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Abstract. In this paper, numerical simulations are employed to study the orientation
behavior of a dilute suspension of Brownian rigid disklike particles in a simple shear

ow. Also, the viscoelasticity of such a suspension is analyzed by considering the stress
budget of the two-phase material. A direct Monte-Carlo simulator as well as the moment
approximation approaches with two di�erent closure models are used to produce the data.
Results are compared by available experimental and analytical data, and a very good
agreement is established. After the validation of the simulators, the results are presented
and discussed. Di�erent P�eclet numbers and shape factors of particles are considered and
their e�ects on various quantities are presented, e.g. particle orientations in space, viscous
and elastic contributions to the non-Newtonian stress tensor, etc.

© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Suspensions of disklike particles are seen in natural and
biological systems such as dusts in air and erythrocytes
and platelets in blood. These suspensions are also
encountered in industrial processes, e.g. manufacturing
of cosmetics and ceramics. The dynamic behavior of
the suspension depends on the particles orientation
distribution. Therefore, it is of paramount importance
to accurately predict the particles orientation under
the action of di�erent 
ow conditions. Often, many
particles are involved and a statistical description of
their orientation distribution is also made possible by
the ensemble-averaged moments of the orientation dis-
tribution function. These moments can be computed
either by solving the complete distribution function or
the so-called moment approximation equation. A third
approach would be the use of algebraic closure models.
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In the �rst approach, the evolution of individual
�bers orientation is computed using Je�ery's equa-
tion [1] to which a stochastic term is added to represent
the Brownian motion. Brenner [2] provided analyt-
ical solutions for steady shear and extensional 
ows.
Okagawa et al. [3] gave analytical solution to dilute
suspension of non-Brownian rigid rodlike and disklike
particles subjected to a simple shear 
ow. However,
there exists no closed-form solution to this problem in
the general case.

In the numerical context, the stochastic term
representing the Brownian motion can be modelled
by a Wiener process [4,5]. This is equivalent to the
Fokker-Planck equation for the distribution function.
Then, one can compute the moments of the orienta-
tion distribution by an ensemble averaging procedure.
Manhart [6,7] adopted such a stochastic method and
studied the rheology of �ber suspensions in a turbulent
channel 
ow via one-way coupled simulations. This
approach is \exact" in a sense that it does not require
any closure model. Moosaie and Manhart [8] proposed
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a direct Monte-Carlo method for the two-way coupled
simulation dilute �ber suspension 
ows and used this
approach to study turbulent drag reduction in a chan-
nel 
ow. They used this method to study the structure
of vorticity and near-wall partial enstrophy [9] and the
pressure-strain correlation [10] in �brous drag-reduced
turbulent channel 
ow.

Computing the local particle distribution by
means of the Fokker-Planck equation requires the
numerical solution to a di�erential equation on the
unit sphere for each single particle suspended in the

ow simulation domain. As a result, this computation
can be prohibitively expensive in real-world time-
dependent three-dimensional problems, e.g., in turbu-
lent 
ows [6] or in complex geometries [11]. Thus, Ad-
vani and Tucker [12] proposed a second approach: the
use of particle orientation tensors, de�ned as moments
of the distribution function. In this approach, known
as the moment approximation method, the Fokker-
Planck equation is replaced by a hierarchy of moment
equations governing the time-evolution of the moments
of the orientation distribution function. In each order
of the moment approximation, the di�erential equation
for the 2nth-order moment contains (2n + 2)th-order
moment. This causes a closure problem. Namely, if one
aims at computing the second moment of the orienta-
tion distribution function, a closure model expressing
the fourth moment in terms of the second moment
is required. Among the existing closure models, the
linear [13], quadratic, hybrid [14], Hinch and Leal's [15],
and the Invariant-Based Optimal Fitting (IBOF) [16]
can be mentioned. Chung and Kwon [16] tested their
IBOF closure on various problems involving suspension
of rigid in�nitely long �bers with �ber-�ber interaction.
Paschkewitz et al. [17,18] applied the hybrid and IBOF
closures to drag reduction in turbulent channel 
ow
using rigid slender �bers. Moosaie et al. [19] proposed a
normalization scheme as a closure model to the moment
approximation equation. Moosaie et al. [20] derived
a closure model based on the reconstruction of the
orientation distribution function.

