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Abstract. This paper presents a multi-product, multi-period inventory problem in an
uncertain environment where the main suppliers are prone to yield uncertainty. In order to
overcome the arisen uncertainties, two basic approaches of emergency ordering and product
substitutability are taken into consideration. In the proposed emergency ordering scheme,
two sets of suppliers, i.e. cheap unreliable and expensive reliable (emergency) suppliers,
are considered and a tradeo� between the cheap price of the main suppliers and reliability
of emergency supplier is attained. In product substitution scheme, the demand of each
product is ful�lled directly by the related product or other substitute products. A risk-
averse decision maker is taken into consideration whose risk-averseness level is controlled
by the portion of demand which should be de�nitely satis�ed and not backordered or lost.
A robust optimization approach with two variability measures is proposed to minimize the
variability of the model. The results reveal the value of emergency ordering and product
substitution. In addition, the results suggest which measure should be selected according
to the decision maker's attitude toward the desired pro�t, variability, and service level.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

In the last few decades, by the expansion of global
business networks, organizations have tended to con-
centrate only on their core competitive capabilities
and preferred to outsource the other portion of their
activities. Although such practices can improve �-
nancial and operational performance of organizations
in a problem-free environment, they can leave inverse
consequences due to the high dependencies at time
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of disruption. Having no contingency, i.e. plan B, to
protect the system against uncertainties, organizations
will su�er the associated unexpected losses. This
paper presents a multi-period, multi-product inventory
problem with uncertainty in the supply of products
and two types of 
exibilities, i.e. emergency ordering
and product substitution, are proposed to manage
the e�ect of the arisen uncertainties. In emergency
ordering scheme, it is possible to place orders on both
cheap, unreliable suppliers prone to yield uncertainty
and expensive reliable (emergency) supplier. Although
unreliable suppliers have lower prices, the emergency
supplier may outperform the cheap suppliers due to its
reliability. Accordingly, in a proper ordering policy,
a tradeo� between reliability and pro�tability of sup-
pliers is achieved. In several contemporary examples,
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emergency ordering option has proved its e�ectiveness
by the additional 
exibilities provided for the decision
maker. For instance, after a �re at Aisin Seiki Co.,
the main P -valve supplier of Toyota, which decreased
its production capacity, Toyota called several 
exible
part-makers to manufacture the required P -valves.
Somic was able to supply the P -valve con�guration
of Toyota by freeing up machines and delivered the
required P -valves right on schedule. Taking advantage
of emergency order to Somic, Toyota was able to
leap a huge �nancial loss [1]. Besides emergency
ordering decision, this paper jointly deals with product
substitutability as another tool to handle the arisen
uncertainties. Product substitution is applicable in a
variety of industries including pharmaceutical, semi-
conductor, chemical industries, etc. For instance, in
pharmaceutical industries, it is possible to use products
with similar clinical e�ects interchangeably. In addi-
tion, in semiconductor industries, a high-performance
product can be substituted with a similar yet low-
performance product. In several contemporary ex-
amples, product substitutability has emerged as a
valuable option for managers. For instance, after a
�re ignited by lightening at Royal Philips, the main
supplier of Nokia microchips, Nokia substituted other
compatible microchips, supplied from US and Japan,
in its products to prevent market loss and customer
dissatisfaction [2].

This paper presents an integrated model of prod-
uct substitutability and emergency ordering. Although
implementation of the emergency ordering or product
substitutability concepts can improve the quality of
solutions per se, considering an integrated model with
emergency ordering and product substitutability can
synergistically improve the quality of solutions. This
arises due to the fact that emergency ordering option
will improve the quality of procurement part while
product substitutability option improves selling part
of the model. Accordingly, considering an integrated
model of emergency ordering and product substi-
tutability can signi�cantly improve the quality of the
overall solutions and lead to higher net pro�t level.
Clearly, the outcome of the model basically depends on
the outcome of uncertain parameters. In this paper, to
deal with uncertainties in the optimization models, a
two-stage stochastic programing model and its robust
extension are applied.

The main contribution of this paper can be sum-
marized as follows: incorporation of emergency order-
ing and product substitutability into a nondetermin-
istic inventory problem, in which unreliable suppliers
are prone to yield uncertainty; and implementation of a
robust approach as a novel tool considering the current
limitations on the solution methodologies of inventory
problems with uncertainties.

This paper is organized as follows. In Section 2,

the related literature is presented with respect to the
di�erent related features of the problem. In Section 3,
the mathematical model is presented. In Section 4, the
numerical analysis of the case study is presented and
the paper is concluded in Section 5.

2. Literature review

By the outbreak of disruption and, accordingly, proba-
ble uncertainties in practical supply chains, numerous
studies have been performed on business continuity
frameworks, which desire to diminish the e�ects of dis-
ruptions on supply chains, e.g. [3,4]. Researchers have
studied the e�ect of disruption on supply chains by
di�erent approaches. This paper studies an inventory
problem with yield uncertainty in which the decision
maker desires to improve the performance of the sup-
ply chain by the 
exibilities prepared by emergency
ordering and product substitution. Accordingly, our
work is closely related to two streams of research in the
literature including emergency ordering and product
substitutability in inventory models with uncertainty.

