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Abstract. Tra�c sign recognition can be performed in two phases of detection and
recognition; detection deals with sensing a tra�c sign in real-world image or video frame
while recognition is about reading its contents. A tra�c signs database may contain samples
with varying font sizes and styles used for printing the interior of a tra�c sign and the
contents may also be shifted away from the center of gravity. In this paper, we utilize the
energy compaction property of Discrete Cosine Transform (DCT) to propose a Tra�c Sign
Recognition (TSR) system, which can generate invariant features for varying font styles
and scaled up, scaled down, and translated contents of a sign. Experiments on synthetic
and real-world images datasets show that the features generated by our proposed method
have great intra-class similarity and inter-class variation. We have also shown that our
proposed method outperforms Eigen based recognition method [1] and is comparable with
the Histogram of Oriented Gradient (HOG) approach [2] using Support Vector Machine
(SVM) classi�er.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Taking care of speed tra�c signs ensures a smooth and
risk-free drive. Today, with top quality highways and
speedy vehicles, there is a more stringent need for abid-
ing by tra�c rules than ever. Therefore, vehicles being
able to detect a tra�c board and inform the driver can
be very helpful in reducing road accidents [3,4].

As shown in Figure 1, there are two broad cate-
gories of tra�c signs in the world; United States (US)
based (Figure 1(a)) and United Kingdom (UK) based
(Figure 1(b)) [5]. US based tra�c signs are rectangular
with white background and black foreground. UK
inspired tra�c signs, prevalent in most countries across
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Figure 1. Samples of US and UK tra�c signs.

the world including Pakistan, are generally red bor-
dered and are either mandatory (circular) or warning
(triangular) signs [6]. On violation of mandatory signs,
e.g. speed limit sign, a �ne is imposed, whereas warning
signs are to inform the driver for example of a U-turn
ahead.

Recognizing a speed sign is challenging because
factors such as weather [1,7], varying illumination [8,9],
signs being deteriorated due to poor maintenance (at
some places) and occlusion [10,11], etc. contribute
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to making the task di�cult. Most of the literature
on tra�c sign recognition uses Hue Saturation Value
(HSV) color space [1,9,12] with some range of Hue
and Saturation to detect red color while some use
prede�ned ranges in RGB color space to segment red
objects [13,14]. Some authors have attempted to
take on the problem by detecting shape of the sign
�rst [9]. A number of techniques like ANN [5], template
matching [15], and principal component analysis [1]
have been used to recognize type of sign.

In real-world situations, size and type of font and
width of line or text used to draw interior of a sign
may vary from one sign to another. Moreover, the
interior stu� may be translated up, down, backward, or
forward. These issues can easily a�ect the performance
of a tra�c sign recognition system. We, in this paper,
present a simple yet e�ective technique to correctly
read the contents of signs a�ected by one or more such
issues. We use energy compaction property of Discrete
Cosine Transform (DCT) [16] to generate invariant
feature for tra�c signs. Since signs captured closely
appear greater in size than snapshots taken from a
distance, we, irrespective of the size of the sign in
a scene, use a 
exible grid of size 8 � 8 and apply
DCT to each block separately. Since energy in the
transformed image blocks is concentrated in the top
left corner [16], we pick the top three components (DC
and the �rst two ACs) in each block and concatenate
them to form a feature vector of �xed dimension.
For a variety of synthetic and real-world images, we
see an amazing intra-class similarity in the feature
vectors generated by di�erent images containing the
same sign. Moreover, the feature vectors generated
from images containing di�erent signs are considerably
di�erent from each other, hence, having desirable inter-
class variation. These two characteristics of the feature
vector make our proposed algorithm suitable to identify
contents of a tra�c sign in diverse situations. In order
to judge the performance of our proposed algorithm,
we used Support Vector Machine (SVM) classi�er [17]
in the experiments for training and testing purposes.

The remainder of the this paper is organized
as follows: Section 2 describes the work related to
reading the interior/content of a tra�c sign; Section 3
introduces our proposed 
exible DCT grid based tra�c
sign recognition system; Section 4 mentions the data
and classi�ers used to evaluate di�erent tra�c sign
recognition algorithms; Section 5 shows results; and,
�nally, we draw conclusion in Section 6.

