
Scientia Iranica D (2017) 24(3), 1325{1334

Sharif University of Technology
Scientia Iranica

Transactions D: Computer Science & Engineering and Electrical Engineering
www.scientiairanica.com

E�ciently computing the smallest axis-parallel squares
spanning all colors

P. Khanteimouria, A. Mohadesa;�, M.A. Abamb, M.R. Kazemia and S. Sedighinc

a. Department of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran.
b. 716 CE Building, Sharif University of Technology, Tehran, Iran.
c. 3204 A.V. Williams Building, University of Maryland, College Park, Maryland, USA.

Received 12 November 2015; received in revised form 22 August 2016; accepted 19 December 2016

KEYWORDS
Algorithm;
Location planning;
Dynamic data
structure;
Color-spanning
objects.

Abstract. For a set of colored points, a region is called color-spanning if it contains at
least one point of each color. In this paper, we �rst consider the problem of maintaining
the smallest color-spanning interval for a set of n points with k colors on the real line, such
that the insertion and deletion of an arbitrary point takes O(log2 n) the worst-case time.
Then, we exploit the data structure to show that there is O(n log2 n) time algorithm to
compute the smallest color-spanning square for a set of n points with k colors in the plane.
This is a new way to improve O(nk logn) time algorithm presented by Abellanas et al. [1]
when k = !(logn). We also consider the problem of computing the smallest color-spanning
square in a special case in which we have, at most, two points from each color. We present
O(n log n) time algorithm to solve the problem which improves the result presented by
Arkin et al. [2] by a factor of log n.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Background. Suppose that there are k di�erent
types of facilities such as banks, police o�ces, etc. and
we are given n facilities of these types. A basic problem
arising here is to �nd a region in which there is at
least one representative from each type of facilities.
This suggests the problem of computing the smallest
area/perimeter color-spanning objects. Another moti-
vation comes from discrete imprecise data [3,4]. In this
context, each imprecise point is de�ned with a set of
discrete possible locations. Then, for a given set of k
imprecise points, we have a set of n points colored with
k colors, where for each color, the points of that color
represent an imprecise point. The basic problem on a
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set of imprecise points is to locate each imprecise point
within its de�ning set in which a measure becomes
optimized [5]. This is equivalent to choosing exactly k
points with di�erent colors in which a property, e.g. di-
ameter, closest pair, bounding box, etc. gets minimized
or maximized. Beside these two applications, this
problem has other applications in statistical clustering,
pattern recognition, and generalized range searching [6-
8].

Related works. There are several works on colored
points. Motivated from imprecise data, Ju et al. [4]
showed some results on hardness of the largest closest
pair and the minimum planar spanning tree. Fan et
al. [9] also proposed O(n2 logn) time algorithm to
compute the expected area of convex hulls of the color-
spanning sets.

In the view of location problems, for a given set
of n colored points with k colors in the plane, one
of the most studied problems is to �nd the smallest
color-spanning rectangle. For the axis-parallel case,
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Abellanas et al. [1] showed that there are �((n � k)2)
minimal rectangles in the worst case and proposed an
algorithm of O((n � k)2 log2 k) running time to solve
the problem. The algorithm has been improved to
O(n(n � k) log k) time by Das et al. [10]. For arbi-
trarily oriented rectangles, Das et al. [10] proposed an
algorithm running in O(n3 log k) time. For the problem
of computing the smallest axis-parallel rectangle that
spans speci�ed number of points from each color, Barba
et al. [11] presented an algorithm running in O(n2k)
time. The results are near e�cient with respect to
testing all minimal objects. A minimal color-spanning
object contains at least one point from each color, and
any sub-region of the same type does not contain all
colors.

For the problem of computing the smallest color-
spanning circle, Abellanas et al. [12] proposed an al-
gorithm with O(n2�(k) log k) time using Farthest Col-
ored Voronoi Diagram (FCVD). The other approach
mentioned by Abellanas et al. [1] is to obtain the
smallest color-spanning circle and the smallest color-
spanning axis-parallel square in O(kn logn) time using
the upper envelope of Voronoi surfaces [13]. In case
there are exactly two points of each color, Arkin et
al. [2] presented O(n log2 n) time algorithm to compute
the smallest color-spanning square.

