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Abstract. The present research is devoted to theoretical study of the pull-in performance
of double-sided and paddle-type NEMS actuators fabricated from cylindrical nanowire
operating in the Casimir regime and in the presence of the centrifugal force. D'Alembert's
principle was used to transform the angular velocity into an equivalent static, centrifugal
force. Using the couple stress theory, the constitutive equations of the actuators
were derived. The equivalent boundary condition technique was applied to obtain the
governing equation of the paddle-type actuator. Three distinct approaches, the Duan-
Adomian Method (DAM), Finite Di�erence Method (FDM), and Lumped Parameter
Model (LPM), were applied to solve the equation of motion of these two actuators. This
study demonstrates the in
uence of various parameters, i.e., the Casimir force, geometric
characteristics, and the angular speed, on the pull-in performance.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

A double-sided NEMS is constructed from a movable
cantilever suspended between two actuating �xed elec-
trodes. The double-sided NEMS has recently attracted
much attention due to its promising electromechanical
performance such as low power consumption, quick
response, etc. [1,2]. The double-sided driven scheme
has been proposed for the actuation of gyroscopes
and memory elements [3,4]. Electrostatic resonators
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possess high stability and resolution based on the
double-sided NEMS [3]. These double-sided systems
are also attractive for detecting ultra-small mass and
sensing mechanical forces [3]. Fu et al. [2] used the
energy balance approach for modeling the oscillation of
double-sided microbridges. Ke studied the instability
of a double-sided resonator [3]. Khan and Akbarzade
employed analytical methods to study the oscillation
of a driven double-sided miniature resonator [5]. More
useful information about double-sided NEMS can be
found in [6,7].

The cantilever beam with a rigid plate attached
to its free end is called a paddle-type con�guration.
Recently, several studies have investigated the paddle-
type MEMS/NEMS as sensors [8], actuators [9], res-
onators [10], capacitors, and �lters [8-11]. Qian et
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al. [12] developed a capacitive paddle-type NEMS
switch fabricated from silicon nanowires. Zhang et
al. [10] examined the use of paddle-type resonators
for thermal sensing. Tong et al. [11] showed that the
paddle-type con�guration can eliminate internal stress
distribution. Ahmad et al. [13] designed a paddle-
type sensor using the COVENTOR software. Other
researchers [14,15] investigated a micro-generator con-
sisting of a silicon paddle-type element. Ouakad [8]
studied the e�ect of shock loading on performance of
a paddle-type gas sensor. More information about
paddle-type NEMS is available in the literature [16,17].

With recent demands for advanced devices,
MEMS/NEMS capacitive sensors are increasingly used
in developing measurement systems. Measurement of
the angular speed is important in rotary systems [18].
There are many promising applications, such as the
fault detection of roller bearings [19], balancing rotat-
ing equipment [20], measurement of high-speed spindle
errors [21], 
uidic centrifuges [22], turbomachinerry,
etc. In these applications, the presence of the cen-
trifugal force plays a major role in determining the
electromechanical response of these NEMS sensors.
Recently, the paddle-type and double-sided sensors
have been considered as angular speed sensors and
accelerometers [23-25]. Herein, the e�ect of the cen-
trifugal force is incorporated into the pull-in instability
models of paddle-type and double-sided sensors.

For precise modeling of the pull-in performance of
the aforementioned nanostructures, the Casimir force
should be included in the model [26-28]. Almost
all previous investigations in this area have been
devoted to those devices with planar con�gurations,
while only few investigations have considered it in
actuators which are fabricated from nanowires with
cylindrical geometries [29,30]. A simplistic approach
for determining the vacuum 
uctuations for compound
shapes is the Proximity Force Approximation (PFA)
[31,32]. Herein, the PFA is employed to demonstrate
the e�ect of the Casimir force on the physical response
of the paddle-type and double-sided NEMS. In addition
to the Casimir attraction, the size e�ect is another
crucial phenomenon that should be incorporated into
the theoretical model. Experiments have shown a hard-
ening trend in the elastic response of some nanowires as
the structure dimensions approach the material length
scale [33,34]. This size e�ect cannot be modeled by
classic continuum mechanics. In order to overcome this
shortcoming, the non-classical theories, such as non-
local elasticity [35], Couple Stress Theory (CST) [36-
38], strain gradient theory [39], modi�ed couple stress
theory [40], etc., have been developed to consider the
size e�ect on theoretical continuum models. Despite
other size-dependent theories, limited research has
been conducted on modeling the ultra-small structures
using the CST [41-43].

