Beam Theory

Mantari et al. [52] z � sin
��z
h

�
em cos(�zh ) � zm�h HSDT2 2nd Mantari Beam Theory

Mantari et al. [53] z � tan
��z

2h

�
msec(�z2h ) + z �m

p
2

h
p

2

�p
2 + ln(m)

�
HSDT3 3rd Mantari Beam Theory

Euler-Bernoulli (CBT) z CBT Classical Beam Theory
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where virtual strain energy, �U , virtual kinetic energy,
�T , and virtual potential of external loading, �V , are:

�U =
Z
v

(�xx�"xx + �xz�
xz)dV

=
LZ

0

�
N
d�u
dx
�Mb

d2�wb
dx2 �Ms

d2�ws
dx2 +Q

d�ws
dx

�
dx;

(9)

where N , Mb, Ms, and Q are the stress resultants
de�ned as follows:8<: N

Mb
Mz

9=; =
Z
A

8<:1
z
f

9=;�xxdA; Q =
Z
A
g�xzdA:

(10)

The variation of the potential energy can be expressed
as follows:

�V =�
LZ

0

q�(wb + ws)dx

�
LZ

0

�N
d(wb + ws)

dx
d�(wb + ws)

dx
dx; (11)

where q and �N are the transverse and axial loads,
respectively. In addition, the total transverse load, q,
made of two parameters, is in the following form:

q(x) = q0 + f(x): (12a)

q0 represents the transverse distributed load form. In
the present study, f(x) caused by elastic foundation
is considered as in the following form based on the
Winkler and Pasternak foundations [54-57]:

f(x) = �CwW (x; t) + Cp
@2W (x; t)

@x2 ; (12b)

where Cw (nN/nm2) and Cp (nN) are the Winkler and
Pasternak sti�ness parameters of the elastic medium.

The variation of kinetic energy is expressed as
follows:

�T =
LZ

0

Z
A

�(z)
�
@u1

@t
@�u1

@t
+
@u2

@t
@�u2

@t
+
@u3

@t
@�u3

@t

�
dAdx

=
LZ

0

(
I0
�
@u
@t
@�u
@t

+
�
@wb
@t

+
@ws
@t

�
�
�
@wb
@t

+
@ws
@t

��
� I1

�
@u
@t
@2�wb
@x@t

+
@2�wb
@x@t

@u
@t

�

+I2
@2wb
@x@t

@2�wb
@x@t

�J1

�
@u
@t
@2�ws
@x@t

+
@2�ws
@x@t

@u
@t

�
+k2

@2ws
@x@t

@2�ws
@x@t

+J2

�
@2wb
@x@t

@2ws
@x@t

+
@2ws
@x@t

@2wb
@x@t

�)
dx; (13)

where � is the mass density; (I0; I1; J1; I2; J2; k2) are
the mas inertias de�ned as follows:8>>>>>><>>>>>>:

I0
I1
J1
I2
J2
k2

9>>>>>>=>>>>>>;
=
Z
A

8>>>>>><>>>>>>:
1
z
f
z2

zf
f2

9>>>>>>=>>>>>>;
�(z)dA; (14)

where � is the mass density in the form of power-law
distribution.

By putting expressions �U , �V , and �T from
Eqs. (9), (11), and (13) in Eq. (8) and integrating
them part by part and gathering the coe�cients of �u,
�wb, and �ws, the following equations of motion of the
functionally-graded nanobeam are written as follows:

�u :
dN
dx

= I0
@2u
@t2
� I1 @

3wb
@x@2t

� J1
@3ws
@x@t2

;

�wb :
d2Mb

dx2 � �N
�
d2wb
dx2 +

d2ws
dx2

�
+ q0

� CwW (x; t) + Cp
@2W (x; t)

@x2

= I0
�
@2wb
@t2

+
@2ws
@t2

�
+ I1

@3u
@x@2t

� I2 @4wb
@x2@t2

� J2
@4ws
@x2@t2

;

�ws :
d2Ms

dx2 � �N
�
d2wb
dx2 +

d2ws
dx2

�
+ q0

� CwW (x; t) + Cp
@2W (x; t)

@x2

= I0
�
@2wb
@t2

+
@2ws
@t2

�
+ J1

@3u
@x@t2

� J2
@4wb
@x2@t2

� k2
@4ws
@x2@t2

: (15)
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The boundary conditions are given as below in the
speci�c form:
u or N;

wb or Qb �dMb

dx2 � �N
d
dx

(wb + ws)� I1 @
2u
@t2

+ I2
@3wb
@x@t2

+ J2
@3ws
@x@t2

;

ws or Qs �dMs

dx
� �N

d
dx

(wb + ws) +Q� J1
@2u
@t2

+ J2
@3wb
@x@t2

+ k2
@3ws
@x@t2

;

dwb
dx

or Mb;

dws
dx

or Ms: (16)

Substituting Eq. (7) into Eq. (5) and the subsequent
results in Eq. (10), the stress resultants are obtained
as follows:

N � �d2N
dx2 = A

du
dx
�Bd2wb

dx2 �Bs d
2ws
dx2 ;

Mb � �d
2Mb

dx2 = B
du
dx
�Dd2wb

dx2 �Ds
d2ws
dx2 ;

Ms � �d
2Ms

dx2 = Bs
du
dx
�Ds

d2wb
dx2 �Hs

d2ws
dx2 ;

Q� �d2Q
dx2 = As

dws
dx

; (17)

where:

[A;B;Bs; D;Ds;Hs]=
Z
A

(1; z; f; z2; zf; f2)Q11(z)dA;

As =
Z
A
g2Q55(z)dA: (18)

The reduced elastic constants are de�ned as fol-
lows [10]:

Q11(z) =
E(z)

1� �2 ;

Q55(z) =
E(z)

2(1 + �)
; (19)

where E is the elasticity modulus and is de�ned as a
function of thickness direction according to power-law
distribution.