Our results. In Section 2, we �rst consider the
problem of maintaining the smallest color-spanning
interval for a dynamic set of colored points with k
colors on the real line. We propose a data structure
which spends O(log2 n) update time per insertion and
deletion using the structure designed by Overmars and
van Leeuwen [14]. Next, in Section 3, we exploit the
data structure to compute the smallest color-spanning
axis-parallel square. The algorithm sweeps the points
from top to bottom by two horizontal lines while the
points between the lines are vertically projected. Then,
we use the dynamic data structure to maintain the
SCSI of the projected points when insertion or deletion
occurs. The algorithm runs in O(n log2 n) time and
does not test every minimal candidates (in fact, we
show that there may be �(kn) minimal color-spanning
axis-parallel squares in the worst case). Hence, this
result is an improvement to the result proposed by
Abellanas et al. [1] in case k = !(log n)6. (We
have recently realized that the algorithm given by
Arkin et al. [2] can be generalized to get the same
result.) In Section 4, we study the computation
of the SCSS under the assumption that there are,
at most, two points from each color. We propose
O(n log n) time algorithm by reducing the problem
to the 2-SAT problem. This improves the result [2]
by a factor of log n. Moreover, the reduction can
be simply generalized to any �xed dimension, d >
2.

2. Dynamic maintenance of minimal
color-spanning intervals

In this section, we concentrate on color-spanning in-
tervals for a set of colored points with k colors on the
real line. For ease of the presentation, we assume that
points are in a general position, meaning that point
coordinates are di�erent. We �rst show some properties
of color-spanning intervals for a static set of colored
points on the real line. Next, we consider the problem
of maintaining the smallest color-spanning interval for
dynamic points in which the points are permitted to
be inserted or deleted.

2.1. Minimal color-spanning intervals for
static points

A minimal color-spanning interval for a set of colored
points on the real line is an interval containing all
colors, and any sub-interval of it does not contain all
colors. As a simple observation, the endpoints of a
minimal color-spanning interval have di�erent colors
and their colors are unique in the interval.

Suppose that we are given a set P of n colored
points with k colors on the real line. It is easy to show
that the number of minimal color-spanning intervals is
linear, and they can be found with a simple algorithm
in linear time and space apart from sorting. The
algorithm sweeps the points from left to right with two
sweep lines which stop at the endpoints of an interval.
It uses an array for keeping the number of points from
each color and a variable for the number of di�erent
colors between the two sweep lines. Since the sweep
lines never go back, the algorithm takes O(n) time and
space. We omit the details due to the simplicity and
conclude the following theorem.

Theorem 1. For a given set of n points with k colors
on the real line, the smallest color-spanning interval
can be computed in O(n) time and space apart from
sorting.

In the following, we show a new view of minimal
color-spanning intervals. Gupta et al. [6] used a
transformation to perform generalized range report-
ing/counting for a given set of colored points on the
real line. Indeed, they map the original given points
on the real line to points in the plane and perform
the standard 3-sided range reporting/counting in the
plane. We exploit the same transformation to give
a new view of minimal color-spanning intervals. Let
P = fp1; p2; � � � ; png be a given set of colored points
with k colors on the real line. For each color c, we
�rst sort the points with color c (c-colored points, for
short) in an increasing order. Then, for arbitrary
point pi with color c, let pred(pi) be the previous
point of pi in the list of the ordered c-colored points.
In addition, we set pred(pj) = �1 if pj is the
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Figure 1. The ordered lists of c-colored points for each
color c.