The third approach, called the algebraic closure
modeling, is based on algebraic ansatz for the non-
Newtonian stress tensor in order to close the Navier-
Stokes equations. Lipscomb et al. [21] made the �rst
attempt in devising a simple algebraic model based
on the assumption that �bers align themselves with
the local 
ow velocity vector. Den Toonder et al. [22]
adopted this model to study turbulent drag reduction
in a pipe caused by polymer additives. This model,
called VA (Viscous Anisotropic), revisited by Moosaie
and Manhart [23] and extended to VAF (Viscous
Anisotropic with velocity Fluctuations), was applied
to ful�ll more physical constraints and produce more
realistic results. Recently, Moosaie et al. [24] have
extended the VAF model to take the rotary Brownian

motion of particles into account. He used the algebraic
model of [23] to directly simulate the �ber-induced
turbulent drag reduction in a pressure-driven rod-
roughened channel 
ow [25].

Most of the studies, as pointed out above, are
devoted to the study of �ber suspensions, and less
attention has been paid to suspensions of disklike
particles. For example, Yamamoto et al. [26] performed
Brownian dynamics simulation of orientation behavior,

ow-induced structure, and rheological properties of a
suspension of oblate spheroid particles under a simple
shear 
ow.

In the present work, we use the hybrid and IBOF
closure models to study the 
ow-induced orientation
distribution in a dilute suspension of Brownian rigid
disklike particles suspended in a simple shear 
ow.
We also perform direct Monte-Carlo simulations in the
same con�guration. As the Monte-Carlo simulator pro-
vides the exact solution to the Fokker-Planck equation,
its results can be used as reference data. Hence, the
objective of this work is to provide some simple bench-
mark results for further studies and test numerical
methods. Moreover, we examine the performance of
the hybrid and IBOF closure approximations on the
dilute suspension of rigid Brownian disklike particles.
The viscoelastic behavior of the suspension is studied
as well.

The rest of the paper is organized as follows. In
Section 2, the mathematical model of the stochastic
and the moment approximation approaches is sum-
marized. The used closure models are explained.
Then, the non-Newtonian stress budget is described.
The explained theoretical tools are then applied to
Brownian disklike particles suspended in simple shear

ow in Section 3. The 
ow-induced orientation
distribution, the instantaneous particle distribution,
and the non-Newtonian stress budget are studied in
detail. The simulations are validated using available
analytical solution and experimental data in the liter-
ature.

2. Theory

In this section, the theory of both stochastic and mo-
ment approximation approaches to the dilute suspen-
sion of rigid Brownian spheroidal particles is reviewed.

2.1. Constitutive equations of �ber
suspensions

The stress �eld caused by an ensemble of rigid particles
can be integrated over the stress �elds generated by
individual particles if the suspension is su�ciently
dilute [27]. The hydrodynamic behavior of a sin-
gle particle has to be known in order to obtain its
generated stress �eld. As the particles are often
very small in the context of dilute suspensions, all
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relevant Reynolds numbers are based on the particle
size, translational and rotational velocities, and shear
rate can be assumed to be small compared with unity.
This assumption justi�es the neglecting of nonlinear
terms in the Navier-Stokes equations; hence, the 
ow
in the vicinity of particles is governed by the quasistatic
Stokes equations for creeping 
ow.

Inertia-free particles, i.e. particles with the same
density as the carrier 
uid, are convected with the 
uid
velocity. Brenner [2] showed that only �ve dimension-
less material constants are required to fully describe the
hydrodynamic e�ects of inertia-free particles with axial
and fore-aft symmetry. He tabulated these constants
for spheroids, long slender axisymmetric bodies and
dumbbells, all of which can be derived analytically.