5. Equations of motion in terms of
displacements

Substituting Eq. (17) into Eq. (15), the equations of
motion can be written as follows:

A
@2u
@x2�B@

3wb
@x3 �Bs @

3ws
@x3 =I0

�
@2u
@t2
� � @4u

@x2@t2

�
� I1

�
@3wb
@x@t2

� � @5wb
@t2@x3

�
� J1

�
@3ws
@x@t2

� � @5ws
@t2@x3

�
;

B
@3u
@x3 �D@

4wb
@x4 �Ds

@4ws
@x4 � �N

�
@2wb
@x2 +

@2ws
@x2

�
+ �N�

�
@4wb
@x4 +

@4ws
@x4

�
+ q0 � Cw(wb + ws)

+ Cp
@2(wb + ws)

@x2

��
�
@2q0

@x2 �Cw @
2(wb+ws)
@x2 +Cp

@4(wb+ws)
@x4

�
= I0

��
@2wb
@t2

+
@2ws
@t2

�
� �@4(wb + ws)

@x2@t2

�
+ I1

�
@3u
@x@t2

� � @5u
@x3@t2

�
� I2

�
@4wb
@x2@t2

� � @6wb
@x4@t2

�
� J2

�
@4ws
@x2@t2

� � @6ws
@x4@t2

�
;

Bs
@3u
@x3�Ds

@4wb
@x4 �Hs

@4ws
@x4 +As

@2ws
@x2

� �N
�
@2wb
@x2 +

@2ws
@x2

�
+ �N�

�
@4wb
@x4 +

@4ws
@x4

�
+ q0 � Cw(wb + ws) + Cp

@2(wb + ws)
@x2

��
�
@2q0

@x2 �Cw @
2(wb+ws)
@x2 +Cp

@4(wb+ws)
@x4

�
= I0

��
@2wb
@t2

+
@2ws
@t2

�
� �@4(wb + ws)

@x2@t2

�
+ J1

�
@3u
@x@t2

� � @5u
@x3@t2

�
� J2

�
@4wb
@x2@t2

� � @6wb
@x4@t2

�
�K2

�
@4ws
@x2@t2

� � @6ws
@x4@t2

�
: (20)
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6. Analytical solutions

In this section, the governing equations are analytically
solved for bending, buckling, and free vibration of a
simply-supported FG nanobeam lying on Winkler and
Pasternak elastic foundations. The Navier solution
procedure is used to determine the analytical solutions
to simply-supported boundary conditions.

The solution is assumed to be of the following
form:

u(x; t) =
1X
n=1

Unei!t cos�x;

wb(x; t) =
1X
n=1

wbnei!t sin�x;

ws(x; t) =
1X
n=1

wsnei!t sin�x; (21)

where (Un;Wbn, and Wsn) are the unknown displace-
ment coe�cients, ! is the vibration frequency, � = n�

L ,
and i =

p�1. The applied transverse, q0, is expanded
in Fourier series as follows:

q0(x) =
1X
n=1

Qn sin
n�
L
x;

Qn =
2
L

LZ
0

q0(x) sin
n�
L
xdx; (22)

where Qn is the Fourier coe�cient.
Substituting the expansions of u, wb, ws, and q

from Eqs. (21) and (22) into Eq. (20), the analytical
solutions can be obtained from the following equations: 

[Sij ]� �N�2(1 + ��2)

240 0 0
0 1 1
0 1 1

35
+ !2(1 + ��2)[Mij ]

!8<: Un
Wbn
Wsn

9=;
= (1 + ��2)

8<: 0
Qn
Qn

9=; : (23)

The expressions of Sij and Mij are given in the
Appendix.

6.1. Bending
The static de
ections are obtained from Eq. (23) by
setting �N and ! to zero:

u(x)=
Qn(s13(s22�s23)+s12(�s23+s33))(1+�2�)
s2

13s22�2s12s13s23+s2
12s33+s11(s2

23�s22s33)
;

wb(x)=
Qn(�s12s13+s2

13+s11(s23�s33))(1+�2�)
s2

13s22�2s12s13s23+s2
12s33+s11(s2

23�s22s33)
;

ws(x)=
Qn(s2

12�s12s13+s11(�s22+s23))(1+�2�)
s2

13s22�2s12s13s23+s2
12s33+s11(s2

23�s22s33)
:
(24)

6.2. Buckling
The buckling load is obtained from Eq. (23) by setting
q and ! to zero:

�N=
�(s2

13s22�2s12s13s23+s2
12s33+s11(s2

23�s22s33))
((s12�s13)2�s11(s22�2s23+s33))�2(1+�2�)

:
(25)