2. Related work

Recognizing the contents of a tra�c sign is an impor-
tant phase of a tra�c sign recognition system. The
content can be a number of two or three digits (for
mandatory speed limit signs) or various shapes (like

arrows for left or right turn signs). Researchers have
been experimenting with various techniques to cor-
rectly and reliably read the interior of a sign detected
in a scene [18,19].

Fleyeh and Davami [1] segment input image by
using Hue to detect red color in conjunction with
saturation to avoid achromatic area. The sub-image
corresponding to the location of tra�c sign is pro-
cessed using PCA to extract the invariant feature
corresponding to each sign. Their proposed system
can e�ectively identify signs in poor weather conditions
but is not good when it comes to reading signs with
translated contents. Barnas and Zelinsky [11] propose
a shape detection algorithm based on radial sym-
metry algorithm based on circular Hough transforms
by arguing that color may vary with changing light
conditions but shape remains stable. They use cross
correlation [20] to recognize the contents of a sign and
provide promising results on images collected around
their campus. However, their system performs poorly
for occluded signs. Bascon et al. [9] use RGB color
thresholding for detection and SVM for recognition
of tra�c signs on Spanish roads. They provide good
results in the bright sunshine of the day but RGB
color thresholding is not good for poor lighting condi-
tions. Hoferlin and Zimmermann [21] propose a Scale
Invariant Feature Transform (SIFT) based approach
to recognize circular tra�c signs as per their contents.
Hoferlin's work is limited to recognizing only circular
signs, which in most parts of the world are used to
enforce speed limits most of the time. Varan et al. [22]
present a template matching based automated tra�c
sign recognition system generating invariant features
for translation, scale, rotation, weather conditions, and
partial occlusion. They provide promising results, but
the template matching procedure is computationally
expensive.

Greenhalgh and Mirmehdi [2] use Histogram of
Oriented Gradient (HOG) technique to detect the con-
tents of self-collected tra�c signs in United Kingdom
with reasonably good accuracy. HOG was originally
proposed by Dalal and Triggs [23] for human detection
in real-world images. Ghica et al. [24] use multi-layer
perception Arti�cial Neural Network (ANN) [25] to
recognize the interior of a tra�c sign. Mirmehdi's work
is state of the art in the �eld of image processing based
tra�c sign recognition, but is slightly computational
resource hungry.

3. Our proposed algorithm: Flexible DCT
Grid based feature extraction (FDG)

There are a number of techniques used for detection of
tra�c signs in real-world images [19,26] using RGB and
HSI color spaces [16] to segment red bordered circular
and triangular signs. Since Hue component in HSI color
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space carries the information of color in the image,
we threshold this plane to extract closed red bordered
shapes. This is followed by a morphological hole �lling
operation [16] to �ll the interior of the detected shape.
The �lled image is subtracted from the thresholded
image and the di�erence is the interior of the sign as
a blob. This small portion is taken out of the scene to
apply our proposed 
exible DCT grid based recognition
technique. The process of sign segmentation is shown
in Figure 2.

Here, our focus is on generating invariant features
for the tra�c sign extracted in Figure 2(e). We use en-
ergy compaction property of Discrete Cosine Transform
(DCT) to generate features for the detected tra�c signs
having high inter-class variation and intra-class simi-
larity. DCT has been previously used for recognition
purposes in Content Based Image Retrieval (CBIR) [27]
and binary object recognition [28] under elastic de-
formations and noise. DCT is a variant of Fourier
Transform [29] meant for digital signals/images. It is
famous for its property of pulling the energy of a two-
dimensional signal/image in its upper left corner. It is
evident from Eq. (1) that the top left DCT coe�cient
is the sum of the values of all pixels divided by the
square root of the size of the image and is called the DC
component. All other pixels in the transformed image
are AC components of increasing frequency. DCT is
widely used in JPEG image compression [30] where the
pixels in the transformed image are picked in a zigzag
form shown in Figure 3.