The geometry of disklike particles can be mathe-
matically modelled as an oblate spheroid, as schemat-
ically shown in Figure 1. An important geometrical
feature of such particles is their aspect ratio, r = L=D
(i.e., the ratio of length L to diameter D). The cases
with r < 1 and r > 1 represent the oblate and
prolate spheroids, respectively, while r = 1 refers to
spherical particles. As the particles are very small, the
mechanical forces acting upon them in the 
ow �eld of
the carrier 
uid are not able to cause any substantial
deformation. Therefore, an individual disklike particle
can be modelled as a rigid body whose orientation is
given by unit vector n perpendicular to the surface of
the particle, as shown in Figure 1. The additional stress
caused by such a particle in a dilute suspension can be
expressed by [6]:

� part =2�0D + �1ID : nn + �2D : nnnn

+ 2�3[n(D � n) + (D � n)n]; (1)

where D and I are the strain-rate and the identity
tensors, respectively, and �0; � � � ; �3 are material con-
stants. These material constants are functions of

Figure 1. Schematic view of a rigid disklike particle and
its orientation vector, n.

aspect ratio r and volume fraction � of the suspended
particles. Strain-rate tensor, D, is de�ned as the
symmetric part of velocity gradient tensor, L, i.e. D =
(L+LT )=2 in which L =ru and u is the 
uid velocity
�eld. A rigorous derivation of constitutive Eq. (1) can
be found in [2,15,27,28].

In a suspension, each 
uid element contains a
large number of particles, say NP, with di�erent
orientations. The total macroscopic stress is composed
of two parts: the Newtonian stress, �N, and the non-
Newtonian stress, �NN, due to the suspended particles.

Newtonian stress, �N, is given by the classical
relation:

�N = 2�D; (2)

where � is the molecular viscosity of the carrier 
uid.
Non-Newtonian stress, �NN, is obtained by averaging
Eq. (1) over all particles, i.e. �NN = NPh� parti, which
for non-Brownian particles gives:

�NN =2�0D + �1ID : hnni+ �2D : hnnnni
+ 2�3 (hnni �D + D � hnni) : (3)

Eq. (3) involves the second moment hnni as well as
the fourth moment hnnnni of the orientation distri-
bution function. Therefore, determination of the non-
Newtonian stresses requires a knowledge or estimation
of the moments of the orientation distribution of the
microstructural conformation. This can be done either
by solving the complete distribution function, which is
governed by a Fokker-Planck equation or by solving the
so-called moment approximation equation.

2.2. Stochastic approach
Within the context of a stochastic simulation, the
computation of moments of the orientation distribution
function always starts with an equation describing the
time-evolution of orientation vector, n, for a single
isolated particle. Such an equation was derived by
Je�ery [1] for rodlike and disklike particles:

Dn
Dt

= 
 � n + �[D � n� (n �D � n)n]; (4)

where 
 is the rotation-rate tensor, i.e. the asymmetric
part of velocity gradient tensor 
 = (L � LT )=2, and
D=Dt = @=@t + u �r is the material time derivative.
Shape factor constant, �, solely depends upon the
shape of the particle and is de�ned by:

� =
r2 � 1
r2 + 1

: (5)

Three extreme cases are remarkable; if � = 0, then the
particles have a spherical shape and rotate with the
average rotation-rate of the carrier 
uid as indicated by
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the term 
 �n. If �! 1, then the particles behave like
slender rods. The third limiting case is �! �1, which
represents a very thin disklike particle. For � 6= 0, the
particles' motion depends on the strain-rate of the 
ow
�eld as well, as indicated by �[D � n� (n �D � n)n].