7. Numerical results and discussion

In this section, an Al/Al2O3 beam, formed of alu-
minum (as metal) and alumina (as ceramic), has
been considered for numerical results. The material
properties of aluminum are Em = 70 GPa, �m = 0:3,
and �m = 2702 kg/m3, and those of alumina are
Ec = 380 GPa, �c = 0:3, and �c = 3960 kg/m3, where
E, �, and � are the young modulus, Poisson's ratio, and
mass density, respectively. For convenience, the dimen-
sionless form is used in the following formulations:

�! =
!L2

h

s
�m(1� �2

m)
Em

;

�w = 100
Emh3

q0L4(1� �2
m)
w
�
L
2

�
;

�N =
Ncr12L2(1� �2

m)
Embh3 : (26)

7.1. Veri�cation of new results of nanobeam
In this section, the numerical results obtained from
this work have been compared with a nanobeam with-
out elastic foundation (Cw; Cp = 0). Variation of
transverse displacement, dimensionless buckling loads,
and fundamental frequency versus the nonlocal and
gradient index parameters of nanobeam are proposed
in Tables 2 and 3 for two di�erent aspect ratios. It can
be seen that the present results show good agreement
with those of the previous literature [30,46,58].

7.2. Parametric results
In this section, the bending, buckling, and free trans-
verse vibration of FG nanobeam embedded in Winkler
and Pasternak elastic foundations are studied paramet-
rically for di�erent aspect ratios, gradient index, nonlo-
cal, and Winkler-Pasternak elastic sti�ness parameters.

In Tables 4 and 5, the e�ects of the Pasternak and
Winkler coe�cients on the dimensionless fundamental
frequency of the FG nanobeam with respect to di�erent
nonlocal parameter, gradient index, and two aspect
ratios have been proposed. As the tables show, the
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Table 2. Comparison of dimensionless transverse de
ection of FG nanobeam without elastic foundation between Thai [30]
and the present study for di�erent aspect ratios and gradient indexes.

L=h p Method Theory
TBT SBT HBT EBT

5

0 Thai [30] 3.1654 3.1649 3.1654 3.1635
Present 3.1938 3.1932 3.1937 3.1938

0.5 Thai [30] 4.8285 4.8278 4.8285 4.8260
Present 4.8669 4.8662 4.8669 4.8670

1 Thai [30] 6.2594 6.2586 6.2594 6.2563
Present 6.3074 6.3065 6.3073 6.3075

2 Thai [30] 8.0677 8.0683 8.0675 8.0667
Present 8.1337 8.1343 8.1334 8.1335

5 Thai[30] 9.8281 9.8367 9.8271 9.8414
Present 9.9345 9.9440 9.9333 9.9333

20

0 Thai [30] 2.8962 2.8962 2.8962 2.8961
Present 2.8981 2.8980 2.8980 2.8981

0.5 Thai [30] 4.4644 4.4644 4.4644 4.4643
Present 4.4669 4.4668 4.4668 4.4670

1 Thai [30] 5.8049 5.8049 5.8049 5.8047
Present 5.8080 5.8079 5.8079 5.8080

2 Thai [30] 7.4421 7.4421 7.4420 7.4420
Present 7.4462 7.4463 7.4462 7.4462

5 Thai [30] 8.8182 8.8188 8.8181 8.8191
Present 8.8249 8.8255 8.8248 8.8248

dimensionless fundamental frequency decreases as the
gradient index increases. It should be considered that
as the gradient index decreases, the FG nanobeam be-
comes sti�er; that is, the value of the dimensionless fun-
damental frequency decreases. Also, the dimensionless
fundamental frequency reduces by the increase in the
value of nonlocal parameter, especially for lower values
of the aspect ratio such as the e�ect of gradient index.
So, it can be considered that the e�ect of the nonlocal
parameter is more prominent for the lower values of
aspect ratio. As a result, the in
uence of nonlocal
parameter can be ignored for higher values of aspect
ratios. This shows that, for slender nanobeam, the
e�ect of sti�ness of elastic foundation on fundamental
frequency becomes more signi�cant as compared to the
nonlocal e�ect.

The e�ects of Pasternak and Winkler coe�cients
are the same on the dimensionless fundamental fre-
quency of FG nanobeam. It should be noted that the
dimensionless fundamental frequency obtained from
the Winkler foundation model is relatively larger than

those obtained from the Pasternak foundation model,
especially for slender nanobeam. Also, it can be
seen in Tables 4 and 5 that the e�ect of the increase
on these elastic foundation coe�cients leads to an
increase in the dimensionless fundamental frequency,
especially for higher value of aspect ratio (L=h > 20).
Moreover, it can be observed that the divergence of
dimensionless fundamental frequency between thick
nanobeam (L=h = 5) and thin nanobeam (L=h = 20)
becomes noticeable for the higher values of the elastic
coe�cients (i.e., Cp, Cw > 1010). Therefore, the
in
uence of shear deformation can be disappeared for
the lower value of the elastic coe�cients (Cp; Cw <
108).

The variations of dimensionless frequencies and
buckling loads with di�erent nonlocal parameters and
foundation parameters are listed in Tables 6-9. Five
di�erent mode numbers and two aspect ratios have
been taken into consideration. In general, dimen-
sionless frequency values increase due to the increase
in mode number. It is also seen that the e�ect of



V. Refaeinejad et al./Scientia Iranica, Transactions F: Nanotechnology 24 (2017) 1635{1653 1643

Table 3. Comparison of dimensionless fundamental frequency of FG nanobeam without elastic foundation between
previous studies and the present study for di�erent aspect ratios and gradient indexes.