This work presents the in
uence of the centrifugal
force, Casimir e�ect, and size phenomenon on the elec-
tromechanical instability of paddle-type and double-
sided nanoactuators. The size e�ect is modeled using
the CST in conjunction with the Euler-Bernoulli beam
model. Three distinct solution methods, i.e. the Duan-
Adomian Method (DAM), Finite Di�erence Method
(FDM), and Lumped Parameter Model (LPM), are
employed to solve the nonlinear governing equations.

2. Theory

Figure 1(a) shows the schematic diagram of the typical
double-sided NEMS actuator. The voltage di�erence
and initial gap between the movable electrode and
upper plane are V and D, respectively. The potential
di�erence and initial separation between the nanowire
and the lower plane are �V and �D, respectively. The
nanowire of length L and radius r is considered.
Figure 1(b) depicts the schematic diagram of a typical
paddle-type NEMS which is suspended over the �xed
plane and de
ected by applying electrostatic attrac-
tion. The voltage between the paddle and the ground
planes is V . The nanowire of length L and radius r is
considered. The rigid plate has length a, width b, and
thickness t.

The internal resultants in an arbitrary cross-
section of the nanowire are shown in Figure 1(c), where
F and M denote the force and moment at the non-
supported end of the nanowire (at x = L), respectively.
To obtain the equation of motion of the nanowire in
the presence of the centrifugal force (Figure 1(d)), the
Hamilton's principle is utilized:

�(U � V ) = 0; (1)

where � denotes the variation symbol, U is the strain
energy, and V is the work done by all forces.

2.1. Strain energy
In the CST, the strain energy depends on the rotation
gradient as well as the strain [44]. Displacement gra-
dient tensor, ui;j , is decomposed into symmetric strain
and skew-symmetric rotation tensors, respectively, as:

ui;j = "ij + !ij ; (2)

where:

"ij =
1
2

(ui;j + uj;i) = "ji;

!ij =
1
2

(ui;j � uj;i) = �!ji: (3)

The rotation vector is:

�i =
1
2
eijkuk;j ; (4)

and the gradient of rotation is expressed as:
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Figure 1. (a) The double-sided NEMS. (b) The paddle-type NEMS. (c) Internal resultants in arbitrary wire cross-section.
(d) The nanostructure in the presence of the centrifugal force.

�ij = �j;i =
1
2
ejklul;ki: (5)

The strain energy density based on the CST can be
expressed as [42,45]:

~u =
1
2
�"ij"ij + �"ij"ij + 2��ij�ij + 2�0�ij�ij ; (6)

where � and � are the classic Lam�e constant and shear
modulus, respectively. Moduli � and �0 are constants
which correspond to the couple stress e�ects. The
classic symmetric Cauchy stress tensor (�ij) and the
couple stress tensor (mij), respectively, can be derived
from Eq. (6) as follows:

�ij =
@~u
@"ij

= �"mm�ij + 2�"ij ; (7a)

mij =
@~u
@�ij

= 4��ij + 4�0�ji: (7b)

Based on the Euler-Bernoulli beam model, the compo-
nents of the displacement are [46]:

uX(X;Y; Z) = �Z @w(X)
@X

; uY (X;Y; Z) = 0;

uZ(X;Y; Z) = w(X): (8)

By substitution of Eqs. (8) into Eqs. (3), (4), and (7),
the following relations for the components of the strain,

stress, gradient of rotation, and couple stress tensors
are obtained as follows:

"XX = �Z @2w
@X2 ;

"Y Y = "ZZ = "XY = "Y Z = "ZX = 0; (9a)

�XX = �EZ @2w
@X2 ;

�Y Y = �ZZ = �Y Z = �ZX = �XY = 0; (9b)

�XY = � @2w
@X2 ;

�XX = �Y Y = �ZZ = �Y Z = �ZY = �ZX

= �XZ = �Y X = 0; (9c)

mXY = �4�
@2w
@X2 ; mY X = �4�0 @

2w
@X2 ;

mXX = mY Y = mZZ = mY Z = mZY = mZX

= mXZ = 0: (9d)

By substituting Eq. (9) into Eq. (6) and integrating
over the length of the nanowire, the strain energy is
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calculated as follows:

U =
1
2

Z L

0
(Ee�I + 4A�)

�
@2w
@X2

�2

dX; (10)

where I and A are the second moment and area of the
cross-section of the nanowire, respectively. As shown,
the strain energy does not depend on �0. According to
the previous investigation [45], material constant � can
be rede�ned as:

� = �l2; (11)

where l is the material length scale parameter.
Note that the e�ect of large deformation is not

considered in the model (see Appendix A).