In many practical implementations, the delivered
quantity does not match the ordered quantities. Such
concept can be modeled by uncertainty in the yield
of suppliers. Qi and Shen [5] considered an EOQ
model in which the suppliers were prone to yield
uncertainty. Mukhopadhyay and Mu [6] studied a
single-period model, which evaluated the optimal pro-
curement quantities from unreliable suppliers prone
to yield uncertainty. Agrawal and Nahmias [7] stud-
ied supplier diversi�cation with deterministic demand
and random yield of the supplier for a newsvendor
inventory problem while Dada et al. [8] considered
similar assumptions with stochastic demand in which
the goal was to select a number of suppliers from the
available set of suppliers. Maddah et al. [9] studied
a production/inventory system with random yield in
quality of products. Having a high capability to adopt
supply uncertainty, random yield models are largely
utilized in inventory models with uncertainties.

Only a small portion of the literature focuses on
multiple sourcing strategies. Several studies have been
performed in a single sourcing environment [10-12].
Not considering alternative suppliers, the above papers
tend to keep extra inventory to decrease the e�ect of
uncertainties on the supplier. Dada et al. [8] studied
a newsvendor problem in which multiple unreliable
suppliers with di�erent prices and reliabilities were
utilized to serve the customer demand. In most of the
models with multiple suppliers, the prices of suppliers
are considered to be similar while a portion of multiple
sourcing models consider contingency sourcing tactic in
which the orders are placed on both cheap unreliable
and expensive reliable suppliers. Tomlin and Wang [13]
contributed a dual sourcing model with two sets of
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cheap unreliable and expensive reliable suppliers. In
the related research, the reliable supplier is also called
the emergency supplier. Similarly, Tomlin [14] consid-
ered two sets of reliable and unreliable suppliers with
capacity constraint and 
exibility in the capacity of
reliable supplier. Iakovou et al. [15] proposed a model
in which the optimal reserved capacity level from the
emergency supplier was determined for each discrete
part by taking into account all inventory-related costs,
including the premium cost to be paid for emergency
capacity reservation. Keramydas et al. [16] focused on
the evaluation of emergency sourcing risk mitigation
strategies for a discrete part manufacturer, employing
a quantitative approach. Chen and Yang [17] con-
sidered a supply chain in which a buyer purchased
�nished items from a contracting supplier to satisfy
a stochastic market demand, where the supplier's
production was subject to random yield. Mardan
et al. [18] provided a two-stage stochastic model to
handle the yield uncertainty of suppliers. Zhang et
al. [19] provided comprehensive contingency manage-
ment framework for supply chain disruption risk. Glud
Johansen and Thorstenson [20] investigated emergency
ordering in a periodic-review inventory system with
�xed ordering cost and stochastic demand. Huang et
al. [21] studied a real-time decision rule for inventory
system with committed service time and emergency
ordering. Axs�ater [22] presented an improved decision
rule for emergency replenishment policy. In the above
models, emergency ordering has considerably improved
the e�ectiveness of the associated models.

In the mentioned models, it is considered that the
demand of each product can be ful�lled only by the
related product while, in many practical applications,
it is possible to satisfy the arisen demand exactly by
the related product or substitutable products. Bassok
et al. [23] studied a single-period model with peri-
odic review with product substitutability. Ganesh
et al. [24] studied the e�ect of product substitution
in a multi-product, multi-level supply chain. Iravani
et al. [25] studied process 
exibility and inventory

exibility, which arose due to product substitutability.
Huang et al. [26] studied a newsvendor problem with
partial product substitution and proposed an iterative
algorithm. Liu et al. [27] studied a newsvendor game
with product substitution for two retailers. Goyal
and Netessine [28] analyzed the volume 
exibility for
two products with substitution of products. This
paper tends to present the mutual e�ect of product
substitutability and emergency ordering as two novel
tools to handle the arisen uncertainties.

In conclusion, it can be mentioned that there are
a variety of methodologies for inventory models with
suppliers yield uncertainty [29]. However, to the best of
our knowledge, robust optimization modeling has not
been implemented in the investigated area. In addition,

product substitutability and emergency ordering have
not been concurrently taken into consideration while
considering both of these concepts can highly improve
both procurement and demand ful�llment parts of the
model. Accordingly, this paper has been established
on two major gaps in the literature. First, this study
considers the e�ect of both emergency ordering and
product substitutability as e�cient tools in minimizing
the e�ect of supply uncertainties. Second, this paper
considers a robust optimization approach, which can
e�ciently minimize the variability of the possible out-
comes.