L=h Theory Method p
0 0.5 1 2 5 10

5

TBT

S�im�sek [58] 5.1527 4.4111 3.9904 3.6264 3.4012 3.2816
Thai and Vo [30] 5.1527 4.4107 3.9904 3.6264 3.4012 3.2816
Refaeinejad et al. [46] 5.1528 4.4107 3.9905 3.6265 3.4012 3.2816
Present 5.13046 4.39375 3.9757 3.6123 3.3837 3.2627

SBT

S�im�sek [58] 5.1531 4.4114 3.9907 3.6263 3.3998 3.2811
Thai and Vo [30] 5.1531 4.4110 3.9907 3.6263 3.3998 3.2811
Refaeinejad et al. [46] 5.1532 4.4111 3.9908 3.6263 3.9998 3.2811
Present 5.1309 4.3941 3.9760 3.6122 3.3822 3.2622

HBT

S�im�sek [58] 5.1527 4.4111 3.9904 3.6265 3.4014 3.2817
Thai and Vo [30] 5.1527 4.4107 3.9904 3.6265 3.4014 3.2817
Refaeinejad et al. [46] 5.1229 4.4108 3.9904 3.6265 3.4014 3.2817
Present 5.1305 4.3937 3.9757 3.6123 3.3838 3.2628

EBT

S�im�sek [58] 5.1542 4.4122 3.9914 3.6267 3.3991 3.2813
Thai and Vo [30] 5.1542 4.4118 3.9914 3.6267 3.3991 3.2814
Refaeinejad et al. [46] 5.1543 4.4119 3.9915 3.6267 3.3991 3.2814
Present 5.1321 4.3950 3.9769 3.6126 3.3814 3.2625

20

TBT

S�im�sek [58] 5.4603 4.6516 4.2050 3.8361 3.6485 3.5390
Thai and Vo [30] 5.4603 4.6511 4.2051 3.8361 3.6485 3.5390
Refaeinejad et al. [46] 5.4604 4.6512 4.2050 3.8361 3.6485 3.5390
Present 5.4586 4.6498 4.2039 3.8350 3.6471 3.5374

SBT

S�im�sek [58] 5.4603 4.6516 4.2050 3.8361 3.6485 3.5390
Thai and Vo [30] 5.4603 4.6511 4.2051 3.8361 3.6485 3.5390
Refaeinejad et al. [46] 5.4605 4.6512 4.2052 3.8361 3.6485 3.5390
Present 5.4587 4.6499 4.2040 3.8351 3.6470 3.5390

HBT

S�im�sek [58] 5.4603 4.6516 4.2050 3.8361 3.6485 3.5390
Thai and Vo [30] 5.4603 4.6511 4.2051 3.8361 3.6485 3.5390
Refaeinejad et al. [46] 5.4605 4.6512 4.2951 3.8361 3.6485 3.5390
Present 5.4586 4.6498 4.2039 3.8350 3.6471 3.5375

EBT

S�im�sek [58] 5.4604 4.6517 4.2052 3.8362 3.6483 3.5390
Thai and Vo [30] 5.4604 4.6512 4.2051 3.8361 3.6483 3.5390
Refaeinejad et al. [46] 5.4605 4.6512 4.2052 3.8361 3.6483 3.5390
Present 5.4588 4.6500 4.2041 3.8351 3.6469 3.5375

nonlocal parameter is more signi�cant for higher mode
numbers. Moreover, it can be observed that the
e�ect of mode number on the increase in dimension-
less frequency is more signi�cant for thin nanobeam
(L=h > 10). Finally, the e�ect of the increase in
foundation parameters on the increase in dimensionless
frequency is more signi�cant for higher modes. It can
be observed that the increase in foundation parameters
and nonlocal parameter results in lower buckling loads.
Also, it can be argued from these tables that, on
one hand, the buckling load increases when the mode
number increases, then it decreases due to the increase
of mode numbers for thick nanobeams (L=h < 10).
On the other hand, the buckling load decreases with

the increase of mode number continuously for thin
nanobeams (L=h > 10).

Figures 2-5 have been plotted in order to present
the di�erence percentage of fundamental frequency
between various HSDTs and Euler-Bernoulli Theory
(CBT) with respect to the nonlocal parameter.
Table 1 shows various HSDTs used in these �gures.
In other words, these �gures have been drawn
in order to represent the fundamental Frequency
Di�erence Percentage Between various HSDTs and
CBT (FDPBHC). Also, these fundamental frequencies
have varied by the various nonlocal parameter, aspect
ratios, and gradient indexes.