2.2. Work by all forces
The work by all forces is the summation of the work
done by the external forces (fext) and the work done
by the internal tractions, i.e. moment (M) and force
(F ).

The external forces include the electrostatic and
Casimir attractions. The work done by external forces,
Vfext , is expressed as:

Vfext =
Z L

0

Z w

0
fextdwdX: (12)

The work done by internal moment, VM , is obtained
as:

VM =
Z @w(L)

@X

0
M
�
w(L);

@w(L)
@X

�
� d@w(L)

@X
: (13)

The work done by internal force, VF , is determined as:

VF =
Z w(L)

0
F
�
w(L);

@w(L)
@X

�
� dw(L): (14)

Finally, the overall work done by the aforementioned
forces is obtained as:

V =Vfext + VM + VF =
Z L

0

Z w

0
fextdZdX

+
Z @w(L)

@X

0
M
�
w(L);

@w(L)
@X

�
� d@w(L)

@X

+
Z w(L)

0
F
�
w(L);

@w(L)
@X

�
� dw(L): (15)

2.3. The governing equation
By substituting Eqs. (10) and (15) into Eq. (1), we
can obtain the following equation for the variation as
follows:

�(V � U)=
Z L

0

��
Ee�I+4�Al2

� @4w
@X4 � fext

�
�wdX

� �Ee�I + 4�Al2
� @3w
@X3 �w

����L
0

+
�
Ee�I + 4�Al2

� @2w
@X2 �

�
@w
@X

�����L
0

� M�
�
@w
@X

�����
L
� F�wjL = 0: (16)

Hence, the governing equation for the equilibrium of
the nanowire is derived from Eq. (16) as follows:�

Ee�I + 4�Al2
� d4w
dX4 = fext; (17a)

subject to the geometric boundary conditions of:

w(0) = 0;
dw
dX

(0) = 0; (17b)

and the natural boundary conditions of:�
Ee�I + 4�Al2

� d2w
dX2 (L) = M;

�
Ee�I + 4�Al2

� d3w
dX3 (L) = �F: (17c)

Eqs. (17) in general can be specialized for each NEMS
by substituting their respective formulas for fext, M ,
and F . This is considered in the following subsections.

2.3.1. The double-sided structure
For the double-sided actuator (Figure 1(a)), fext in
Eq. (17a) can be de�ned as:

fext = felec1 � felec2 + fCas1 � fCas2 + fCent; (18)

where felec1 and fCas1 are the electrical and Casimir
attractions between the wire and the upper plane,
respectively. felec2 and fCas2 denote the electrical and
Casimir attractions between the wire and the lower
plane, respectively. fCent is the centrifugal force.

The electrical force terms in Eqs. (17) can be
determined from the capacitive model [47]. The
electrostatic energy for a cylindrical conductor parallel
to conductive plane (Eelec) is given as follows [48]:

Eelec =
�"0"rLV 2

arccosh
�
1 + D

r

� ; (19)

where "0 and V are the permittivity of vacuum and
the imposed DC voltage, respectively. Hence, by
di�erentiating the electrostatic energy, the electrical
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attraction per unit length of cylinder, felec, is derived
from Eq. (19) as follows:

felec =
dEelec

dD
=

�"0"rV 2p
(D+2r)(D) arccosh2

�
1+D

r

� :
(20)

By considering the de
ection of nanowire, felec1 and
felec2 can be derived by replacing D with D1 � w and
D2 + w, respectively, in Eq. (20). Note that the e�ect
of Charge-tip has not been incorporated while it might
be important (see Appendix B).