3. Proposed model

3.1. Model assumptions
This paper presents a multi-period inventory problem
with multiple products/items. The items can be
ordered into cheap unreliable or expensive reliable sup-
pliers. The unreliability of suppliers arises due to the
yield uncertainty. The demand can be ful�lled exactly
by the related product or by the substitute product.
The model is embedded in a two-stage decision making
process in which, in the �rst stage, the orders are
released to the unreliable suppliers and, later, when
new information about the yield of the unreliable
suppliers becomes available, the orders are released
to the emergency reliable supplier. In addition, the
assignment of the delivered products, which includes
substitution of products, is decided in the second stage.
It should be noted that the emergency orders, which
are placed in the second stage, cannot exceed the
reserved quantity of each item, which is determined in
the �rst stage. Such assumption arises by the fact that
the occasional cooperation with emergency suppliers
can be performed based on reservation contracts. In
addition, the surplus quantity of each item at the end
of the planning horizon is considered in the model by
a book value less than the procurement price. It is
considered that a portion of the unful�lled demand is
lost and the other portion is backordered to the next
period. In addition, all of the backordered demand at
the end of the planning horizon is lost. A risk-averse
decision maker is taken into consideration by whom at
least a minimum portion of the arisen demand of each
product should be ful�lled. In addition, it is considered
that at least a minimum percentage of the ful�lled
demand of each product should be satis�ed exactly
by the related product and cannot be ful�lled by the
substitute products. The decision process is depicted
in Figure 1.

3.2. Proposed robust optimization framework
Robust optimization method, proposed by Mulvey et
al. [30], extends the traditional stochastic programming
models by adding a variability measure to the expected
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Figure 1. Decision process of the model.

pro�t measure. Such models will be robust optimal if
they remain near optimal for the arisen scenarios. Such
property is called solution robustness. In other words,
solution robustness tends to decrease the variability
of the stochastic model for s 2 S. In addition, the
above model will be robust with respect to feasibility
if for all of the scenarios an almost feasible solution
is obtained. Such property is called model robustness.
The robust optimization framework, proposed by Mul-
vey [30], makes a tradeo� between solution robust-
ness and model robustness. The robust optimization
counterpart of a two-stage stochastic problem can be
formulated as follows:

max aTx+
X
s2S

ps � bsT � ys � �� �(y1; :::; ys)

� ! � �(�1; :::; �S);

subject to:

Ax = c;

Bsx+ Cs � ys + �s = ds; s 2 S;
x; ys � 0; s 2 S;

where
P
s2S ps � bsT � ys + � � �(y1; :::; ys) indicates

solution robustness of the objective function; � is a
goal programing coe�cient, which controls relative
importance of variability measure for the decision
maker; �(y1; :::; ys) is the variability measure of the
recourse cost; �(�1; :::; �s) is a penalty function, which
decreases the violation of uncertain constraint; and !
is the weight of the goal programing model. In the next
section, we present the proposed variability measures
used for the proposed model.

3.2.1. Variability measures for robust models
In the classical robust optimization approach, mean
variance measure of Markowitz [31] has been widely
implemented to provide a tradeo� between variability
and the expected pro�t. Due to the current limitations

on quadratic solvers, it is not possible to solve large-size
quadratic problems. Accordingly, several researchers
have utilized linear variability measures instead of
the quadratic variability measures [32]. Symmetric
variability measures consider both upper and lower
variations from a reference value, while several re-
searchers have considered non-symmetric variability
measures, which penalize only upper or lower variations
from a reference target. For instance, List et al. [33]
considered an upper partial moment of order 1 for 
eet
planning with uncertainty. Takriti and Ahmed [34]
considered an upper partial moment of order 2 in
a two-stage stochastic model. Having presented the
most important variability measures, in the following
section, the variability measures used in the proposed
model are presented.

3.2.2. Proposed variability measures
It should be noted that for the problem proposed in
this study, using a symmetric variability measure can
generate ine�cient solutions, which are not acceptable
by a sagacious decision maker. The variability mea-
sures are determined based on lower partial variability
measures as follows.

Partial Lower Deviation from Mean (PLDM)
A large portion of decision makers prefer lower pro�t
partial variability, in which it is used to measure
variability of the model for the cases with lower pro�t
than the average pro�t. Partial Lower Deviation from
Mean (PLDM) calculates the expected lower partial
deviation from the mean by the following equation:

�(y1; :::; ys) =
X
s2S

ps �max
�

0;
X
s02S

ps
0 �
�
aTx

+ bs
0T � ys0

�
� �aTx+ bsT � ys��:

Partial Lower Deviation from Target (PLDT)
In addition to the PLDM variability measure, which
considers the pro�t mean as the reference, Partial
Lower Deviation from Target (PLDT) considers a
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prede�ned reference value instead of the mean pro�t.
PLDT is de�ned by the following equation:

�(y1; :::; ys) =
X
s2S

ps �max
�

0; R� � (aTx

+ bsT � ys)
�
;

where R� is the target of the objective function.