Figure 2. The smallest color-spanning interval on the
staircase of maximal points.

leftmost point with color c. Moreover, we insert k
additional points, fpn+1; pn+2; � � � ; pn+kg, from each
color at 1-(see Figure 1). A point, pi, is mapped
to the point p�i = (pi; pred(pi)) in the plane. Let
P� = fp�1; p�2; � � � ; p�n+kg be the transformed points {
Figure 2 shows the transformed points of Figure 1.
Furthermore, an interval I = [l; r] on the real line is
mapped to point I� = (r; l). This transformation has
several interesting properties.

Consider an arbitrary point, p = (px; py), in
the plane. The vertical and horizontal lines passing
through p divide the plane into four quadrants. Let
�(p) be the right-bottom quadrant, precisely �(p) =
fq 2 R2jpx � qx; py � qyg. In the following, we give
some related de�nitions.

De�nition 1. For a set of points, Q = fq1; � � � ; qng,
and point q in the plane, �(q) is Q-empty if there is no
point qi 2 Q in the interior of �(q).

De�nition 2. For a set of points Q in the plane, point
q 2 R2 is maximal with respect to Q if �(q) is Q-empty,
and there is no other Q-empty �(p) for some point p 2
R2, such that �(q) � �(p).

De�nition 3. For a set of points Q in the plane, point
qi 2 Q is a skyline point if �(qi) is Q-empty.

In order to see how the maximal points in the
plane are related to the minimal color-spanning inter-
vals, we present the following lemma.

Figure 3. A not color-spanning interval I = [l; r] where
�(I�) is not empty.

Lemma 1. For a given set P of colored points on
the real line, I = [l; r] is a minimal color-spanning
interval if and only if the point I� = (r; l) is maximal
with respect to points P� on the plane.

Proof. First, suppose that I = [l; r] is a minimal
color-spanning interval. For the sake of contradiction,
assume that I� = (r; l) is not maximal. We distinguish
two cases:

1. �(I�) is not empty;
2. �(I�) is empty but it is not maximal.

In case (1), assume that point (pi; pred(pi)) is inside
�(I�) where both pi and pred(pi) have color c - (see
Figure 3). This gives us l > pred(pi) and r < pi, which
means [l; r] is a proper subinterval of [pred(pi); pi].
Therefore, [l; r] does not contain any point of color c
which is a contradiction. Now, consider case (2).
In this case, there is a point q� = (r0; l0), such
that �(I�) � �(q�). This means that there is a
smaller color-spanning interval, q = [l0; r0], contained
in I = [l; r], which is a contradiction. Moreover,
additional points at in�nity make any minimal color-
spanning interval covered by maximal points on the
plane. The converse implication can be proved in a
similar way.

To summarize, a minimal color-spanning interval
I is a maximal point on the plane with respect to
P�. In fact, vertical and horizontal rays extending
to +y and �x directions starting at skyline points
de�ne the maximal points (see Figure 2 for more
illustration). Consider I� as a maximal point between
two consecutive skyline points p�ci = (pci ; pci�1) and
p�c0j = (pc0j ; pc0j�1

) on the plane. The minimal color-
spanning interval de�ned by I� is I = [pc0j�1

; pci ].
Furthermore, the length of an interval is the vertical
distance of its transformed point to the line y = x.
The smallest color-spanning interval is the minimum
maximal point on the plane (see Figure 2).
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2.2. Minimal color-spanning intervals for
dynamic points

In this section, we assume that the colored points on
the real line are dynamic, i.e. they can be inserted
or deleted. Our goal here is to maintain the minimal
color-spanning intervals, speci�cally the smallest color-
spanning interval.

In the previous section, we showed that the
minimal color-spanning intervals for a set of colored
points on the real line can be considered as the maximal
points on the plane. Therefore, maintaining the min-
imal color-spanning intervals reduces to maintaining
the skyline points on the plane. Overmars and van
Leeuwen [14] proposed a data structure for maintaining
the skyline. In the following, we briey go over their
data structure.