The Casimir force terms in Eq. (17) can be deter-
mined using the PFA. Based on the PFA, the Casimir
energy for a conductive cylindrical wire parallel to a
conductive plane (EPFA) is determined as [31,32]:

EPFA = ��3�hcL
960

r
r

2D5 ; (21)

where �h = 1:05457� 10�34 J.s is the reduced Planck's
constant, c = 2:998 � 108 m/s is the speed of light,
and D is the gap distance between the nanowire
and the plane, respectively. Therefore, the Casimir
attraction per unit length of cylinder, fCas, is derived
by di�erentiating Eq. (21) as follows:

fCas =
dEPFA

dD
=
�3�hc
768

r
2r
D7 : (22)

Regarding the displacement of the nanowire and replac-
ing D with D � w in Eq. (22), fCas1 can be derived.
Similarly, fCas2 can be obtained by substituting D with
�D + w in Eq. (22).

According to D'Alembert's principal, we can
transform an angular speed into an equivalent centrifu-
gal force. Hence, the contribution of the centrifugal
force can be modeled by considering the angular ve-
locity of the system. The centrifugal force per unit
length of the nanowire, caused by rotation of a rotary
machine, is determined as [24,25]:

fCent = ��r2(R�D)!2; (23)

where �, R, and ! are the density of the nanowire,
the rotary surface radius, and the angular speed of the
rotary surface, respectively. For the case of R � D,
Eq. (22) is reduced to:

fCent = ��r2R!2: (24)

The boundary conditions for the double-sided actuator
at the free end are de�ned as traction free (F =
M = 0). Hence, Eq. (17c) is reduced to the following
relations:

d2w
dX2 (L) =

d3w
dX3 (L) = 0: (25)

For the double-sided actuator, by using Eqs. (18), (20),
(22), and (24), the governing equation for Eq. (17) can
�nally be written as:

(1 + �)
d4ŵ
dx4

=
�p

(1�ŵ) [1+k (1�ŵ)] arccosh2 (1+2k (1�ŵ))

� ��p
(�+ŵ) [1+k (�+ŵ)] arccosh2 (1+2k (�+ŵ))

+



(1� ŵ)
7
2
� 


(� + ŵ)
7
2

+ �!;
(26a)

ŵ(0) =
dŵ
dx

(0); (26b)

d2ŵ
dx2 (1) =

d3ŵ
dx3 (1) = 0; (26c)

where the dimensionless parameters in Eq. (24) are
de�ned as follows:

x =
X
L
; ŵ =

w
D
; � =

�D
D
; � =

� �V
V

�2

;

k =
D
2r
; � =

4�Al2

Ee�I
=

16�l2

Ee�r2 ;

�! =
��r2L4R!2

Ee�ID
; 
 =

�hc�3r 1
2L4

384
p

2Ee�ID
9
2
;

� =
"0"r�V 2L4p
2r 1

2Ee�ID
3
2
: (27)

2.3.2. The paddle-type structure
For the paddle-type actuator, by replacing D with D�
w in Eqs. (20) and (22), fext can be de�ned as follows:

fext =felec + fCas + fCent

=
�"0"rV 2p

(D�w + 2r)(D�w) arccosh2
�
1 + D�w

r

�
+
�3�hc
768

s
2r

(D � w)7 + ��r2R!2: (28)

To obtain the appropriate boundary conditions, the
distributed forces acting on the plate are replaced with
an equivalent concentrated force acting at distance �x
from the nanowire tip (the force center). The value
of �x is determined from �x = M=F relation. Based
on this approach, the boundary conditions at the non-
supported end of the nanowire can be obtained as
follows:
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�
Ee�I + 4�Al2

� d2w
dX2 (L)

=
"0"r

2
abV 2�x

(D � w(L)� �xw0(L))2

+
�2~cab�x

240 (D�w(L)��xw0(L))4

+
�a2btR!2

2
; (29a)

�
Ee�I + 4�Al2

� d3w
dX3 (L)

= �"0"r
2

abV 2

(D � w(L)� �xw0(L))2

� �2~cab
240 (D � w(L)� �xw0(L))4

� �abtR!2: (29b)

By substituting Eq. (28) into Eq. (17) and using
the dimensionless parameters in Eq. (27), the non-
dimensional governing equation of the paddle-type
actuator is:

(1 + �)
d4ŵ
dx4

=
�p

(1�ŵ) [1+k (1�ŵ)] arccosh2(1+2k(1�ŵ))

+



(1� ŵ)
7
2

+ �!; (30a)

ŵ(0) = ŵ0(0) = 0; (30b)

(1+�)
d2ŵ
dx2 (1)=#
��

"
�

2k 3
2 (1�ŵ(1)�
��ŵ0(1))2

+
16


5k 1
2 (1� ŵ(1)� 
��ŵ0(1))4

+
2�!