If the mass of a particle immersed in a 
uid
is small enough, then it is additionally subjected to
Brownian motion due to the thermal 
uctuations of the
surrounding molecules. Brownian motion of a particle
is a random process if considered on the time and
length scales of the continuum mechanics, and it can be
modelled on the evolution equation of the orientation
of a small particle as a random force term �(t) added
to Eq. (4):

Dn
Dt

= 
 � n + �[D � n� (n �D � n)n] + �(t): (6)

Random force term, �(t), is proportional to Langevin
force, Ff (t), divided by mass m of the particle:

�(t) =
Ff (t)
m

: (7)

The noise strength of the Langevin force is given by:

h�(t)�(t)i = q�(t� t0): (8)

That is to say, it is uncorrelated over di�erent times.
With Boltzmann constant, kB , friction coe�cient, 
,
and absolute temperature, T , q is given by:

q =
2kBT

m2 : (9)

For the rotation of an axisymmetric particle about a
transverse axis, the friction coe�cient reads:


 = 6�VPKT ; (10)

with � being the viscosity of the Newtonian carrier

uid, VP being the particle volume and KT being a
material constant [2].

The Langevin force has a formal representation as
the increment of a Wiener process:

Ff (t) =
p

2Dr
@W
@t

; (11)

in which the di�usion coe�cient is de�ned by Dr =
kBT=
 [5]. The time-dependent orientation of an in-
dividual particle subjected to Brownian 
uctuations is
then given by the following stochastic integral equation:

n(t) = n0 +
Z t

0
A(t0;n)dt0 +

Z t

0
BdW0

t; (12)

where:

A = 
 � n + �[D � n� (n �D � n)n]; (13)

B =
p

2Dr

m
: (14)

This equation is equivalent to the Fokker-Planck equa-
tion for distribution function 	(n; t) that describes the
fraction of particles in a 
uid element with orientation
vectors that reside around n at time t:

@	
@t

= �rn �
�
	
@n
@t
�Drrn	

�
; (15)

where rn symbolizes the nabla operator de�ned on
unit sphere S of R3. This is essentially a conservation
equation in orientation space. It was �rst used by
Fokker [29] and Planck [30] to describe the Brownian
motion of small particles. It consists of a drift term
�rn � (	@n=@t) and the Brownian di�usion term
rn � (Drrn	).

In order to compute the non-Newtonian stress
tensor due to the particles contributions from Eq. (3),
one needs the second and fourth moments of the
orientation distribution function. These are weighted-
average quantities over unit sphere, S, de�ned by:

hnni =
I

S
nn	(n; t)dS(n); (16)

hnnnni =
I

S
nnnn	(n; t)dS(n): (17)

The Brownian motion not only enters the evolution
equation of the particle orientation, but also has to
be taken into account in the equation of the non-
Newtonian stress tensor generated by the presence of
particles:

�NN =2�0D + �1ID : hnni+ �2D : hnnnni
+2�3(hnni�D+D�hnni)+2�4Dr(3hnni�I);

(18)

where material constant �4 is given by Brenner [2].

2.3. Moment approximation approach
Computing the particles orientation distribution by
means of the Fokker-Planck Eq. (15) requires the
numerical solution to a di�erential equation de�ned on
unit sphere, S, for every single particle suspended in
the 
ow simulation domain. This is a prohibitively
expensive task for real three-dimensional problems.
Therefore, the moment approximation approach is
often used instead of a stochastic Monte-Carlo sim-
ulation. It o�ers the opportunity to replace the
Fokker-Planck equation with a hierarchy of moment
equations. Note that due to the inversion symmetry
property of the distribution function, i.e. 	(�n; � � � ) =
	(n; � � � ), all odd-order moments vanish, such that
only even-order moments are involved. The hierarchy
of evolution equations for the even-order moments is
given by Advani and Tucker [12]. Such an equation
for the second moment of the orientation distribution
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function is employed in the present work. We use the
formulation given by Frattini and Fuller [31] that reads:

Dhnni
Dt

=
 � hnni+ hnni �
T

+ � [D � hnni+ hnni�D� 2D : hnnnni]
+ 2Dr [I� 3hnni] : (19)