Overmars and van Leeuwen [14] used a binary
search tree, T , which stores all points in its leaves
in the sorted order by their y-coordinates. Moreover,
an internal node, v, is augmented with a concatenable
tree, e.g. 2-3 trees, which stores the skyline of points
in the subtree rooted at v that is not contained in the
skyline of points in the subtree rooted at v's parent.
The skyline of all points in Q is augmented in the root
of T . In addition, the cut point is where the skyline
split is stored in v. If point p is inserted, a procedure
Down(T; p) goes downwards the tree to locate p and
construct the skyline of points for subtrees of children
of each internal node u on the path. Suppose that
Down(T; p) is running, and the skyline of u's subtree
has been computed in u's parent in the previous step.
Then, from the cut point of u's children, it is possible to
split u's skyline at that point and to merge split parts
with the lists stored in augmented trees of u's children.
After inserting point p to a leaf of tree T , the other
procedure Up(T; p) goes up the tree to the root of T and
reconstructs the augmented trees and the cut points for
children of each internal node placed on the path. If a
point is deleted, the procedures work similarly. These
procedures split or merge two concatenable queues in
O(log n) time in each internal node on the path from
root to inserted or deleted leaf, and they totally need
O(log2 n) time. In addition, they showed that their
data structure and algorithms use linear space [14].

Now, we exploit the described structure to main-
tain the smallest color-spanning interval which is the
maximal point with the minimum distance to the line
y = x (the minimum maximal point) on the plane (see
Figure 2). Let T be the same augmented binary search
tree in Overmars and van Leeuwen's data structure.
We modify the augmented 2-3 trees as follows. For each
internal node v in augmented trees, we set two pointers,
p�m1 and p�m2, to the consecutive leaves which denote
the minimum maximal point in the subtree rooted at
v. In fact, p�m1 and p�m2 indicate the endpoints of the
smallest color-spanning interval for the points in the

Figure 4. Two sets of skyline points, one of which is
dominated by the other.

subtree rooted in v. In addition, let p�l and p�r be
pointers, respectively, to the leftmost and the rightmost
leaves in the subtree rooted in v.

Now, consider two cases of 2-3 trees of skyline
points T and T 0 with heights h and h0 (h < h0) in
which all points in T are dominated by any point in
T 0; 8(s 2 T; s0 2 T 0) : sx < s0x; sy < s0y (see Figure 4).
We have the following lemma.

Lemma 2. Merging skylines T and T 0 with the above
condition and maintaining the minimum maximal point
takes O(h0 � h) time.

Proof. Assume that without loss of generality, h <
h0. Let v be the parent of the node with height h0 �
h on the leftmost path in T (see Figure 5(a)). We
insert T into the left child of v. The node v can be
either 2-node or 3-node. If v is 2-node (see Figure 5(b))
it becomes 3-node, and for updating the pointers of
v, we compare the minimum maximal point of T and
minimum maximal point of the subtree rooted in v.

Figure 5. Cases of node v during the merge.
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Moreover, the new maximal point which is de�ned by
the rightmost point of T , and the leftmost point of
leftchild(v) should be considered. It is easy to update
p�l of node v (p�l(v) = p�l (T )). If v is 3-node (see
Figure 5(c)) v should be split. It is easy to de�ne the
pointers for the newly-de�ned internal nodes v1 and v2
in constant time. After updating the pointers of v, we
go up to the root of T 0, and for each internal node on
the path to the root, we update the pointers similarly.
Therefore, this procedure takes O(h0 � h) time.

Now, let T be 2-3 trees of skyline points. We
show how we can split T into two 2-3 trees T 0 and T 00
of skyline points with respect to some vertical line and
maintain the minimum maximum point for trees T 0 and
T 00.

Lemma 3. Splitting a skyline T into skylines T 0 and
T 00 with respect to some vertical line and maintaining
the minimum maximal points in T 0 and T 00 takes
O(log n) time.

Proof. Consider the path going down the tree with
respect to x-coordinate of the vertical line (see Fig-
ure 6). It is clear that T 0 can be obtained by merging
all subtrees T 0i on the left side of the path (similarly,
T 00 by merging the right subtrees T 00i ). By Lemma 2,
we can update the pointers to maintain the minimum
maximal points for each of T 0 and T 00. Therefore,
the total computation time is O(log n) as splitting 2-3
trees.