#
; (30c)

(1+�)
d3ŵ
dx3 (1)=�#

"
�

2k 3
2 (1�ŵ(1)�
��ŵ0(1))2

+
16


5k 1
2 (1� ŵ(1)� 
��ŵ0(1))4 + 4�!

#
; (30d)

where the dimensionless parameters are de�ned as
follows:

#=
ab

2�rL
; 
=

�x
a
;

�=
D
L
; �=

a
D
: (31)

3. Solution methods

3.1. Duan-Adomian Method (DAM)
Recently, Duan has developed a fast decomposition
algorithm [49] that is employed in conjunction with
the Adomian decomposition method [50] for solving
boundary value problems. To analytically solve the
governing equations (Eqs. (26) and (30)), we consider
the following general fourth-order di�erential equation
with the nonlinearity f(x; ŵ) as:

d4ŵ(x)
dx4 = f (x; ŵ(x)) ; (32a)

ŵ(0) = C1; ŵ0(0) = C2: (32b)

The solution of Eq. (32a) can be determined as:

ŵ(x) =
1X
n=0

ŵn(x) = C1 + C2x

+
1
2!
C3x2 +

1
3!
C4x3

+
xZ

0

xZ
0

xZ
0

xZ
0

 " 1X
n=0

fn(x)

#!
dxdxdxdx; (33)

where C1, C2, C3, and C4 are the constants of
integration. Note that in the case of Eq. (17), the
values of C1 and C2 are both zero. Based on the
DAM, polynomials fn(x) can be determined from the
following relation [49,51]:

fn =
nX
k=1

Cknh
(k) (ŵ0) ; (34)

where terms h(k) and Ckn are determined from the
following algorithm [51]:

Ckn =

8>>><>>>:
ŵn; k=1; n�1;

1
n

n�kP
j=0

(j + 1)ŵj+1Ck�1
n�1�j ; 2 � k � n; (35a)

h(k) =
@kf
@ŵk0

; k � 1: (35b)

Now, by using Eqs. (33) and (34), the solution to
Eq. (26) can be calculated as follows:



J. Mokhtari et al./Scientia Iranica, Transactions B: Mechanical Engineering 24 (2017) 1077{1090 1083

ŵ=
1
2!
C3x2+

1
3!
C4x3

+
1

4!(1+�)

"
�p

1+k arccosh2(1+2k)

� ��p
�(1+k�) arccosh2(1+2k�)

+
� 
p
�7

+�!

#
x4

+
1

7!(1 + �)

"
2�
p
k

(1 + k) arccosh3(1 + 2k)

+
2�
p
k�

�(1 + k�) arccosh3(1 + 2k�)

+
�(1 + 2k)

2(1 + k)3=2 arccosh2(1 + 2k)

+
��(1 + 2k�)

2
p
�3(1 + k�)3=2 arccosh2(1 + 2k�)

+
7

2

+
7


2
p
�9

# �
7C3x6 + C4x7�+ � � � : (36)

Similarly, the solution to Eq. (30) can be determined
as follows:

ŵ =
1
2!
C3x2 +

1
3!
C3x3

+
1

4!(1+�)

�
�p

1+k arccosh2(1+2k)
+
+�!

�
x4

+
1

7!(1 + �)

"
2�
p
k

(1 + k) arccosh3(1 + 2k)

+
�(1 + 2k)

2(1 + k)3=2 arccosh2(1 + 2k)

+
7

2

# �
7C3x6 + C4x7�+ � � � :

(37)

Finally, constants C3 and C4 are determined by bound-
ary conditions (Eqs. (26b) and (26c)) and (Eqs. (30b),
(30c) and (30d)) for the double-sided and paddle-type
nanostructures, respectively.