Eq. (19) takes into account the e�ect of Brownian
motion as re
ected by the last term in the right-hand
side. At the level of moment approximation equation,
it is a damping e�ect that drags the second moment
tensor away from uniaxial state towards isotropic state,
hnni = 1

3I, which represents a fully randomized
distribution of particles on the unit sphere. The
dimensionless number which quanti�es the strength
of the randomizing e�ect of the Brownian motion on
the particles, compared to the strength of the aligning
e�ect of the external 
ow, is the local rotary P�eclet
number de�ned by:

Pe =
_

Dr

; (20)

where _
 is a characteristic rate of strain of the external

ow and is often de�ned as:

_
 =
p

2D : D: (21)

Eq. (19) contains the fourth moment, hnnnni. The
evolution equation for any moment will contain terms
proportional to the next higher moments [12]. In
order to mathematically close the set of equations, a
closure model relating hnnnni to hnni is thus required.
Among all the existing models, the hybrid and IBOF
closure approximations are employed in the present
work and are reviewed in the next subsection.

2.4. Closure models
In the present work, the hybrid and IBOF closure
models are used. Their formulations are given below.

1. Hybrid closure (hyb): The hybrid closure ap-
proximation of Advani and Tucker [14] reads:

hnnnnihyb=
�
(1�f)hnnnnilin+fhnnnniquad� ;

(22)

where:

hnnnnilin =

"
� 1

35
(�ij�kl + �ik�jl + �il�jk)

+
1
7

(aij�kl + aik�jl + ail�jk

+akl�ij+ajl�ik+ajk�il)

#
eiejekel;

(23)

hnnnniquad = hnnihnni; (24)

with �ij and aij being the Kronecker delta and the
Cartesian components of hnni, respectively; ei is
the Cartesian basis vectors. Eq. (22) shows that the
hybrid closure is a weighted average of the linear
and the quadratic closures, and scalar f is to be
chosen. In some sense, it will be a measure of
particles orientation, since f = 0 gives an exact
closure (linear) if the suspension is isotropic (fully
randomized), while f = 1 gives an exact closure
(quadratic) if the particles are fully aligned. Scalar
parameter f is often de�ned as:

f = 1� 27det (hnni) ; (25)

in three-dimensional 
ows.

2. Invariant-Based Optimal Fitting closure
(IBOF): The IBOF closure of Chung and
Kwon [16] is arguably the best closure available at
present. It expresses the symmetric fourth-order
tensor hnnnni as an expansion in the second-order
tensor hnni and identity tensor, I, as derived using
the Cayley-Hamilton theorem:

hnnnniIBOF = �1SfIIg+ �2SfIhnnig
+ �3Sfhnnihnnig+ �4SfI(hnni � hnni)g
+ �5Sfhnni(hnni � hnni)g
+ �6Sf(hnni � hnni)(hnni � hnni)g: (26)

Tensor operator, S, denotes the symmetric part of
its argument, T = Tijkleiejekel, given by:

SfTg = 1
24 [Tijkl + Tjikl+Tijlk + Tjilk + Tklij

+ Tlkij+Tklji+Tlkji+Tikjl+Tkijl

+Tjlik+Tljik+Tjlki+Tljki+Tiljk

+Tlijk+Tilkj+Tlikj+Tjkil+Tkjil

+Tjkli+Tkjli+Tiklj+Tkilj ]eiejekel; (27)

where Tijkl is the Cartesian components of the
fourth-order tensor, T. Coe�cients �1 to �6 are
assumed to be functions of the second and third
invariants of hnni. These invariants, denoted by II
and III, are the square and determinant of hnni,
respectively. Chung and Kwon [16] derived analyt-
ical expressions for three �i values and used �fth-
order polynomial �ttings in terms of the invariants
for the remaining three:



1032 A. Moosaie/Scientia Iranica, Transactions B: Mechanical Engineering 24 (2017) 1027{1039

�1 = 3
5

"
�1

7
+ 1

5�3

 
1
7

+
4
7
II +

8
3
III

!
� �4

 
1
5
� 8

15
II � 14

15
III

!
� �6

 
1
35
� 4

35II � 24
105

III

+
16
15
II(III) +

8
35
II2

!#
; (28)