3.3. The robust model
The proposed two-stage model based on the assump-
tions presented in Section 3.2 is provided in the follow-
ing:

Indices
i; j Item/product index (i = 1; 2; :::; I,

j = 1; 2; :::; J and I = J)
t Period index (t = 1; 2; :::; T )
s; s0 Scenario index
k Unreliable supplier index

Parameters
S Scenario set
ui Set of suppliers that can supply item i
IFi;1 The inventory level of item i in the

beginning of the planning horizon
PUi;k;t Unit price of item i from unreliable

supplier k in period t
PEi;t Unit price of emergency supplier for

item i in period t
RCi;t Unit reservation cost of item i in

period t
Di;t Demand of item i in period t
PBi Unit backorder charge of item i
PLi Unit lost sale charge of item i
BVi Book value of item i at the end of

planning horizon
INi The income which is gained by unit

demand satisfaction of item i

i;j The quantity of item j, which is

required to satisfy a unit of demand of
item i (
i;i = 1)

Yi;k;t;s Yield of item i from supplier k in
period t for scenario s

PRSs Probability of scenario s
Hi Holding cost of item i for a period
A The percentage of unful�lled demand

that is backordered
B The percentage of demand which

should be ful�lled and not backordered
or lost

� The minimum percentage of demand
that should be satis�ed exactly by the
related product

Variables
Ii;t;s Inventory level of item i in the end of

period t for scenario s
Bi;t;s Backordered demand of item i in

period t for scenario s
Li;t;s Lost sale of item i in period t for

scenario s
FDi;t;s Ful�lled demand of item i in period t

for scenario s
OUi;k;t Order quantity to the unreliable

supplier k for product i in period t
OEi;t;s Order quantity to the emergency

supplier for product i in period t with
scenario s

Ci;j;t;s The consumed quantity of item j to
satisfy demand of product i in period t
with scenario s

Ri;t Reserved quantity of item i in period t
�s The auxiliary variable which indicates

the value of the second-stage objective
function

's The variability of each scenario from
the reference

Robust model
The proposed robust model can be introduced as
follow:

max
�
�

TX
t=1

IX
i=1

X
k2ui

PUi;k;t �OUi;k;t

�
TX
t=1

IX
i=1

RCi;t �Ri;t +
X
s2S

PRSs � �s

� �X
s2S

PRSs � 'PLDMs

�
; (PLDM);

max
�
�

TX
t=1

IX
i=1

X
k2ui

PUi;k;t �OUi;k;t

�
TX
t=1

IX
i=1

RCi;t �Ri;t

+
X
s2S

PRSs � �s

� �X
s2S

PRSs � 'PLDT
�
; (PLDT ); (1)
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�s =
IX
i=1

TX
t=1

INi � FDi;t;s �
IX
i=1

TX
t=1

PEi;t

�OEi;t;s �
IX
i=1

TX
t=1

PBi �Bi;t;s �
IX
i=1

TX
t=1

PLi

� Li;t;s �
IX
i=1

PLi �Bi;T;s �
IX
i=1

TX
t=1

Hi � Ii;t;s

+
IX
i=1

BVi � Ii;T;s; 8s;
(2)8>>>>>><>>>>>>:

IFi;1 +
P
k2ui Yi;k;1;s �OUi;k;1 +OEi;1;s

= Ii;1;s �Bi;1;s +
PJ
j=1 Ci;j;1;s; 8i; s

Ii;t�1;s �Bi;t�1;s +
P
k2ui �OUi;k;t

+OEi;t;s = Ii;t;s �Bi;t;s +
PJ
j=1 Ci;j;t;s;

8i; s; t = 2; :::; T

(3)

FDi;t;s +Bi;t;s + Li;t;s = Di;t; 8i; t; s; (4)

JX
j=1


i;j � Ci;j;t;s = FDi;t;s; 8i; t; s; (5)

(1� �)�Bi;t;s = �� Li;t;s; 8i; t; s; (6)

TX
t=1

FDi;t;s � � �
TX
t=1

Di;t;s; 8i; t; s; (7)

Ci;i;t;s � � � FDi;t;s; 8i; t; s; (8)

OEi;t;s � Ri;t; 8i; t; s; (9)

'PLDMs �X
s02S

�
PRSs0 �

�
�

TX
t=1

IX
i=1

X
k2ui

PUi;k;t

�OUi;k;t �
TX
t=1

IX
i=1

RCi;t �Ri;t + �s0
��

�
�
�

TX
t=1

IX
i=1

X
k2ui

PUi;k;t �OUi;k;t

�
TX
t=1

IX
i=1

RCi;t �Ri;t + �s
�
;

8s(PLDM); (10)

'PLDTs � R� �
�
�

TX
t=1

IX
i=1

X
k2ui

PUi;k;t �OUi;k;t

�
TX
t=1

IX
i=1

RCi;t �Ri;t + �s
�
;

8s(PLDT ) Ii;t;s; Bi;t;s; Li;t;s; FDi;t;s;

OUi;u;t; OEi;t;s; Ci;j;t;s; Ri;t; 'PLDMs ;

'PLDTs � 0: (11)

Eq. (1) is the objective function of the robust
model, which is represented for both PLDM and PLDT
variability measures. Eq. (2) shows the second-stage
objective function. Eq. (3) represents the inventory
balance for the planning horizon. Eq. (4) determines
that the demand is ful�lled, backordered, or lost.
Eq. (5) indicates that the ful�lled demand is ful�lled by
exactly the related product or the substitute products.
Eq. (6) indicates that a portion of the unful�lled
demand is backordered and the other portion is lost.
Eq. (7) indicates that at least a portion of demand
should be ful�lled and not backordered or lost. Eq. (8)
indicates that at least a portion of the ful�lled demand
should be satis�ed exactly by the related product.
Eq. (9) guaranties that the emergency orders do not
exceed the reserved quantity. Eq. (10) determines the
variability of the robust model. Eq. (11) indicates the
non-negativity of variables.