In fact, the procedures Down(T; P ) and UP(T; P )
in Overmars and van Leeuwen's data structure per-
form merge and split in the children (and their
augmented trees) of each node on the path to
the inserted/deleted point. Therefore, procedures
Down(T; P ) and UP(T; P ) in modi�ed conditions still
take O(log2 n) time.

Theorem 2. For a given set of n points with k
colors on the real line, the smallest color-spanning
interval can be maintained in O(log2 n) update time per
insertion and deletion and O(n) space.

Proof. When a new point p with color c is inserted

Figure 6. Splitting of a skyline T into skylines T 0 and T 00.

between points pci�1 and pci in the c-colored list, point
p�ci = (pci ; pci�1) should be deleted from the plane, and
two new points p�ci = (pci ; p) and p� = (p; pci�1) are
inserted. Deletion of a point similarly needs a constant
number of insertions and deletions.

We showed how we can maintain the smallest
color-spanning interval for dynamic points on the real
line. This is an important tool which helps us in the
next section to compute the smallest color-spanning
square for a given set of colored points in the plane.

3. The smallest color-spanning square

In this section, we focus on computing the small-
est area/perimeter color-spanning axis-parallel square.
Suppose that we are given a set of n points with k colors
on the plane. The smallest color-spanning square is an
axis-parallel square which contains all colors, and its
area/perimeter is minimum.

Recall that this problem can be solved using the
upper envelope of Voronoi surfaces [13] in O(kn logn)
time. In fact, all the previously used methods for
computing the smallest color-spanning objects, such
as rectangle, circle, etc. generally test all the minimal
objects. We show that there are 
(kn) minimal color-
spanning squares in the worst case. This indicates
that any algorithm testing all minimal color-spanning
squares runs in 
(kn) worst-case time. Next, we
present an algorithm running in O(n log2 n) time that
computes the smallest color-spanning square without
testing all minimal color-spanning squares.

We �rst explain how a minimal color-spanning
square can be represented. As illustrated in Fig-
ure 7, a minimal color-spanning square is de�ned with
two, three, or four points with di�erent colors on its
edges under the assumption that point coordinates are
di�erent (recall that this assumption is just for the
ease of the presentation). In all cases, the minimal
color-spanning square is bounded by two points on
opposite sides. Then, it su�ces to consider only the
minimal color-spanning squares of case 1 instead of all.
Moreover, we are interested in counting the minimal
color-spanning squares with di�erent contained points.
We �rst give a lower bound for the number of minimal
color-spanning squares.

Lemma 4. There is a con�guration of n points with k
colors in the plane, in which there are 
(kn) minimal
color-spanning squares.

Figure 7. The cases of a minimal color-spanning square.
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Figure 8. 
(k2) minimal color-spanning squares with 2k
points.

Proof. Let's place a set of 2k points with k colors in
the con�guration, shown in Figure 8. In this pattern,
we have to �x the left and the right edges in a way
that they span the half of the colors (1 to k

2 ). So,
there are k

2 + 1 choices for �xing the right and the left
edges. Similarly, for a pair of �xed left and right edges,
it is possible to obtain k

2 + 1 pairs to be the top and
the bottom sides. Therefore, there are 
(k2) minimal
color-spanning squares in the pattern of Figure 8 using
2k points. By repeating this pattern n

2k times, we
achieve 
(kn) minimal color-spanning squares for a set
of n points with k colors.

Now, we start describing the steps of our main
algorithm. Suppose that the points are sorted in a
descending order according to their y coordinates. The
algorithm sweeps the points with two lines Lb and
Lt from top to bottom, and variable d denotes the
vertical distance of the sweep lines (see Figure 9 for
more illustration). In fact, lines Lb and Lt, respectively,
de�ne the bottom and the top edges of the desired
square. In the beginning, Lb and Lt pass through the
topmost point. We move downwards the sweep lines as
follows:

- Move downwards line Lt to the next point if there
exists at least one color-spanning square in the strip
bounded by Lb and Lt (see Figure 9(a));

- Move downwards line Lb to the next point if there
is no color-spanning square in the strip bounded by
Lb and Lt (see Figure 9(b)).