For the task of generating invariant features for

Figure 3. Selecting DCT components in zigzag form by
JPEG.

tra�c signs, we use the �rst three components of the
DCT transformed image, i.e. DC, the �rst AC, and the
second AC [28]. The general expression to calculate
DCT of a two-dimensional matrix, f(i; j), of size M �
N is given in Eq. (1) and the three components are
calculated mathematically as shown in Eq. (2) through
Eq. (4):

F (u; v) =�u�v
M�1X
i=0

N�1X
j=0

f(i; j) cos
�(2i+ 1)u

2M

cos
�(2j + 1)v

2N
; (1)

while 0 � u �M � 1, 0 � v � N � 1 and:

Figure 2. Detection of a red bordered speed limit sign in a real-world scene.
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�u =

8<: 1p
M
; if u = 0q

2
M ; otherwise

�v =

8<: 1p
N
; if v = 0q

2
N ; otherwise

F (0; 0) = �0�0

M�1X
i=0

N�1X
j=0

f(i; j) cos(0) cos(0); (2)

F (0; 1)=�0�1

M�1X
i=0

N�1X
j=0

f(i; j) cos(0) cos
�
�(2j+1)

2N

�
;
(3)

F (1; 0)=�1�0

M�1X
i=0

N�1X
j=0

f(i; j) cos
�
�(2i+1)

2M

�
cos(0):

(4)

The �rst and second AC components (Eqs. (3) and (4))
correspond to slowest variations in vertical and hori-
zontal directions, respectively, in the input matrix. We
concatenate these three components of the transform
in each block to form the feature vector. Since the grid
is 
exible and is always 8 � 8 irrespective of the size
of the image, the size of feature vector remains 192 for
all cases. In order to cater for scale invariance (i.e.,
tra�c signs captured closely appear larger in size than
the signs captured from a distance), we normalize the
feature vectors by dividing each value by the maximum
value in the feature vector. This keeps all values of the
192-dimensional feature vector between zero and one.

3.1. Preprocessing
As shown in Figure 2(a), the extracted sign has a
black border around, which should be removed before
generating its feature vector. Moreover, the sign may
be translated into any of the four possible directions;
black border removal also caters for this issue after it
is segmented from its background. Figure 4 shows how
translated contents are dealt with by removing useless
black borders around the contents and then dividing
the rest of the images in 8 � 8 grid so that DCT can
be applied to each of the 64 blocks.

3.2. Generating feature vectors
After removing the black border and dividing the image
into 64 boxes of equal area, DCT is applied to each
block and since the energy is concentrated in the top
left corner, the top three components are taken, i.e.
DC, the �rst AC, and the second AC, from each block.
This gives a 192-dimensional feature vector for the
tra�c sign.

Various versions of tra�c signs with scaled and
translated contents from synthetic dataset are shown
in Figure 5 on the left and their corresponding feature
vectors are shown on the right. Figure 5(a) shows a
speed limit 40 tra�c sign with contents in a fairly large
font size and its feature vector; Figure 5(b) shows the
same sign with contents printed in the same font style
but with a reduced font size; the generated feature
vector is very close to as shown in Figure 5(a). The
feature vector remains invariant even if the contents
are translated upward (moving the content up within
the rim) as shown in Figure 5(c). This shows that

Figure 4. Black border removal and applying of 
exible grid on the contents of a sample tra�c sign.
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Figure 5. Generating invariant features from a tra�c
sign with contents scaled up, scaled down, and translated.

Figure 6. Generating invariant features from a tra�c
sign with contents written in di�erent fonts.

the proposed algorithm is invariant to scaling and
translation of the contents of a tra�c sign.

Another interesting characteristic of the proposed
method is its invariance to various known font styles.
In the synthetic dataset, we printed the contents of
various tra�c signs in di�erent fonts and found the
feature vectors invariant for ten di�erent writing styles.
Figure 6 shows the invariance of feature vector for three
well known font styles. It is clear from Figure 6(a),

(b), and (c) that the 192-dimensional feature vectors
generated through our proposed algorithm are very
close for Gulim Che, Bodoni MT Black, and Ariel Black
fonts.