4. Case study

In this section, we describe the results of the proposed
model, which is implemented in an actual case. The
models are coded in GAMS and solved with CPLEX
11 solver in a computer with 2.26 GHz core2 duo CPU
and 3 GB RAM.

4.1. Outline of the case
The proposed robust optimization model is imple-
mented in a distributor of pharmaceutical products
located in Tehran, Iran, which distributes a variety
of �nished dosage drugs in the forms of tablets,
capsules, syrup, and injection with di�erent clinical
therapeutic categories of antibiotics and non-antibiotic.
Cephalosporin antibiotics, including Cefalexin and Ce-
�xime, in di�erent dosages and product forms are
investigated in this study. The associated distributor
receives the products mainly from several pharmaceuti-
cal companies based on their previous relationships or
long-term contracts while emergency orders could be
placed on other manufacturers or importers that can
perfectly supply the related product from their avail-
able stock. The substitutability for a pharmaceutical
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case arises according to the allowed interchangeable use
of drugs with similar clinical e�ects or the use of a simi-
lar drug with a di�erent dosage form. The investigated
distributor is concerned with 8 cephalosporin antibiotic
products procured by 6 pharmaceutical companies
(which are considered as the unreliable suppliers). The
products under investigation are produced in the forms
of tablets, capsules, and suspension.

4.2. Results
In Table 1, the numbers of engaged constraints and
variables and the results of both two-stage and robust
models are presented. As can be observed, the numbers
of variables and constraints for both ordinary two-stage
and robust models remain relatively close, indicating
that similar solvers can be used for both the two-
stage and the robust models. In the rest of this
study, the emergency ordering expenses include the
reservation costs and the procurement charges of the
emergency supplier. It is clear that by adding the
variability measure, a lower net pro�t is obtained by
the robust models, which arises because of the lower
demand ful�llment income and higher reliance on the
emergency supplier. In addition, the target value is
determined by multiplication of a coe�cient in the
objective function of the pure two-stage model. In
the following section, we �rst present the e�ect of
emergency ordering and product substitutability and
then present a detailed survey of the robust models.

4.2.1. E�ect of emergency ordering and product
substitutability

The emergency orders are directly a�ected by the
price of the emergency orders while the portion of
demand which is ful�lled by the substitute product
can be controlled by the values of �. In the following
sections, the values of emergency ordering and product
substitutability are presented for � = 0.

Value of emergency ordering
Although considering the emergency ordering assump-
tion increases the complexities of the mathematical
model, it provides higher 
exibilities for the decision
maker, which leads to higher net pro�t. It is obvious
that when the price of the emergency supplier increases,
a lower quantity is ordered to the emergency supplier
and after a threshold price for the emergency supplier,
the model almost neglects the availability of emergency
supplier because of its high price. To depict the
behavior of the model for di�erent emergency supplier
prices, Emergency Price Coe�cient (EPC) is utilized,
which is multiplied in the original data to produce new
emergency prices. In order to depict the e�ect of the
new emergency prices, a criterion called Emergency
Supplier Utilization (ESU) is formed, which determines
the average ratio of orders to the emergency supplier
and is calculated by the following equation:

ESU =
IX
i=1

TX
t=1

X
s2S

OEi;t;s=
� IX
i=1

TX
t=1

X
s2S

OEi;t;s

+
TX
t=1

IX
i=1

X
k2ui

OUi;k;t
�
:

Besides ESU criterion, the value of objective
function shows the value that is added to the model
for di�erent values of EPC. The di�erence between the
objective function for a high value of EPC and the
actual data depicts the value of emergency ordering
option. Figure 2 depicts the behavior of the model for
di�erent values of EPC.

It can be inferred from Figure 2 that as the
price of the emergency source increases, a lower net
pro�t is attained. In addition, it can be inferred that
after a threshold value for EPC, the model is almost
transformed into a model with only cheap unreliable

Table 1. Summary of the results of the robust model.

No. of
variables

No. of
constraints

Net
pro�t

Overall
ordering

cost

Backordered/
lost sale

cost

Inventory
cost

Demand
ful�llment

income
Two-stage

model(� = 0)
303392 163296 16715.04 56145.83 6327.35 635.57 79823.79

Robust model
(� = 0:1)

PLDM 304121 164025 13854.77 57052.79 6684.15 623.86 78215.57
PLDT (R� = 90%) 304121 164025 10592.79 57984.51 6652.65 639.61 75869.56
PLDT (R� = 110%) 304121 164025 11676.08 58560.55 6332.94 581.67 77151.24

Robust model
(� = 0:6)

PLDM 304121 164025 4493.52 58984.67 8037.1 584.16 7 2099.45
PLDT (R� = 90%) 304121 164025 5486.37 58395.85 6882.48 685.37 71450.07
PLDT (R� = 110%) 304121 164025 6697.06 58683.88 6512.21 611.01 72504.16
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Figure 2. E�ect of emergency supplier price on the
model.

suppliers. Accordingly, the Value of Emergency Sourc-
ing (VES) can be calculated by the di�erence between
the pro�t gained by the actual case and the one with
high value of EPC, which is calculated as follows:

V ES = Pro�tEPC=1 � Pro�tEPC=7 = 3321:18:

In addition, the portion of the total pro�t which
is attained by emergency ordering is calculated in the
following equation:

V ES=Pro�tEPC=1 = 3321:18=16715:04 = 19:84%:

Accordingly, 19.84% of the pro�t is attained by

exibilities which are provided by emergency ordering
option.