Now, it remains to show how we can �nd out if there is
a minimal color-spanning square in the strip of lines Lb
and Lt. Suppose that the points in the strip are pro-
jected onto the real line; let P be the union of this set
of projected points and the additional points from each
color at in�nity as de�ned in the previous section. The
following simple but important observation describes

Figure 9. Sweeping the points with two lines Lb and Lt.

the necessary and su�cient conditions that a minimal
color-spanning square exists inside the strip bounded
by Lb and Lt.

Observation 1. There is a minimal color-spanning
square in the strip of lines Lb and Lt if and only if for
the points in P the length of the smallest color-spanning
interval is at most d.

According to this observation, the algorithm only
considers the projected points, P. Indeed, when Lb
reaches a new point or a point goes out of the strip
when Lt moves downwards, we insert or respectively
delete a point from the dynamic structure of maintain-
ing the smallest color-spanning interval, described in
the previous section. In addition, while Lt is moving
downwards, at the time the smallest color-spanning
interval becomes greater than d, the solution should
be updated. We give the following theorem.

Theorem 3. For a given set of n points with k colors
in the plane, the smallest color-spanning axis-parallel
square can be computed in O(n log2 n) time.

Proof. Let s be the smallest color-spanning square in
which its top and bottom sides are de�ned with points
pt and pb, respectively. Suppose that t1 is the time
Lb reaches pb, and t2 is the time Lt stops at point
pt. There are two possibilities. The case t1 < t2
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means that Lb is at point pb, while Lt is above point
pt. Since there is at least one color-spanning square
between the sweep lines, Lt moves downwards until it
reaches point pt. When Lt leaves out pt, the length
of the smallest color-spanning interval becomes greater
than d, and s has been visited. Otherwise, s is not the
solution which is a contradiction. Similarly, if t1 > t2,
Lt stops at point pt, while Lb moves downwards until
it reaches point pb. Since s is the solution, Lb must
stop at point pb. Therefore, we visit the smallest color-
spanning square in both cases. To analyse the running
time of our algorithm, we noted that each point p
enters the strip and is eliminated from it once when Lb
and Lt, respectively, reach it. Therefore, in total, we
have O(n) insertions and deletions, and by Theorem 2,
each operation spends O(log2 n) time to maintain the
smallest color-spanning interval for the points in P. So,
the algorithm runs in O(n log2 n) time.

4. The smallest color-spanning square for pairs
of points

In this section, we restrict ourselves to the case in which
we have only two points from each color. Thus, the
variant that we are considering is as follows.

Problem statement. Suppose that we are given n
pairs (pi; qi) of points in the plane where points pi and
qi are colored with color i. The goal is to compute the
smallest color-spanning axis-parallel square. Arkin et
al. [2] proposed an algorithm with O(n log2 n) running
time. We present an algorithm not only running faster
by a factor of O(log n), but also being applicable to any
�xed dimension.

Overall idea. Let the square-side length be d. Then,
computing the smallest color-spanning square is re-
duced to the decision problem \Does there exist a
square with size d covering all colors". We will
introduce an O(n) reduction from this decision version
to the 2-SAT problem which is decidable in linear time.
By this result, we can perform a binary search over the
side length of the square.

Fix the side length of the square to be d. In order
to �nd a satisfying square of the side length d, we must
select at least one point from each color, such that the
following two constraints hold for the selected set of
points:

- The x-coordinate di�erence of every two selected
points is at most d;

- The y-coordinate di�erence of every two selected
points is at most d.

We associate each input point, p, with a Boolean
variable, vp. Variable vp is true if p is a selected point.