3.3. Inter-class variation
A desirable characteristic of a feature extraction tech-
nique is that the vectors generated for di�erent classes,
i.e. tra�c signs, must be signi�cantly di�erent from
each other. This helps in distinguishing a tra�c
sign in the presence of instances from various other
classes. Figure 7 shows instances from circular and
triangular tra�c signs taken from real-world dataset.
We can see that the feature vectors generated for
railway crossing (Figure 7(a)) and two-way tra�c
(Figure 7(b)) show very di�erent patterns. Similarly,
Figure 7(c) and (d) show very weak correlation between
the generated features. Overall analysis of all the four
instances from di�erent classes in Figure 7 reveals that
our proposed algorithm produces signi�cantly di�erent
features/signatures for di�erent types/classes of tra�c
signs.

3.4. Intra-class similarity
Feature extraction using our proposed Flexible DCT
Grid (FDG) based technique shows that various in-
stances of the same class generate very similar features.
Figure 8 shows the feature vectors generated for four
instances of speed limit 70 sign taken from real-world
dataset. Figure 8(a) shows the sign with properly �lled

Figure 7. Inter-class variation across various tra�c signs.
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Figure 8. Intra-class similarity across various samples of
a tra�c sign.

contents and its feature vector whereas Figure 8(b)
shows another instance of the same class, but with
di�erent size and type of font (length is more than
the width). The tra�c sign shown in Figure 8(c) also
belongs to the same class, but is slightly di�erent in
appearance and, �nally, Figure 8(d) shows a sample of
the same speed limit sign with board a bit tilted. All
the four feature vectors shown in Figure 8 show that
for apparently di�erent looking instances of the same
class, the feature vectors are highly correlated.

This shows that the proposed feature selection
algorithm produces features with great intra-class sim-
ilarity and inter-class variation.

4. Experiments

4.1. Datasets
We used two datasets for experiments, namely, syn-
thetic and real-world datasets, both having twenty
classes. Synthetic dataset contains 1600 instances with
80 samples per class. Images in each class contain
scaled up, scaled down, and translated contents printed
with 10 di�erent fonts. Real-world dataset contains
1252 images with almost 63 instances per class. The
scenes are captured by the authors from various Pak-
istani roads. The data is a random mixture of scaled,
skewed, and variable-rim-width contents printed with
both standard and non-standard fonts. Representative
images of each class are shown in Figure 9.

Figure 9. Samples of tra�c signs used for experiments.

In order to investigate error rate, precision, and
recall, both datasets are divided as follows: randomly
chosen 70% of the images are used for training and
the remaining 30% are used for testing using Support
Vector Machine (SVM) [31] classi�er. SVM is a widely
used classi�er famous for its good performance and
simplicity of implementation. Originally, SVM was
intended to distinguish between only two classes, but
it can be extended to handle more than two classes
through one-versus-all technique, i.e. at a time, one
class is considered as positive and the rest of the classes
are considered as negative. The process is repeated
equal to the number of classes in the data. We use the
SVM implementation given in MATLAB [32].

Performance analysis of the synthetic dataset,
real-world dataset, and their combination is performed
through three parameters, namely, error rate, preci-
sion, and recall. These are de�ned in Eqs. (5) to (7):

Error rate =
false positives

false positives + true negatives
; (5)

Precision =
true positives

true positives + false positives
; (6)
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Recall =
true positives

true positives + false negatives
: (7)

5. Results

Synthetic and real-world datasets are divided into
training and test subsets as mentioned in Section 4.
Initially, error rate using SVM classi�er is calculated for
synthetic and real-world datasets. Then, both datasets
are combined and the experiment is repeated. In
order to analyze the utility of our proposed approach,
we compare it with two other techniques, i.e. Eigen
based [1] and HOG based [2] feature extraction. For
comparisons with Eigen based feature selection, we
have reproduced Fleyeh's work [1], which applies PCA
to extracted images and uses the top twenty Eigenvec-
tors as features.

Figure 10 shows error rates of synthetic, real-
world, and their combination versus increasing number
of classes for all the three methods of feature extrac-
tion. A common trend of increasing error rate versus
increasing number of classes can be clearly observed.

As shown in Figure 10(a), the error rate of
our proposed method (FDG) is the least throughout.
Histogram of Oriented Gradients (HOG) based method
is comparable in the middle, but the supremacy of
our proposed method becomes more evident as the
number of classes reach up to 20. The third method,
i.e. Eigen based feature extraction, is the poorest.
A disadvantage of Eigen based method is that we
have to empirically select the number of top Eigenvec-
tors that give the best accuracy under given circum-
stances [33].