The formulation used in vertical axis is given by
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Table 4. The variation of dimensionless fundamental frequency of FG nanobeam lying on Pasternak foundation (Cw = 0)
for di�erent gradient indexes and nonlocal parameters.

p � (nm2)
Cp (nN)

104 106 108 1010

l=h = 5 l=h = 20 l=h = 5 l=h = 20 l=h = 5 l=h = 20 l=h = 5 l=h = 20

0

0 5.13046 5.45864 5.130668 5.461807 5.151139 5.769846 6.901994 19.47484
1 4.34413 5.392518 4.344375 5.395725 4.368596 5.707331 6.33925 19.45641
2 3.835151 5.328742 3.835436 5.331988 3.862839 5.647112 6.00187 19.43883
3 3.471326 5.267178 3.47163 5.270461 3.501892 5.589055 5.77613 19.42204

0.5

0 4.393753 4.64987 4.394022 4.654029 4.420771 5.052665 6.566526 20.30941
1 3.720337 4.593546 3.720654 4.597756 3.752206 5.000879 6.136283 20.29658
2 3.284443 4.53922 3.284802 4.54348 3.320499 4.951025 5.882133 20.28436
3 2.972861 4.486777 2.973258 4.491087 3.012648 4.902989 5.713902 20.27268

1

0 3.975744 4.203993 3.976059 4.208881 4.007394 4.671955 6.408574 20.81039
1 3.366395 4.15307 3.366767 4.158018 3.403716 4.626186 6.049262 20.80016
2 2.971971 4.103954 2.972392 4.108961 3.014179 4.582144 5.838767 20.79041
3 2.690032 4.05654 2.690497 4.061606 2.736592 4.539727 5.700214 20.7811

10

0 3.262751 3.537521 3.263205 3.544388 3.308255 4.174418 6.366162 22.4437
1 2.762681 3.494672 2.763216 3.501623 2.816276 4.138169 6.124184 22.43698
2 2.438992 3.453343 2.439598 3.460377 2.499537 4.103326 5.984322 22.43057
3 2.207615 3.413446 2.208285 3.420562 2.274328 4.069806 5.892926 22.42445

Table 5. The variation of dimensionless fundamental frequency of FG nanobeam lying on Winkler foundation (Cp = 0)
for di�erent gradient indexes and nonlocal parameters.

p � (nm2)
Cw (nN/nm2)

104 105 106 107

l=h = 5 l=h = 20 l=h = 5 l=h = 20 l=h = 5 l=h = 20 l=h = 5 l=h = 20

0

0 5.130466 5.459904 5.130513 5.471565 5.130987 5.586837 5.13572 6.630233
1 4.34413 5.393798 4.344192 5.405602 4.344752 5.522251 4.35034 6.575903
2 3.83515 5.330038 3.835219 5.341983 3.835852 5.459991 3.842182 6.523707
3 3.47133 5.268489 3.4714 5.280573 3.4721 5.399923 3.479091 6.473517

0.5

0 4.39375 4.651531 4.393819 4.66683 4.394437 4.817153 4.400611 6.120583
1 3.72034 4.595227 3.720415 4.610713 3.721144 4.762807 3.728433 6.077903
2 3.28444 4.540921 3.284531 4.556592 3.285358 4.710434 3.293611 6.03695
3 2.97286 4.488499 2.972959 4.504352 2.973872 4.659919 2.982987 5.997617

1

0 3.97574 4.205945 3.975822 4.22392 3.976546 4.399625 3.983783 5.874416
1 3.36640 4.155046 3.366486 4.17324 3.367342 4.350993 3.375885 5.838081
2 2.97197 4.105954 2.972075 4.124364 2.973044 4.304135 2.982716 5.803244
3 2.69004 4.058563 2.690147 4.077187 2.691217 4.258951 2.701899 5.769811

10

0 3.26275 3.540264 3.262863 3.56548 3.263907 3.808465 3.274334 5.694027
1 2.76268 3.497449 2.762812 3.522971 2.764046 3.768697 2.77635 5.667506
2 2.43900 3.456153 2.439141 3.481978 2.440538 3.730405 2.454465 5.642115
3 2.20762 3.416289 2.20778 3.442413 2.209323 3.693503 2.224698 5.617785
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Table 6. Dimensionless frequency �! of FG nanobeam with respect to increasing Pasternak coe�cient, mode number, and
nonlocal parameter.

n � (nm2)
Cp (nN)

104 106 108

l=h = 5 l=h = 20 l=h = 5 l=h = 20 l=h = 5 l=h = 20

1
0 3.9757 4.2040 3.9761 4.20888 4.00739 4.67196
1 3.3664 4.1531 3.36677 4.15802 3.40372 4.62619
2 2.97197 4.1039 2.9724 4.1087 3.01418 4.58214

2
0 13.8613 16.6174 13.8617 16.6223 13.8961 17.1070
1 8.63113 15.8535 8.6317 15.8586 8.6868 16.3659
2 6.7975 15.1861 6.7982 15.1914 6.8680 15.7203

3
0 26.6439 36.6870 26.6443 36.692 26.6834 37.1852
1 12.4867 33.1868 12.4875 33.1923 12.5707 33.7367
2 9.3582 30.5288 9.3593 30.5347 9.4708 31.1257

4
0 40.6913 63.6119 40.6918 63.6169 40.7368 64.1183
1 15.0435 53.8623 15.0447 53.8683 15.1666 54.4595
2 11.0206 47.5515 11.0223 47.5583 11.1872 48.2269

5
0 55.3223 96.4726 53.3228 96.4777 55.3745 96.9885
1 16.7801 75.8698 16.7818 75.8763 16.9512 76.5248
2 12.1480 64.5493 12.1504 64.557 12.3832 65.3179