As there are 2n points, we have 2n Boolean variables.
To get a valid selection, for any two points p and q (p
and q may have the same color) that violate one of the
above constraints, we add the following clause to the
instance of the 2-SAT problem in order to ensure that
at most one of them gets selected:

(�vp _ �vq) :

Furthermore, for each input pair of points (pi and qi),
we add the following clause in order to ensure that at
least one of them gets selected:

(vpi _ vqi):
Since the running time of the e�cient 2-SAT algorithm
is O(N + M) where N and M are the number of
variables and clauses, respectively, the above modeling
gives us an O(n2)-time algorithm. In the remainder,
we show that the number of clauses can be reduced to
O(n). The main idea is to add 4 additional Boolean
variables Lp, Rp, Up, and Dp to each input point p
with the following properties:

1. If Lp is true, then none of the points q with x(q) �
x(p) gets selected;

2. If Rp is true, then none of the points q with x(q) �
x(p) gets selected;

3. If Dp is true, then none of the points q with y(q) �
y(p) gets selected;

4. If Up is true, then none of the points q with y(q) �
y(p) gets selected.

where x(p) and y(p) are x and y-coordinates of p. In
order to force the constraints of type 1, we add the
following clauses:��Lp _ �vp

�
;
��Lp _ Ll(p)� ;

where l(p) is a point whose x-coordinate rank is
immediately before that of p. Note that if Lp is true
for some point p, (�Lp_Ll(p)) forces Lq to be true for all
q where x(q) < x(p). And, this together with (�Lq _ �vq)
forces vq is not selected. We add similar clauses to the
constraints of types 2, 3, and 4, as well. Using the new
variables, we can avoid selecting the violating points
done by O(n) clauses. More precisely, for every point
p, we add the following 4 clauses:�

�vp _ Ll(d;p)� ; �
�vp _Rr(d;p)� ;�

�vp _ Uu(d;p)
�
;
�
�vp _Dd(d;p)

�
;

where l(d; p) is the rightmost point whose x-coordinate
is less than x(p) � d, r(d; p) is the leftmost point
whose x-coordinate is more than x(p) + d, u(d; p) is
the bottommost point whose y-coordinate is more than
y(p) � d, and d(d; p) is the topmost point whose y-
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coordinate is less than y(p) � d. Finally, for every
1 � i � n, we add:

(vpi _ vqi) ;
to ensure that at least one point from each color is
selected. The total number of the above clauses is O(n)
and is simply extendible to any constant dimension d >
2.

Now, we perform a binary search on d to com-
pute the smallest color-spanning square. Let X =
fx1; � � � ; xng be a sorted set of n points on the real line.
The set of interdistances is de�ned by fxj �xijxi; xj 2
X; i < jg. We use matrix searching to select the ith
element of the interdistances. An m�n matrix is sorted
if each row and column of it is in a non-decreasing
order. Frederickson and Johnson [16] presented an
algorithm to select the ith smallest element of an m�n
sorted matrix in O(m log( 2n

m )) time where m � n. By
implicitly de�ning an n� n sorted matrix M based on
the interdistances of P in each dimension, we can select
the ith interdistance in O(n) time. Let:

Mi;j =

8<:xi � xn�j+1 : i > n� j + 1

0 : otherwise:

Since the reduction can be simply generalized to any
�xed dimension d > 2 and binary search takes O(logn)
steps, we conclude the following theorem.

Theorem 4. For a set P of n colored points in the d-
dimensional space where there are exactly two points
from each color, the smallest color-spanning hyper-
cube can be computed in O(n logn) time.

5. The smallest color-spanning two squares

In this section, we dedicate our attention to the
problem of computing the smallest color-spanning two
squares (SCS2S, for short). Precisely, we are given n
points with k colors in the plane and the goal is to
compute two axis-parallel squares which together span
all colors, and the larger one is as small as possible.
Similar to the previous section, we �rst consider the
decision version of the problem where we are also given
a distance d and the problem is deciding if there are
two squares together spanning all colors and the side
length of the larger one is at most d. Then, we use a
binary search on interdistances to solve the problem.