�2 =
6
7

"
1� 1

5
�3(1 + 4II) +

7
5
�4

�
1
6
� II

�
� �6

�
�1

5
+

4
5
II +

2
3
III � 8

5
II2
�#

; (29)

�5 = �4
5
�3 � 7

5
�4 � 6

5
�6

�
1� 4

3
II
�
; (30)

while �3;4;6 are given by:

�i =a(i; 1) + a(i; 2)II + a(i; 3)II2 + a(i; 4)III

+ a(i; 5)III2 + a(i; 6)II(III)

+ a(i; 7)II2III + a(i; 8)(II)III2

+a(i; 9)II3+a(i; 10)III3+a(i; 11)II3III

+ a(i; 12)II2III2 + a(i; 13)(II)III3

+a(i; 14)II4+a(i; 15)III4+a(i; 16)II4III

+ a(i; 17)II3III2 + a(i; 18)II2III3

+ a(i; 19)(II)III4 + a(i; 20)II5

+ a(i; 21)III5;

(i = 3; 4; 6): (31)

Twenty one �tting coe�cients a(i; j) with j =
1; � � � ; 21 for each of these three �i values were
obtained by a least-square which �t with the exact
solutions of the Fokker-Planck equation in a variety
of simple 
ows. The values of the �tting coe�cients,
a(i; j), are provided in an appendix to [16]. They
tested their closure model on the suspensions of
in�nitely long �bers. One of the objectives of the
present work is to test the IBOF closure on the
suspensions of rigid Brownian disklike particles.

2.5. Viscoelastic stresses
Non-Newtonian stress tensor, �NN, consists of two
parts: a viscous and an elastic contribution [7]:

�NN = �V + �E; (32)

where the viscous stress depends upon the current rate-
of-strain tensor and is given by:

�V =2�0D + �1ID : hnni+ �2D : hnnnni
+ 2�3(hnni �D + D � hnni); (33)

and the elastic stress reads:

�E = 2�4Dr(3hnni � I): (34)

Phenomenologically, the viscous stress is the
stress which instantaneously vanishes when the rate of
strain is zero. The elastic stress does not vanish until
the system is in equilibrium. It describes the stress
due to the Brownian motion. It is the only term that
results in stresses which do not linearly depend on the
deformation-rate tensor of the surrounding 
uid, i.e. it
results in stresses in a 
uid at rest. It is a consequence
of the relaxation of the distribution function towards
its isotropic equilibrium due to the Brownian motion.
This state of equilibrium is described by the diagonal
elements of hnni taking value 0:�3 and o�-diagonal
elements vanishing. One can easily verify that the
Brownian stress term will disappear as soon as this
equilibrium state is reached. The consequences of
the Brownian stresses are severe. They change the
material properties from a purely viscous behavior
to viscoelastic behavior if the Brownian motion is
strong enough, i.e. the particles are small enough to
be subjected to the Brownian motion. The ensemble
of particles will then be able to store energy and release
it again at a later instant of time. This energy will be
released into the surrounding 
uid via the relaxation
process described by the elastic stress.

The energy exchange between the carrier 
uid and
the suspended particles is described by stress power,
Sp, which, according to Eq. (32), consists of a viscous
and an elastic part:

Sp = �NN : D = � +
DAP

Dt
: (35)

The viscous term is related to additional hydrodynamic
energy dissipation, �, due to the presence of the
particles:

� = �V : D: (36)

The elastic term is related to the change in free energy,
AP , of the particle system due to the exchange with
the carrier 
uid:

DAP

Dt
= �E : D: (37)
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While the energy dissipation is always positive, the rate
of change of energy can be positive or negative, which
accounts for accumulation or release of free energy,
respectively.