The pattern also repeats itself for real-world
dataset. However, as shown in Figure 10(b) for 12, 17,
and 18 classes, HOG based feature extraction approach
is the best of all. But, for all other classes, our proposed
approach outperforms the other two. Once again, the
Eigen based method exhibits the highest error rate
throughout the experiment.

Figure 10(c) shows that for the �rst three classes,
HOG based approach is the most accurate for the
combination of synthetic and real-world datasets. Our
proposed approach is the best almost throughout the
experiment and Eigen based method is also the worst
even for this combined dataset.

Table 1 shows the individual precision and recall
of the three methods for various tra�c signs from
synthetic dataset. The table also shows the tra�c
signs most commonly misjudged by each method in
each class. For road works, falling rocks, and tra�c
congestion signs, precision of our proposed FDG algo-
rithm is very high; in addition, for falling rocks, our
method recalls all relevant signs quite satisfactorily.
In the last row, we average both precision and recall
results achieved by each method. Table 1 shows that

Figure 10. Error rate of synthetic and real-world
datasets versus increasing number of classes.

our proposed method achieves the highest precision and
recall for synthetic dataset.

For real-world dataset (as shown in Table 2), our
proposed method is the best in terms of both precision
and recall. HOG based method has a reasonable overall
precision and for certain individual signs, e.g. U-turn, it
has quite high precision, i.e. 0.968. Eigen based method
comes the last in terms of both precision and recall.

In order to further investigate the performance
of the three competing methods, we joined the two
datasets and determined the precision and recall of
individual signs in the combined set. As shown in Ta-
ble 3, our proposed method achieved overall precision
and recall greater than what were achieved in cases of
synthetic and real-world datasets. However, recall was
a bit smaller than what we achieved in case of synthetic
dataset and comparable to the recall achieved in case
of real-world dataset.
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Table 1. Precision and recall of individual tra�c signs in synthetic dataset.

Tra�c sign

FDG Eigen [1] HOG [2]

Pre.� Recall Commonly
misclassi�ed as

Pre.� Recall Commonly
misclassi�ed as

Pre.� Recall Commonly
misclassi�ed as

Speed limit 30 .920 .932 Speed limit 40 .905 .915 Speed limit 50 .913 .913 Speed limit 40
Speed limit 40 .942 .924 Speed limit 110 .895 .868 Speed limit 110 .932 .994 Speed limit 60
Speed limit 50 .962 .974 Speed limit 30 .885 .976 Speed limit 30 .944 .913 Speed limit 100
Speed limit 60 .944 .988 Speed limit 40 .845 .982 Speed limit 80 .935 .901 Speed limit 30
Speed limit 70 .920 .923 Speed limit 90 .905 .795 Speed limit 90 .943 .991 Speed limit 90
Speed limit 80 .972 .919 Speed limit 60 .935 .815 Speed limit 60 .953 .803 Speed limit 60
Speed limit 90 .982 .949 Speed limit 70 .905 .968 Speed limit 110 .953 .862 Speed limit 100
Speed limit 100 .955 .904 Speed limit 40 .889 .885 Speed limit 110 .943 .976 Speed limit 110
Speed limit 110 .990 .906 Speed limit 100 .915 .799 Speed limit 40 .894 .981 Speed limit 40
Speed limit 120 .977 .953 Speed limit 110 .944 .948 Speed limit 40 .888 .813 Speed limit 100
Right turn .924 .943 U turn .934 .943 U turn .900 .947 U turn
Left turn .992 .993 Left turn .905 .945 Round about .955 .844 Round about
U turn .962 .945 Right turn .850 .987 Right turn .950 .804 Right turn
Railway crossing .942 .994 Round about .882 .989 U turn .934 .984 Right turn
Two way tra�c .974 .895 U turn .955 .753 U turn .953 .954 U turn
Round about .992 .999 Tra�c congestion .897 .899 Falling rocks .900 .933 Right turn
Road works .993 .989 Falling rocks .889 .789 Railway crossing .888 .992 Speed bump
Falling rocks .982 .980 Speed bump .900 .773 Road works .876 .893 Road works
Tra�c congestion .972 .949 Speed bump .804 .714 Speed bump .888 .879 Falling rocks
Speed bump .925 .948 Falling rocks .844 .774 Falling rocks .903 .808 Falling rocks
Average .961 .950 .894 .875 .922 .909
�Pre.: Precision.