Value of product substitutability
Besides emergency ordering option, this paper presents
product substitutability, which can provide higher

exibilities for the decision maker. It is clear that
� = 1 indicates a model which fully prohibits product
substitutability while � = 0 fully allows for product
substitutability. The behavior of the pro�t function
for di�erent values of � is depicted in Figure 3.

The maximum Value of Product Substitutability
(VPS) is computed as follows:

V PS = Pro�t�=0 � Pro�t�=1 = 864:43:

Figure 3. E�ect of product substitutability on the net
pro�t.

Accordingly, the maximum percentage of the
pro�t which can be attained by product substitutabil-
ity is computed as follows:

V PS=Pro�t�=0 = 864:43=16715:04 = 5:17%:

4.2.2. E�ect of model robustness
PLDM model
The results of the robust model with the PLDM
variability measure are presented in Table 2. The
second to the seventh columns represent variability
and parts of objective function including ordering cost,
backordered/lost sale cost, inventory cost, and demand
ful�llment income. As the value of � increases, the
relative importance of the model robustness increases,
which leads to the decrease in the PLDM variability.
In addition, as the value of � increases, the ordering
expenses to the unreliable suppliers decrease while the
emergency ordering and the overall ordering expenses
increase. This implies that as the value of � increases,
the decision maker relies more on the expensive reliable
supplier, which leads to the increase in the overall
ordering expenses. Also, as the value of � increases,
the backordered/lost sale expenses increase, too, which
indicates that in order to decrease the variability, the
model tends to ful�ll a lower portion of the demand,
which leads to the increase in backordered/lost sale
expenses. The result indicates that as � increases,

Table 2. Summary of the results of the robust model with PLDM variability measure.

�
Unreliable
supplier

ordering cost

Expected
emergency

ordering cost

Expected
backordered/
lost sale cost

Expected
inventory

cost

Expected
demand

ful�llment
income

Expected
variability
measure

0.1 47230.19 9822.6 6684.15 623.86 78215.57 2084.07
0.2 46767.07 11037.67 7021.99 612.74 76707.58 1780.45
0.3 46314.19 11973.88 7318.85 601.32 75240.64 1583.20
0.4 46041.27 12625.27 7591 595.3 73973.39 1454.95
0.5 45878.53 13073.6 7814.92 588.63 72936.72 1353.70
0.6 45612.13 13372.54 8037.1 584.16 72099.45 1287.45
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Figure 4. The mutual e�ect of variability and net pro�t.

Figure 5. Risk-aversion e�ect on the selection of �.

the overall order quantity, which includes both order
quantities to the reliable and unreliable suppliers,
decreases. In addition, due to the short length of the
planning periods, the inventory holding costs constitute
only a small portion of the overall expenses. Table 2
shows the results for PLDM variability measure, which
veri�es the above discussions.

It should be noted that while a decision maker
wishes to have a robust model, he/she should choose
a value for � which re
ects his/her attitude toward
pro�tability or the required service level, too. Figure 4
illustrates the relation between variability and the
overall net pro�t. It can be inferred that as the desire
of the decision maker to obtain a more robust model
increases, a lower net pro�t is attained.

On the other hand, it is obvious that lower back-
ordered/lost sales expenses correspond with a higher
service level. Figure 5 shows that as � increases, a
higher expected backordered/lost sale is determined by
the model. Accordingly, by increase in the value of �,
a lower service level is obtained. In summary, it could
be concluded that while the decision maker desires a
robust solution regardless of pro�t or service level, a
high value of � should be selected. Also, if the decision
maker desires to achieve a solution which corresponds
with higher service level and net pro�t, a low value of
� should be implemented in the model.

PLDT variability measure
In this study, the target value for PLDT model repre-
sents a yardstick in which the decision maker desires to
minimize variability of solutions, which has a net pro�t

lower than it. In order to investigate the behavior of
the model against perturbations in the values of R�
and �, a range of values are generated for both R� and
�. The value of � depicts the importance of solution
robustness for the decision maker while R� depicts the
pro�t goal. Table 3 depicts a summary of the results
of the model for a set of values of � and R�.

As it is expected, for a given value of R�, as
� increases, the variability measure decreases. Thus,
by the increase in �, better control is provided on
the variability of solutions similar to PLDM model.
In addition, as the value of � increases, unreliable
supplier ordering expenses decrease while the expected
emergency ordering and the overall ordering expenses
increase. The increase in the expected emergency
supplier expenses indicates that as the value of �
increases, the model takes the advantage of reliability
of the reliable emergency supplier more. However,
higher utilization of reliable suppliers besides lower
utilization of unreliable suppliers results in the decrease
of the inventory holding costs. In addition, the increase
in � results in higher expected backordered/lost sale
expenses. The increase in both the expected back-
ordered/lost sale and the overall ordering expenses
indicates that as � increases, a lower overall quantity
is ordered to both reliable and unreliable suppliers.
Finally, it should be noted that as the value of �
increases, both demand ful�llment income and the net
pro�t decrease.