3. Disklike particles in a simple shear 
ow

In this section, we apply the methods explained in the
previous sections to some simple 
ow cases. Je�ery's
equation (Eq. (6)) is advanced in time by an explicit
Euler method, while an explicit second-order Runge-
Kutta scheme is employed for the time-advancement
of moment approximation (Eq. (19)). The results are
compared with the analytical solution of Okagawa et
al. [3] for non-Brownian particles and the experiments
of Frattini and Fuller [31] for Brownian particles. Once
our direct Monte-Carlo simulator is validated, we use
its results as reference data in 
ow cases for which we
do not have analytical and/or experimental data.

The measure of error between the exact values
obtained from either the analytical solution or the
Monte-Carlo simulation and those predicted by the
closure approximations is de�ned as [32,16]:

Tensor components error:

e = hnniexact � hnniclosure: (38)

Scalar error measure:

e =
q

1
2e : e: (39)

The velocity �eld of the steady planar Couette

ow reads u = _
z as schematically shown in Fig-
ure 2. We consider both non-Brownian and Brownian
particles here. For non-Brownian particles (Pe!1),
the solution is periodic in time. Je�ery [1] gives an
analytical expression for the time period:

T =
2�(r + r�1)

_

: (40)

Figure 2. Schematic view of a simple planar shear 
ow in
xz-plane.

Okagawa et al. [3] presented an analytical solution
for the orientation distribution function of rigid non-
Brownian rodlike and disklike particles in a simple
shear 
ow. Their analytical results are used here as
reference data to validate our simulations. For r = 0:2,
dimensionless half period, _
T=2, computed by Eq. (40)
is 16.336. The time period computed by the Monte-
Carlo simulation and the IBOF closure exactly matches
this period. The hybrid model wrongly predicts the
time period.

The e�ect of time step size dt on both direct
Monte-Carlo and the moment approximation simula-
tions with IBOF and hybrid closure models is investi-
gated. Figure 3 shows the results of the Monte-Carlo
simulation for the evolution of the second moment
hn1n1i of the orientation distribution function with
di�erent values of dt. Figures 4 and 5 show components
hn3n3i and hn1n3i of the second moment computed by
using the IBOF and hybrid closures, respectively. The
results of the Monte-Carlo simulation and the IBOF
closure are converging towards the analytical solution

Figure 3. E�ect of time step size on the second moment
hn1n1i of orientation distribution function of
non-Brownian particles with r = 0:2 by using direct
Monte-Carlo simulation.

Figure 4. E�ect of time step size on the second moment
hn3n3i of orientation distribution function of
non-Brownian particles with r = 0:2 by using IBOF
closure.
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Figure 5. E�ect of time step size on the second moment
hn1n3i of orientation distribution function of
non-Brownian particles with r = 0:2 by using hybrid
closure.

Figure 6. E�ect of number of particles on the second
moment hn2n2i of orientation distribution function of
non-Brownian particles with r = 0:2 in the Monte-Carlo
simulation.

by re�ning the time step size. The hybrid closure can
reproduce neither the amplitude nor the time period
accurately.

Figures 3, 4, and 5 demonstrate that the change
of the solution between dt = 0:05 and dt = 0:005 is
very small, and thus, we use dt = 0:005 hereafter.

In the context of a stochastic simulation, the
number of particles is important; an insu�cient num-
ber of particles lead to non-converged statistics, while
redundancy in the number of particles leads to over-
head computations. As a result, the in
uence of
the number of particles in the direct Monte-Carlo
simulation is investigated. Figure 6 shows hn2n2i
component of the second moment of the distribution
function resulted from the Monte-Carlo simulation
with di�erent numbers of particles. Using 50 particles
leads to a considerable deviation from the analytical
result. Increasing the number of particles results in
a convergence towards the analytical solution. It is
shown that with 5000 particles, we obtain converged
statistics. Thus, 5000 particles are hereafter used in
the Monte-Carlo simulations.

Figure 7. Scalar error, e, versus dimensionless time in a
half period for non-Brownian particles with r = 0:2 in a
simple shear 
ow.