Table 7. Dimensionless frequency �! of FG nanobeam with respect to increasing Winkler coe�cient, mode number, and
nonlocal parameter.

n � (nm2)
Cw (nN/nm2)

104 106 108

l=h = 5 l=h = 20 l=h = 5 l=h = 20 l=h = 5 l=h = 20

1
0 3.9757 4.2079 3.9773 4.5870 4.1336 18.8251
1 3.3664 4.1950 3.7947 4.5751 3.9581 18.8222
2 2.9720 4.1059 2.9730 4.3041 3.0778 13.6087

2
0 13.8613 16.6183 13.8618 16.7177 13.9053 24.7136
1 11.7368 16.4171 11.7374 16.5177 11.7887 24.5787
2 6.7975 15.1866 6.7979 15.2410 6.84225 19.9481

3
0 26.6439 36.6874 26.6441 36.7321 26.6661 40.9564
1 19.3895 35.7096 19.3898 35.7555 19.4201 40.0829
2 9.3582 30.5290 9.3585 30.5558 9.3898 33.1323

4
0 40.6913 63.6121 40.6915 63.6376 40.7057 66.1376
1 25.3375 60.6878 25.3378 60.7145 25.3607 63.3300
2 11.0206 47.5516 11.0208 47.5687 11.0471 49.2443

5
0 55.3223 96.4727 55.3224 96.4893 55.3329 98.1357
1 29.7097 89.797 29.7099 89.8148 29.7294 91.5813
2 12.1480 64.5494 12.1482 64.5618 12.1720 65.7909

di�erence percentage (FDPBHC) which is equal to:

CBT�HSDTs
HSDTs

� 100: (27)

CBT overestimates the fundamental frequency and
critical buckling load; in addition, it underestimates the

bending de
ection of a beam [59,60]. So, HSDTs can
predict these parameters more precisely as compared
to the classic beam theory by considering the e�ect of
transverse shear strain on the thickness of a beam.

Figure 2 depicts L=h = 10 and p = 0:1. It can
be seen that TBT, HBT, and HSDT1 have identically
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Table 8. Dimensionless buckling loads �N of FG nanobeam with respect to increasing Pasternak coe�cient, mode number,
and nonlocal parameter.

n � (nm2)
Cp (nN)

104 106 108

l=h = 5 l=h = 20 l=h = 5 l=h = 20 l=h = 5 l=h = 20

1
0 4.4655 4.9135 4.4647 4.9021 4.3936 3.7641
1 3.2015 4.7952 3.2008 4.7838 3.1297 3.6458
2 2.4953 4.6824 2.4946 4.6710 2.4234 3.5330

2
0 8.7361 19.4865 8.7354 19.4751 8.6642 16.3372
1 3.3872 17.7360 3.3865 17.7247 3.3154 16.5867
2 2.1009 16.2741 2.1002 16.2627 2.02905 15.1248

3
0 6.5737 42.6713 6.57295 42.6599 6.5018 41.5219
1 1.4438 34.9173 1.44307 34.9059 1.3719 33.7680
2 0.8109 29.5480 0.8102 29.5366 0.7391 28.3987

4
0 4.3467 71.4473 4.34599 71.4359 4.27487 70.2980
1 0.59409 51.2246 0.59337 51.2132 0.5222 50.0752
2 0.3188 39.9243 0.3181 39.9129 0.2470 38.7749

5
0 2.9944 100.4270 2.9937 100.4150 2.92259 99.2774
1 0.2755 62.1125 0.2748 62.1011 0.2036 60.9632
2 0.1444 44.9597 0.1437 44.9483 0.0725 43.8104

Table 9. Dimensionless buckling loads �N of FG nanobeam with respect to increasing Winkler coe�cient, mode number,
and nonlocal parameter.

n � (nm2)
Cw (nN/nm2)

104 106 108

l=h = 5 l=h = 20 l=h = 5 l=h = 20 l=h = 5 l=h = 20

1
0 4.4654 4.9089 4.4636 4.4477 4.2834 3.4152
1 3.2015 4.7906 3.1997 4.3294 3.0196 3.2946
2 2.4953 4.6779 2.4934 4.2167 2.3133 3.1894

2
0 8.7361 19.4855 8.7356 19.3702 8.6906 7.8400
1 3.3872 17.7350 3.3868 17.6197 3.3417 6.0895
2 2.1009 16.2731 2.1004 16.1578 2.0554 4.6276

3
0 6.5737 42.6709 6.5735 42.6196 6.5534 37.4951
1 1.4438 34.917 1.4436 34.8657 1.4235 29.7412
2 0.8109 29.5476 0.8107 29.4964 0.7907 24.3719

4
0 4.34671 71.4471 4.34659 71.4183 4.3353 68.5358
1 0.5941 51.2244 0.5940 51.1956 0.5827 48.3131
2 0.3188 39.9241 0.3187 39.8953 0.3077 37.0127

5
0 2.9944 100.4270 2.9944 100.4080 2.9872 98.5634
1 0.2755 62.1124 0.2754 62.0940 0.26821 60.2492
2 0.1444 44.9597 0.1443 44.9412 0.1371 43.0964

the same results. Also, it can be considered that SBT
has the same results with those of TBT, HBT, and
HSDT1 for local amount (� = 0) as well; however,
this result has changed for the nonlocal model by
the increase in the nonlocal parameter. Moreover,
ABT and EBT give the same results for fundamental
frequency. So, one of these aforementioned theories can

be selected to take into account the e�ect of transverse
shear strain on the nanobeam. Figure 3 presents the
fundamental frequency di�erences for L=h = 10 and
p = 1. The results presented in Figure 3 are similar
to those presented in Figure 2. But, with an increase
in gradient index parameter, the results for the natural
frequency of local model (� = 0), obtained from the
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Figure 2. Fundamental frequency di�erence between
various higher order theories and Euler-Bernoulli beam
theory for L=h = 10 and p = 0:1.