On the other hand, for a �xed value of �, as
R� increases, the ordering expenses to the unreliable
suppliers decrease while the emergency ordering and
the overall ordering expenses increase. However, by
the increase of R�, the backordered/lost sale and the
inventory holding expenses decrease while the net pro�t
of the model increases. In addition, the variability of
the model increases by the increase of R�. Figure 6
illustrates the tradeo� between the expected pro�t
and PLDT variability for di�erent values of R�. It
can be inferred that by the increase of the target
value (R�), a higher variability is determined by the
model. Accordingly, if the decision maker desires a
more robust solution with lower variability, a low value
should be selected for R�. Figure 7 depicts the tradeo�
between the overall ordering expenses and the expected
backordered/lost sale expenses for di�erent values of
R�, which indicates that for a �xed value of �, as the ex-
pected overall ordering charge increases, lower expected
backordered/lost sale expenses are determined by the
model. In addition, for a given �, as R� increases,
lower backordered/lost sale expense is obtained. In
summary, it could be concluded that � and R� should
be selected in a way that re
ects the decision maker's
attitudes toward, for instance, risk averseness, attained
net pro�t, variability, etc. Accordingly, if the decision
maker desires to minimize variability, he/she should
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Table 3. Summary of the results of the robust model with PLDT variability measure.

R� �
Unreliable
supplier

ordering cost

Expected
emergency

ordering cost

Expected
backordered/
lost sale cost

Expected
inventory

cost

Expected
demand

ful�llment income

Expected
variability
measure

R� = 90%

0.1 47282.86 10701.65 6652.65 639.61 75869.56 1791.209
0.2 46488.38 11601.93 6726.01 650.29 74775.25 1699.276
0.3 45948.75 12241.25 6812.62 661.7 73773.46 1613.07
0.4 45539.23 12739.81 6842.13 670.98 72891.32 1535.725
0.5 45194.31 13161.85 6863.5 679.16 72120.11 1471.586
0.6 45139.46 13256.39 6882.48 685.37 71450.07 1417.444

R� = 95%

0.1 46836.38 11350.2 6610.51 627.39 76342.04 1835.706
0.2 46130.81 12116.1 6679.24 638.67 75099.77 1745.663
0.3 45772.41 12548.26 6741.32 647.39 74078.32 1662.577
0.4 45419.05 12965.88 6778.44 652.95 73240.81 1591.644
0.5 45119.11 13299.55 6817.61 661.19 72500.87 1525.889
0.6 45039.31 13416.07 6829.14 669.27 71795.86 1469.074

R� = 100%

0.1 46490.6 11831.87 6531.35 611.26 76681.9 1889.004
0.2 45985.65 12378.29 6602.52 623.02 75397.85 1796.38
0.3 45640.14 12770.18 6667.27 632.55 74407.91 1714.187
0.4 45262.41 13201.79 6707.13 639.2 73606.16 1647.864
0.5 45021.5 13486.45 6723.2 641.01 72777.28 1581.236
0.6 45002.99 13533.39 6743.58 643.55 72020.87 1513.53

R� = 105%

0.1 46401.86 12064.34 6421.18 593.49 76881.38 1939.3
0.2 45980.76 12505.25 6482.1 599.46 75685.59 1852.333
0.3 45598.61 12918.32 6571.12 606.89 74665.11 1771.05
0.4 45244.31 13300.58 6602.79 611.87 73857.89 1702.329
0.5 45012.68 13566.68 6623.57 617.98 73027.46 1638.009
0.6 44997.57 13609.36 6638.71 621.63 72282.44 1577.871

R� = 110%

0.1 46217.1 12343.45 6332.94 581.67 77151.24 2009.109
0.2 45653.34 12934.8 6377.34 587.57 75952.49 1921.425
0.3 45359.24 13268.54 6420.77 596 74923.7 1838.018
0.4 45243.34 13409.57 6442.15 602.95 74076.71 1770.172
0.5 44911.58 13759.19 6474.52 609.39 73327.82 1706.131
0.6 44850.65 13833.23 6512.21 611.01 72504.16 1638.066

select a model with a low value of R� and high value
of � while for a service-sensitive decision maker, a high
value of R� and low value of � should be implemented.

The presented framework is valid in depicting the
behavior of the model for di�erent values of R� and
� for other cases (e.g., data of other companies) and
only the scale of the values might be changed. In such
cases, it is possible to run the model for several values
of R� and � initially and by observing the behavior
of the model ingredients, it is possible to narrow the
values of � and R� based on managers' decision. This
means that in using other data, it is possible to use
other ranges for � and R�. However, in such cases, the
behavior of the ingredients of the models remains the
same.