Table 2. Precision and recall of individual tra�c signs in real-world dataset.

Tra�c sign

FDG Eigen [1] HOG [2]

Pre.� Recall Commonly
misclassi�ed as

Pre.� Recall Commonly
misclassi�ed as

Pre.� Recall Commonly
misclassi�ed as

Speed limit 30 .985 .929 Speed limit 40 .923 .919 Speed limit 50 .904 .913 Speed limit 40
Speed limit 40 .985 .962 Speed limit 110 .910 .845 Speed limit 110 .946 .993 Speed limit 100
Speed limit 50 .965 .893 Speed limit 30 .839 .983 Speed limit 60 .955 .915 Speed limit 100
Speed limit 60 .970 .904 Speed limit 80 .909 .988 Speed limit 80 .957 .906 Speed limit 30
Speed limit 70 .989 .988 Speed limit 90 .822 .798 Speed limit 90 .943 .992 Speed limit 90
Speed limit 80 .929 .980 Speed limit 60 .891 .819 Speed limit 60 .933 .804 Speed limit 60
Speed limit 90 .947 .902 Speed limit 70 .889 .968 Speed limit 110 .956 .862 Speed limit 100
Speed limit 100 .949 .895 Speed limit 40 .918 .885 Speed limit 110 .937 .988 Speed limit 110
Speed limit 110 .966 .898 Speed limit 100 .834 .799 Speed limit 40 .943 .992 Speed limit 40
Speed limit 120 .970 .969 Speed limit 110 .891 .944 Speed limit 40 .958 .881 Speed limit 100
Right turn .949 .974 U turn .900 .943 U turn .969 .948 U turn
Left turn .960 .896 Round about .909 .949 Round about .930 .842 Round about
U turn .989 .944 Right turn .899 .988 Right turn .968 .809 Right turn
Railway crossing .980 .909 Falling rocks .891 .985 U turn .943 .933 Speed bump
Two way tra�c .989 .885 U turn .899 .756 U turn .964 .958 U turn
Round about .956 .946 Tra�c congestion .900 .898 Falling rocks .943 .958 Right turn
Road works .959 .979 Speed bumps .803 .784 Railway crossing .956 .933 Falling Rocks
Falling rocks .949 .965 Road works .806 .778 Road works .948 .893 Speed bumps
Tra�c congestion .989 .979 Speed bump .816 .714 Speed bump .936 .887 Falling rocks
Speed bump .929 .937 Falling rocks .825 .789 Falling rocks .940 .802 Falling rocks
Average .964 .936 .873 .876 .946 .910
�Pre.: Precision.



1392 S.K. Noon et al./Scientia Iranica, Transactions D: Computer Science & ... 24 (2017) 1384{1394

Table 3. Precision and recall of individual tra�c signs in synthetic and real-world datasets.

Tra�c sign

FDG Eigen [1] HOG [2]