3.2. FDM
According to the �nite di�erence method, the domain
is discretized into n equal segments located between
(n+ 1) nodes. For each segment, di�erential equations
(Eq. 17(a)) are discretized as follows:

ŵi�2 � 4ŵi�1 + 6ŵi � 4ŵi+1 + ŵi+2

�x4 = Fi: (38)

In the above equation, �x represents the grid spacing,
ŵi represents the de
ection of the ith grid, and Fi is:

Fi =
1

1+��p
(1�ŵi)[1+k (1�ŵi)] arccosh2 (1+2k (1�ŵi))

�
1

1+���p
(�+ŵi) [1+k(�+ŵi)] arccosh2 (1+2k (�+ŵi))

+
1

1+�


(1�ŵi) 7
2
�

1
1+�


(�+ŵi)
7
2

+�!; i=1; 2; � � � ; N:
(39)

For the paddle-type actuator, we have Eq. (40) as
shown in Box I.

By imposing Eq. (38) on all segments and using
the boundary conditions, the following system of alge-
braic equations is obtained:

[A] fŵg = fFg: (41)

In the above relation, fŵg = [ŵ1; ŵ2; � � � ; ŵn]T and
fFg = [F1; F2; � � � ; Fn]T are the displacement and force
vectors, respectively. In Eq. (41), sti�ness matrix [A]
is calculated as:

[A] =
1

�x4

26666666666666664

7 �4 1 0 0 � � �
�4 6 �4 1 0 � � �
1 �4 6 �4 1 � � �
0 1 �4 6 �4 � � �
0 0 1 �4 6 � � �
0 0 0 1 �4 � � �
...

...
...

...
...

. . .
0 0 0 0 0 � � �
0 0 0 0 0 � � �
0 0 0 0 0 � � �
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
...

...
...

...
�4 6 �4 1
1 �4 5 �2
0 1 �2 1

37777777777777775
N�N

: (42)

The above systems of algebraic equation (Eq. (42))
is then numerically solved to determine the nodal
de
ections.

3.3. LPM
The LPM assumes a uniform force distribution along
the wire [27]. The mechanical resistance of nanowire is
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Fi =
1

1+��p
(1� ŵi) [1 + k(1� ŵi)] arccosh2 (1 + 2k (1� ŵi)) +

1
1+�


(1� ŵi) 7
2

+

8>>>>>>>>>><>>>>>>>>>>:

0; i = 1; � � � ; N � 2;

� #
��
(1+�)�x2 �

2k
3
2
�

1�ŵi+1�
��
ŵi+1�ŵi

�x

�2 +
� 16#
��

(1+�)�x2 


5k
1
2
�

1�ŵi+1�
��
ŵi+1�ŵi

�x

�4 � 2#�� �!
�x2 ; i = N � 1;

h
#
��

(1+�)�x2 + #
(1+�)�x

i
�

2k
3
2
�

1�ŵi�
��
ŵi�ŵi�1

�x

�2 +
h

16#
��
(1+�)�x2 + 16#

(1+�)�x

i



5k
1
2
�

1�ŵi�
��
ŵi�ŵi�1

�x

�4 +
h

2#��
�x2 + 4#

�x

i
�!; i = N:

(40)

Box I

expressed analogously as a linear elastic spring. Hence,
the governing equation is simpli�ed to:

Kwtip = f: (43)

In the above equation, f is the total external forces
acting on the nanowire.

For the cantilever double-sided nanostructure, the
elastic sti�ness is obtained as [52]:

K =
8(Ee�I + 4�Al2)

L3 : (44)

In the case of the paddle-type NEMS, the total
de
ection is the summation of three values, i.e. the
de
ection of the wire subjected to:

a) The uniform load of fext along the wire;

b) A force of F at the non-supported end;

c) A moment of M at the non-supported end.

These three de
ections can be modeled by the superpo-
sition of three serial springs with the spring constants
of K1, K2, and K3, respectively. Hence, the elastic

sti�ness of the paddle-type actuator can be determined
as follows:

K =
�

1
K1

+
1
K2

+
1
K3

��1

=

"�
8(Ee�I + 4�Al2)

L3

��1

+
�

3f(Ee�I + 4�Al2)
FL2

��1

+
�

2f(Ee�I + 4�Al2)
ML

��1
#�1

=
24f

�
Ee�I + 4�Al2

�
3fL3 + 8FL2 + 12ML

: (45)

By substituting sti�ness (Eqs. (44) and (45)) and
force terms into Eq. (43), the governing equations of
the nanostructures are readily obtained. Finally, by
using dimensionless relations (Eqs. (27) and (31)), the
relation between dimensionless wire tip de
ection, wtip,
and applied voltage, �, is determined by Eqs. (46) and
(47) as shown in Box II.