Figure 3. Fundamental frequency di�erence between
various higher order theories and Euler-Bernoulli beam
theory for L=h = 10 and p = 1.

Figure 4. Fundamental frequency di�erence between
various higher order theories and Euler-Bernoulli beam
theory for L=h = 50 and p = 0:1.

theory of SBT, are not the same as those of TBT, HBT,
and HSDT1 theories in Figure 2 (see Figure 3).

The selected parameters in Figure 4 are L=h = 50
and p = 0:1. As mentioned before, it is clear that the
results for TBT, HBT, and HSDT1 are the same. On
the other hand, the �gures show the same results for
SBT and HSDT2. In addition, it can be concluded
for � � 3 (nm2) that these �ve theories (TBT, HBT,
HSDT1, SBT, and HSDT2) give the same results.
Hence, one of these theories can be selected, instead of
all, to consider the e�ect of transverse shear strain on

Figure 5. Fundamental frequency di�erence between
various higher order theories and Euler-Bernoulli beam
theory for L=h = 50 and p = 1.

the nanobeam. Figure 5 has been plotted for L=h = 50
and p = 1 in order to show fundamental frequency
di�erences between HSDTs and CBT. As said before,
TBT, HBT, and HSDT1 give the same results for all
the values of the nonlocal parameters. It is notable
that the results in SBT are the same with TBT, HBT,
and HSDT1 for 0 (nm2) � � � 3 (nm2). Moreover,
HSDT2 is coincided with TBT, HBT, and HSDT1 for
1 (nm2) � � � 2 (nm2); moreover, it is also coincided
with ABT and EBT for 3 (nm2) � � � 4 (nm2).
Finally, in evaluations of Figures 2-5, it can be seen
that the HSDT3 predicts closer values to CBT in
comparison with the other theories; it can be also noted
that the largest di�erences along with CBT are in TBT,
HBT, and HSDT1 theories as compared to the other
theories.

Since there are no di�erences between the results
of shear deformation beam theories, TBT is used in
the rest of �gures. The e�ects of both the gradient
index and the nonlocal parameter on the dimensionless
buckling load of a FG nanobeam versus a wide range
of Pasternak coe�cient are depicted in Figure 6. Also,
the e�ects of length-to-thickness ratio and nonlocal
parameter on the dimensionless buckling load for in-
creasing Winkler coe�cients are shown in Figure 7.
Then, in Figure 8, the e�ects of the gradient index
and the nonlocal parameter on the dimensionless buck-
ling load versus a wide range of Pasternak coe�cient
are sketched. Moreover, in Figure 9, dimensionless
buckling load according to Winkler coe�cient has been
depicted for the variations of the nonlocal parameter
and the gradient index.

Figure 6 shows the e�ects of the nonlocal param-
eter and di�erent aspect ratios on the dimensionless
de
ection of FG nanobeam for the increasing Pasternak
coe�cients. It can be considered that the increase in
Pasternak coe�cient causes a decrease in the dimen-
sionless de
ection in a nonlinear way, especially for
L=h > 7. Also, with the increase in the Pasternak
coe�cient, especially for Cp > 1012, the results of the
dimensionless de
ection in various aspect ratios are the
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Figure 6. The variation of dimensionless de
ection due to increasing Pasternak elastic foundation Cp(Cw = 0) of FG
nanobeam lying on Winkler-Pasternak elastic foundation model for various aspect ratios and p = 1: (a) � = 0, (b) � = 1,
(c) � = 2, and (d) � = 3.

Figure 7. The variation of dimensionless de
ection due to increasing Winkler elastic foundation Cw(Cp = 0) of FG
nanobeam lying on Winkler-Pasternak elastic foundation model for various nonlocal parameters and P = 1: (a) P = 1, (b)
L=h = 10, (c) L=h = 20, and (d) L=h = 30.
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Figure 8. The variation of dimensionless buckling load due to increasing Pasternak elastic coe�cient Cp(Cw = 0) of FG
nanobeam lying on Winkler-Pasternak elastic foundation model for various gradient indexes and L=h = 20: (a) � = 0, (b)
� = 1, (c) � = 2, and (d) � = 3.

Figure 9. The variation of dimensionless buckling load due to increasing Winkler elastic coe�cient Cw(Cp = 0) of FG
nanobeam lying on Winkler-Pasternak elastic foundation model for various gradient indexes and L=h = 20: (a) � = 0, (b)
� = 1, (c) � = 2, and (d) � = 3.
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same. Furthermore, an increase in aspect ratio leads
to a decrease in dimensionless de
ection. In addition,
by the increase in the nonlocal parameter, it can be
seen that the results of the dimensionless de
ection
in various aspect ratios are the same. Finally, it can
be considered that a signi�cant increase in the dimen-
sionless de
ection will not be a�ected by an increase
in the nonlocal parameter. So, it can be concluded
that the in
uence of Pasternak elastic foundation on
dimensionless de
ection of nanobeam becomes more
prominent as compared to the nonlocal e�ect.