Pre.� Recall Commonly
misclassi�ed as

Pre.� Recall Commonly
misclassi�ed as

Pre.� Recall Commonly
misclassi�ed as

Speed limit 30 .970 .947 Speed limit 40 .954 .934 Speed limit 50 .945 .974 Speed limit 40
Speed limit 40 .987 .945 Speed limit 110 .914 .865 Speed limit 110 .944 .905 Speed limit 100
Speed limit 50 .966 .929 Speed limit 30 .923 .823 Speed limit 100 .976 .907 Speed limit 100
Speed limit 60 .987 .907 Speed limit 80 .934 .943 Speed limit 80 .965 .916 Speed limit 30
Speed limit 70 .985 .986 Speed limit 90 .939 .794 Speed limit 90 .895 .985 Speed limit 90
Speed limit 80 .966 .894 Speed limit 60 .948 .835 Speed limit 60 .893 .844 Speed limit 60
Speed limit 90 .987 .904 Speed limit 70 .956 .933 Speed limit 110 .943 .853 Speed limit 100
Speed limit 100 .978 .916 Speed limit 40 .939 .837 Speed limit 110 .967 .985 Speed limit 110
Speed limit 110 .969 .989 Speed limit 100 .927 .756 Speed limit 40 .956 .947 Speed limit 40
Speed limit 120 .997 .963 Speed limit 110 .948 .975 Speed limit 40 .934 .803 Speed limit 100
Right turn .970 .892 U turn .935 .924 U turn .971 .988 U turn
Left turn .999 .897 Round about .963 .927 Round about .964 .812 Round about
U turn .977 .934 Right turn .954 .925 Right turn .994 .846 Right turn
Railway crossing .999 .989 Speed bumps .975 .925 U turn .884 .904 Right turn
Two way tra�c .909 .883 U turn .984 .798 U turn .944 .957 U turn
Round about .988 .934 Tra�c congestion .954 .816 Falling rocks .884 .959 Railway crossing
Road works .977 .947 Railway crossing .883 .738 Railway crossing .843 .889 Speed bumps
Falling rocks .968 .928 Railway crossing .835 .746 Road works .992 .857 Speed bumps
Tra�c congestion .989 .937 Speed bump .824 .795 Speed bump .944 .906 Falling rocks
Speed bump .989 .989 Falling rocks .813 .794 Falling rocks .976 .894 Road works
Average .977 .935 .925 .854 .940 .906
�Pre.: Precision.

5.1. Discussion

Our proposed 
exible DCT grid based technique is
accurate in terms of precision and recall in all three
combinations of datasets containing images of tra�c
signs with varying font styles and translated contents.
In order to test the performance of our proposed
approach under di�cult conditions, we tested images
of all 20 classes under poor illumination (e.g., images
taken in the evening or in bad weather) and partial
occlusions (where some other object had blocked a
portion of the tra�c sign). Table 4 shows the error rate
of our proposed tra�c sign recognition system under
these two conditions. Some tra�c signs, e.g. round
about and speed limit 100, were recognized with a very
small error rate even in poor illumination conditions.
Three mandatory signs, i.e. speed limit 90, speed limit
100, and speed limit 60, were recognized with good ac-
curacy under partial occlusion. Overall, the proposed
system is less immune to partial occlusions than to poor
illumination. This is because the feature set calculated
on 8 � 8 
exible grid loses its discrimination ability
to a great extent when a portion of the tra�c sign is
blocked by another object. However, in case of poor
lighting conditions, the DCT based feature vectors still
possess a reasonably good discrimination ability.

Table 4. Error rate of our proposed method under poor
illumination and partial occlusion.

Tra�c sign
Error rate

Poor
illumination

Partial
occlusion

Speed limit 30 0.234 0.329
Speed limit 40 0.140 0.330
Speed limit 50 0.204 0.244
Speed limit 60 0.093 0.103
Speed limit 70 0.139 0.309
Speed limit 80 0.235 0.296
Speed limit 90 0.304 0.056
Speed limit 100 0.063 0.012
Speed limit 110 0.184 0.222
Speed limit 120 0.240 0.342
Right turn 0.234 0.332
Left turn 0.244 0.343
U turn 0.109 0.303
Railway crossing 0.199 0.109
Two way tra�c 0.099 0.304
Round about 0.014 0.234
Road works 0.113 0.330
Falling rocks 0.189 0.430
Tra�c congestion 0.200 0.342
Speed bump 0.255 0.233
Average 0.175 0.261
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6. Conclusion

Generating invariant features from tra�c signs with
varying writing font styles and sizes is a challenging
task. In certain situations, contents of a tra�c sign
can also be translated into one of the four possible
directions. These deviations from the standard can
easily fool an automatic tra�c sign recognition system.
We have presented an e�ective algorithm to generate
invariant features from such non-standard signs. Our
proposed algorithm produces promising results for
synthetic and a real-world dataset containing more
than 1000 images each. We have further shown that
our proposed method outperforms two state of the art
tra�c sign recognition methods for synthetic dataset,
real-world dataset, and the combination of the two.
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