The pull-in characteristics of the nanoactuators

For the double-sided NEMS actuator:

� =
8ŵtip(1 + �)� 


(1�ŵtip)
7
2

+ 

(�+ŵtip)

7
2
� �!

1p
(1�ŵtip)[1+k(1�ŵtip)] arccosh2(1+2k(1�ŵtip))

� �p
(�+ŵtip)[1+k(�+ŵtip)] arccosh2(1+2k(�+ŵtip))

: (46)

For the paddle-type NEMS actuator:

� =
24ŵtip(1 + �)� 128
#+192#

��

5k
1
2 (1�ŵtip)4

� 3

(1�ŵtip)

7
2
� (32#+ 24#�� + 3)�!

3p
(1�ŵtip)[1+k(1�ŵtip)] arccosh2(1+2k(1�ŵtip))

+ 4#+6#
��
k

3
2 (1�ŵtip)2

: (47)

Box II
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are then obtained from Eqs. (46) and (47), as shown in
Box II, by setting d�=dŵtip = 0.

4. Results and discussion

4.1. Double-sided actuator
To examine the impact of geometry on the behavior
of the double-sided actuator, the variations of �PI and
pull-in de
ection (ŵPI(x = 1)) as a function of � are
presented in Figure 2 for various values of Casimir
parameter 
. Dimensionless parameter � represents
the ratio between D and �D. As shown, decreasing
� increases the instability voltage, but at the same
time, decreases the instability de
ection. This reveals
that reduction of the di�erence between D and �D can
stabilize the structure. This is because the upper
surface neutralizes the attractive e�ect of the lower
surface.

To show the impact of centrifugal force on the
behavior of the double-sided actuator, the variations of
�PI and pull-in de
ection (ŵPI(x = 1)) as a function

of �! are illustrated in Figure 3 for various values of
Casimir parameter 
. In this �gure, both positive and
negative values of the centrifugal force are considered.
As seen, a negative centrifugal force increases pull-
in voltage (�PI), while a positive centrifugal force
decreases the instability voltage of the sensor. In other
words, for positive values of the centrifugal force, an
increase in the angular speed leads to a decrease of
the pull-in voltage. On the other hand, increasing the
angular velocity increases the stability threshold of the
systems for negative values of the centrifugal force.

4.2. Paddle-type actuator
To demonstrate the e�ect of the paddle geometry on
the stability, the variation of the instability charac-
teristics versus geometrical parameter # is plotted in
Figure 4. Parameter # represents the ratio between the
rigid plate surface area over the nanowire surface area.
As shown, with increasing #, instability voltage (�PI)
and de
ection (ŵPI(x = 1)) decrease. This implies that
an increase in the plate surface increases the external
forces and reduces the stability threshold. Moreover,

Figure 2. The variation of the instability characteristics versus � (k = 25, �! = 0, � = 1 and � = 0 for 
 = 0 and 
 = 0:4):
(a) The pull-in voltage and (b) the pull-in de
ection.

Figure 3. The variation of the pull-in characteristics versus �! for di�erent values of 
 (k = 10, � = 1:0, � = 0 and
� = 1:25): (a) The pull-in voltage and (b) the pull-in de
ection.



1086 J. Mokhtari et al./Scientia Iranica, Transactions B: Mechanical Engineering 24 (2017) 1077{1090

Figure 4. The variation of the pull-in characteristics versus # for di�erent values of 
 (k = 5, � = 0:5, � = 0:1, �! = 0,

 = 0:5 and � = 0): (a) The pull-in voltage and (b) the pull-in de
ection.

Figure 5. The variations of (a) �PI and (b) ŵPI(x = 1) versus �! for di�erent values of 
 (k = 10, � = 0:5, � = 0:1,

 = 0:5, � = 0, and # = 0:1).

Figure 4(a) and (b) show that the in
uence of the
Casimir force on the stability is more pronounced for
higher # values.

Figure 5 shows the pull-in characteristics of the
sensor as a function of the centrifugal force. This
�gure depicts that for positive values of the centrifugal
force, the pull-in voltage decreases as the angular
speed increases. Furthermore, for negative values
of the centrifugal force, an increase in the angular
velocity increases the instability threshold of the sys-
tems.