Suppose that we are given n points with k colors
in the plane. Let S�1 and S�2 be two squares which
solve the problem of SCS2S, such that S�1 is the larger
one with side length d�. Moreover, without loss of
generality, we assume that points pt and pb are located
in the top and the bottom sides of S�1 , respectively (see
Figure 10).

Figure 10. Two squares which solve the problem SCS2S.

Figure 11. There are at most 2k � 2 squares with
di�erent colors when Lb reaches point p.

In the following, for a given distance d, we show
how to decide if d � d�. In order to decide, we sweep
the points with two horizontal lines Lt and Lb which
their vertical distance is exactly d (see Figure 11). In
fact, Lt and Lb represent the top and bottom sides of
the larger square, S1, respectively. When Lb reaches
point p, we consider all the squares from left to right
having p in their bottom sides. Among these squares, it
su�ces to consider only the squares covering di�erent
sets of colors.

Let S1 be the leftmost square having p on its
bottom side. We horizontally move S1 to the right until
its left side reaches p. During the motion C(S1), the
color set covered by S1 changes if its right side reaches
the �rst occurrence q of some color or its left side passes
the last occurrence q of some color. Otherwise, C(S1)
remains unchanged. As there are at most k colors and
C(S1) keeps the color of p in all squares, C(S1) may
change at most 2k � 2 times. When C(S1) changes,
we create an instance of the smallest color-spanning
square problem with colors not covered by S1 and apply
our algorithm in Section 3 to this instance in order to
compute S2. Whenever we �nd a square, S2, whose side
length is at most d, we stop searching, and we conclude
that d� � d. At the end of the sweep, if we fail �nding
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S2 with the side length of at most d, we conclude that
d� > d.

Lemma 5. For given n points with k colors in the
plane and a distance d, we can decide in O(kn2 log2 n)
if there are two squares together spanning all colors
whose side length of the larger one is at most d.

Proof. Let Tc be a balanced binary search tree that
stores the point of color c in the strip bounded by Lt
and Lb, according to their x-coordinates. We perform
an insertion (deletion) into Tc when Lb (respectively
Lt) reaches point p of color c in O(logn) time. Fur-
thermore, we are able to compute the mentioned 2k�2
points in increasing order by their x-coordinates in
O(k log n

k + k log k) time. Next, updating C(S1) takes
O(1) time while S1 is moving to the left. To compute
S2 for the points of colors not covered by S1, we run
the algorithm described in Section 3 in O(n log2 n) time
according to Theorem 3. Therefore, for each point
p, the computation takes O(log n + k log n

k + k log k +
kn log2 n) = O(kn log2 n) time; in total, the running
time of the algorithm is O(kn2 log2 n).

Now, we use a binary search algorithm in the way
described in the previous section to solve the problem
of SCS2S. Therefore, we present the following theorem.

Theorem 5. For given n points with k colors in the
plane, we can compute the smallest color-spanning two
axis-parallel squares in O(kn2 log3 n) time.

6. Conclusion

In this paper, we have presented an algorithm to
maintain the smallest color-spanning interval for a set
of n colored points on the real line at a cost of O(log2 n)
time for each insertion or deletion. As an application,
we used this data structure to propose O(n log2 n) time
algorithm to compute the smallest color-spanning axis-
parallel square for a set of n points with k colors in
the plane. This improves the algorithm proposed by
Abellanas et al. [1] where k = !(logn). However, the
algorithm presented in [2] for this problem is a special
case where there are only two points from each color
which can be simply applied to the general case in the
same running time. Nevertheless, we independently
considered the problem in this special case. We mod-
eled the problem with 2-SAT and presented O(n logn)
time algorithm to solve the problem which improves the
result presented in [2] by a factor of log n and can be
generalized to any �xed dimension d > 2. Finally, we
considered the problem of computing two axis-parallel
squares, which altogether includes all colors, and the
larger one is as small as possible. We proposed an
algorithm running in O(kn2 log3 n) time using a binary
search on the area of the larger one.
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