Figure 7 is proposed in order to illustrate the
e�ect of the Winkler coe�cient on the dimensionless
de
ection for the di�erent nonlocal parameter and
aspect ratios. It can be seen that the dimensionless
de
ection reduces by the increase in the Winkler coef-
�cient, especially for the higher value of this parameter
(Cw > 108). Also, it can be noted that by the increase
in the aspect ratio, the dimensionless de
ection reduces
in all cases. Furthermore, when the nonlocal parameter
reduces, the dimensionless de
ection of nanobeam
reduces as well. Moreover, it can be seen that the
e�ect of nonlocal parameter on the nanobeam has been
diminished by the increase in aspect ratio values. So,
this shows that the e�ect of Winkler elastic founda-
tion on dimensionless de
ection of slender nanobeam
(in higher value of the aspect ratio) becomes more
prominent as compared to the nonlocal e�ect. On
the other hand, the e�ect of Winkler coe�cient on the
reduction of nanobeam de
ection is more obvious in the
higher values of the aspect ratio. Hence, The Winkler
foundation can be used to decrease the de
ection of
slender nanobeam.

There are two curves which have been plotted for
understanding the e�ect of di�erent nonlocal param-
eters and di�erent gradient indexes on the variation
of critical buckling loads of FG nanobeam embedded
in the Winkler-Pasternak foundations. Figures 8 and 9
show the variation of critical buckling load with respect
to Pasternak and Winkler coe�cients, respectively. It
should be noted that for the higher values of the Paster-
nak and Winkler coe�cients, the critical buckling load
of nanobeam is reduced, especially for Cw; Cp > 106.
This is due to the higher sti�ness amounts of the
elastic foundation which leads to the reduction of
critical buckling load. Also, it can be noted that with
the increase in the gradient index, the dimensionless
buckling load decreases. So, it can be seen that the FG
nanobeam will be softer for the higher values of the
gradient index. For higher value of nonlocal parameter
�, the critical buckling loads of FG nanobeam with
elastic foundation model reduce. In addition, Figures 8
and 9 illustrate that the nonlocal parameter, will not
have signi�cant e�ect on the buckling load resting on
the elastic foundation. This shows that the e�ect of
sti�ness of elastic foundation becomes more signi�cant

on the buckling load of the nanobeam as compared to
that of nonlocal parameter.

8. Conclusion

In the present study, the exact solution was obtained
for bending, buckling, and free vibration of the FG
nanobeam lying on elastic foundation under axial and
distributed transverse loads. Di�erent HSDTs and the
nonlocal beam theory of Eringen have been used to
take into account both the e�ects of shear strain and
nanoscale. The main results obtained from this study
are as follows:

The present paper demonstrates that the bending
de
ection, static buckling, and free vibration behavior
of nanobeam are strongly dependent on the Winkler
and Pasternak elastic foundation, aspect ratio, gradient
index, and nonlocal parameter.

The e�ect of the nonlocal parameter on the
fundamental frequency of the FG nanobeam was re-
duced by the increase in the aspect ratio parameter,
especially for the higher value of the elastic foundation
coe�cients. Also, it can be seen that the e�ect of
the Winkler-Pasternak coe�cients on the fundamental
frequency of the nanobeam can be neglected for the
lower value of these elastic coe�cients. Moreover,
it can be declared that the increase in dimensionless
frequency depends on the increase in foundation pa-
rameters, especially for higher mode numbers. Further,
it was shown that TBT, HBT, and HSDT1 have the
same results in order to derive fundamental frequency
of the nanobeam (ABT and EBT are the same as
well) in all of the di�erent selected aspect ratios and
gradient index parameters. Besides, other theories give
the same results in some cases of aspect ratios and
gradient indexes. Moreover, it can be concluded that
the in
uence of Winkler-Pasternak elastic foundation
on dimensionless de
ection and critical buckling load of
nanobeam, especially in the higher value of the aspect
ratio, becomes more signi�cant as compared to the
nonlocal e�ect. In addition, it is noteworthy to mention
that the e�ect of mode number on the increase in the
buckling loads has di�erent behaviors regarding thin
and thick nanobeam types. Furthermore, it should
be noted that for the higher values of the Pasternak
and Winkler coe�cients, the dimensionless de
ection
and critical buckling load of nanobeam are reduced. In
brief, considering these e�ects can be useful to investi-
gate the nonlocal bending, buckling, and vibration of
nano-devices as a smart controller in reality.
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Appendix

The expressions of Sij and Mij are given as follows:

s11 = A�2; s12 = �B�3; s13 = �Bs�3;

s22 =D�4� �N�2(1+��2)+(Cw+Cp�2)(1+��2);

s23 =Ds�4� �N�2(1+��2)+(Cw+Cp�2)(1+��2);

s33 =Hs�4 +As�2 � �N�2(1 + ��2)

+ (Cw + Cp�2)(1 + ��2);

m11 = I0; m12 = �I1�;
m13 = �J1�; m22 = I0 + I2�2;

m23 = I0 + J2�2; m33 = I0 +K2�2:
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