Finally, note that the DAM is an approximation
method. For example, in Figure 2, the di�erence
between the pull-in voltages obtained by 8th order
DAM polynomial and the FDM is less than 4%, which
is acceptable for most of engineering designs. The
results of the DAM can be more close to those of
numerical solution by increasing the number of selected
series terms [53]. On the other hand, the LPM is a
very simple model for modeling the pull-in behavior of
NEMS, while LPM results are not very close to the

numerical solution, and they have the advantage of
providing a closed-form relation which can interpret the
physical phenomena without mathematical complexity.
This is very useful for engineers and designers.

5. Conclusions

The couple stress theory was employed for modeling the
e�ect of the centrifugal force on the electromechanical
instability of paddle-type and double-sided sensors in-
corporating the size-dependency and the Casimir force.
It was found that for positive values of the centrifugal
force, pull-in voltage decreases as the angular speed
increases. On the other hand, for negative values of
the centrifugal force, increase in the angular velocity
increases the stability threshold of the systems. The
Casimir attraction decreases the pull-in characteristics
of the actuators. The good agreement was observed
between DAM and FDM, while LPM provided less
precise results; however, this model simply explains the
instability behavior without mathematical complexity.
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Appendix A

Large deformation theory
When double-sided actuator exhibits large displace-
ments, the curvature of the de
ection should be con-
sidered; therefore, governing changes into [54]:

(Ee�I+�Al2)
d2

dX2

24 d2w
dX2

 
1+
�
dw
dX

�2
!� 3

2
35=fext:

(A.1)

After some manipulations and using Eq. (25), the
nondimensional governing equation is obtained as:

(1 + �)
d4ŵ
dx4

=

"
�p

(1�ŵ) [1+k (1�ŵ)] arccosh2 (1+2k (1�ŵ))

+



(1� ŵ)
7
2

� ��p
(�+ŵ) [1+k (�+ŵ)] arccosh2 (1+2k (�+ŵ))
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(� + �ŵ)
7
2

+ �!

# h
1 + (�ŵ0)2

i2
+ 3�2 3ŵ0ŵ00ŵ000 + ŵ003

1 + (�ŵ0)2 � 15�4ŵ02ŵ003h
1 + (�ŵ0)2

i2 ;
(A.2)

where:

� =
D
L
; (A.3)

and the prime denotes di�erentiation with respect to
x. When � approaches zero, Eq. (A.2) turns into
Eq. (24a).

The numerical simulation results shown in Ta-
ble A.1 reveal that the e�ect of the large deformation
on the pull-in parameters is negligible for � < 0:1.
Table A.1 demonstrates that Eq. (24) has enough ac-
curacy for description of the elastic behavior of double-
sided actuator from small to large displacements when

the initial gap to the length ratio is less than 0.1
(i.e., � < 0:1), which is the case in most double-sided
actuators designs.

Appendix B

Tip-charge concentration
The impact of tip-charge concentration on the defor-
mation of cantilever might be considerable [55]. Thus,
the tip-charge concentration force can be written as
follows:

felec;c = 0:85[R(D +R)2]
1
3 felec(L); (B.1)

where �(x) is the Dirac delta function.
For the double-sided actuator, by using Eqs. (18),

(20), (22), and (B.1), the nondimensional governing
equation can be explained by considering the tip-charge
concentration as shown in Box B.1.

To examine the impact of tip-charge concentra-
tion on the behavior of the double-sided actuator, vari-
ation of the tip de
ection (ŵtip) versus nondimensional
voltage (�) is presented in Figure B.1. As shown above,

Figure B.1. 1 The variation of ŵtip versus �: Impact of
tip-charge concentration (� = 0:1, 
 = 0:3, k = 20,
� = 2:0, �! = 0, � = 1:0, and � = 0).

Table A.1. Pull-in parameters of di�erent values of k using small (� = 0) and large deformation (� = 0:1) theories when

 = 0:4, � = 2, � = 1, and � = 0.

k 200 150 100 75 50 25 10

Small deformation
(
 = 0)

�PI 587.57 463.83 330.08 257.94 180.76 96.16 39.79

ŵPI 0.35263 0.35118 0.34934 0.34820 0.346057 0.34283 0.33743

Large deformation
(
 = 0:1)

�PI 585.97 462.58 329.20 257.25 180.29 95.91 39.69

ŵPI 0.35149 0.35056 0.348681 0.346469 0.34598 0.34093 0.33597
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