Comparison between PLDM and PLDT variability
measures
In this part, the behavior of the PLDM and PLDT
models are compared in a way that directs the decision
maker to select the proper model. As explained in the
previous sections, in the PLDM model, the variability
measure basically depends only on the values of �
while in the PLDT model, the variability depends on
both R� and �. As it is expected, when the target
value is not restricted to a predetermined value (PLDM
model), as the value of � increases, a higher control on
the variability is acquired while in the PLDT models,
for a given value of R�, as � increases, variability
slightly decreases. In addition, for a given value of �,
increase in R� results in increase in PLDT variability.
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Figure 6. Mutual e�ect of the PLDT variability and the
expected net pro�t.

Figure 7. Mutual e�ect of expected backordered/lost sale
and expected ordering expenses.

On the other hand, for a given value of R�, as the
value of � increases, the backordered/lost sale expenses
increase slightly while for a given value of �, as R�
increases, a lower backordered/lost sale is obtained
for the problem. In addition, for PLDM models, a
higher backordered/lost sale is achieved. Also, as the
value of � increases, the net pro�t of both PLDM and
PLDT models decreases. However, the decrease rate
for the PLDM model is higher. Figures 8-10 depict
the variability, backordered/lost sales, and net pro�t
of PLDM and PLDT models for di�erent values of R�
and �.

In order to illustrate the fact that which model
should be selected by certain practitioners, a compar-
ison has been performed between PLDM and PLDT
models. In a service-sensitive company that desires
high customer satisfaction, the decision maker should

Figure 8. E�ect of robust model parameters on
variability.

Figure 9. E�ect of robust model parameters on the
expected backordered/lost sale.

Figure 10. E�ect of robust model parameters on the
expected pro�t.

select a model which results in the lowest backo-
rdered/lost sale expenses. In the experiment, the
PLDT model with a high value of R� and low value of �
results in the least backordered/lost sale expenses. Al-
though such model results in lower backorder charges,
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it results in relatively high variability, which is not
desired for a decision maker who seeks for a robust
model with low variability. On the other hand, if the
decision maker desires the highest average net pro�t
regardless of backordered/lost sale and variability, a
PLDM model with a small value of � should be
utilized and if the decision maker desires to achieve
a robust solution with a relatively small variability,
a PLDM model with a high value of � should be
implemented. However, the PLDM model with a high
value of � results in higher expected ordering and
backordered/lost sales expenses, which indicates a low
customer service level.

In the above discussion, the behavior of the
model was studied based on real data. Managers
and practitioners who are going to use the proposed
model should precisely consider the fact that by using
other data sets, the behavior of the model remains the
same but the scale of the model might be changed.
Accordingly, to determine the values of � and R�
in other problems, it is proposed that, initially, the
decision maker run several problems with a wide range
of � and R� with di�erent values to check the variation
of the model ingredients and, in the next step, based
on the achieved results, the practitioner select a narrow
range of � and R� and precisely determine the �nal
values of � and R�.

5. Conclusion

This paper presents a two-stage stochastic model for an
inventory problem with uncertainty. The orders can be
placed on both expensive reliable supplier and cheap
unreliable suppliers prone to yield uncertainty. The
demand can be ful�lled directly by the related product
or the substitute product. A robust optimization
approach with PLDM and PLDT variability measures
is proposed. Our experiment reveals the behavior of
the model for each of the proposed variability measures
and speci�es the proper model based on attitude of
decision maker against the desired backordered/lost
sale, pro�tability, and solution robustness. It is
clear that it is not possible to attain a model which
concurrently maximizes the net pro�t and minimizes
the variability and backordered/lost sale expenses.
Accordingly, in any practical implementations, a
tradeo� between the above measures should be
achieved according to the desire of the decision
maker. According to the results of this experiment,
if the decision maker desires to maximize the net
pro�t regardless of the backordered/lost sale or the
variability of the model, a PLDM model with a small
value of � should be selected. Also, if the decision
maker desires to minimize the backordered/lost sales,
a PLDT model with a high value of R� and low value
of � should be selected while if the main desire is to

minimize variability, a PLDM model with high value
of � should be selected.

Although the proposed variability measures work
based on the �rst order of deviation, which makes it
possible for the model to be solved by LP solvers, it
is possible to use second-order variability measures,
which necessitates a quadratic solver. According to
the current limitations on quadratic solvers, it is not
possible to solve large-size problems by the current
commercial quadratic solvers. In such cases, it is
possible to use approximation methods, such as Sample
Average Approximation, which deal with a smaller
number of scenarios. Although the utilization of
quadratic measures results in a more complicated
model, it can provide better control on the variability
of model.

In addition, although the above model is imple-
mented for a pharmaceutical distributor, it can be im-
plemented in a variety of other applications including
grocery or semiconductor industries in which similar
assumptions can be implemented. Finally, it should
be noted that the majority of the inventory models
with disruption in the literature are modeled in a way
that is not easily extendable for similar assumptions
while this paper presents a 
exible mathematical model
which can easily embody other assumptions. In addi-
tion, the proposed model excels the previous inventory
disruption models by considering a variability measure
which is not easily adaptable to the previous models.
Accordingly, it is strongly recommended that the pro-
posed method be considered before implementing other
methods.
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