The scalar error measure de�ned in Eq. (39) is
used to assess the accuracy of the closure models in
reproducing the exact solution.

Figure 7 shows scalar error, e, versus dimension-
less time, _
t, in a half period. The ordinate is in
logarithmic scale. At times close to _
t = 0, the error
is small as we used the same initial condition in all
simulations as the exact solution. As time advances,
the error increases. The IBOF model is obviously
more accurate than the hybrid model; the IBOF error
remains under 0.01, while the hybrid error goes up to
0.1. Furthermore, the sudden drop in the curve shows
the wrong prediction of the time period by the hybrid
closure. It is also observable in Figure 5 as the result
of hybrid closure crosses the exact result at _
t � 14:5
due to the wrong prediction of the time period.

Using the direct Monte-Carlo simulator, the ori-
entation of non-Brownian particles with r = 0:1 at
di�erent time instants in a half period is shown in
Figure 8 on the unit sphere. The particles orientation
is initially uniformly distributed on the surface of
the unit sphere. As the time advances, the particles
align with the 
ow, and then start to redistribute
themselves till they reach their initial uniform state.
This periodic trend repeats with the time period given
by Eq. (40). The non-Brownian particles memorize
their initial distribution and their evolution in time as
they exactly take the same orientation after one period
T . The direct Monte-Carlo simulator is attractive in
a sense that it yields the instantaneous distribution of
individual particles, as presented in Figure 8.

We now consider Brownian particles. Hinch and
Leal [33] showed that the orientation distribution of
Brownian particles asymptotically tends towards a
steady state for large times. Figures 9 and 10 present
the scalar error in the computation of the second
moment for Brownian particles with r = 0:2 at Pe =
100 and Pe = 10, respectively. Although the IBOF
model is less accurate for Brownian particles compared
to non-Brownian particles, it is still more accurate
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Figure 8. Instantaneous particles orientation distribution on the unit sphere from the direct Monte-Carlo simulation with
5000 particles (r = 0:1, Pe!1) in dimensionless half period _
T=2; every 10th particle is shown.

Figure 9. Scalar error, e, versus dimensionless time for
Brownian particles with r = 0:2 at Pe = 100 in a simple
shear 
ow.

than the hybrid model. The error tends towards a
steady state for Brownian particles. The reason is the
wrong prediction of the steady-state value of the second

Figure 10. Scalar error, e, versus dimensionless time for
Brownian particles with r = 0:2 at Pe = 10 in a simple
shear 
ow.

moment by the closure models. In order to show this
fact more obviously, the results of the Monte-Carlo,
hybrid and IBOF simulations are shown in Figure 11
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Figure 11. The second moment hn1n1i of orientation
distribution function of Brownian particles with r = 0:2 at
Pe = 100.

for the hn1n1i component of the second moment of
Brownian particles with r = 0:2 at Pe = 100.

Frattini and Fuller [31] performed experimental
studies of small Brownian rigid rodlike (r = 6:3) and
disklike (r = 0:45) particles at various rotary P�eclet
numbers suspended in a simple shear 
ow. By an
optical method, they were, for the �rst time, able
to determine the average particle orientation direction
projected onto the shear plane and the average degree
of alignment �n00 of the particles. The de�nition
of these two quantities is given in [31]. In order to
assess the ability of the computational methods used
in the present study to reproduce the experimental
data, the degree of alignment �n00 and the orientation
angle for Brownian particles with r = 0:45 at Pe =
144 are shown in Figures 12 and 13. There is a
remarkable similarity between the experimental data
and the Monte-Carlo results, especially considering
that their experimental material had a rather broad
dispersion (about 21%) in an aspect ratio. Another
reason for the discrepancy would be the assumption
of inertia-free particles that we made in all of the
governing equations for the simulations. However, they

Figure 12. Degree of alignment of Brownian particles
with r = 0:45 at Pe = 144 in a simple shear 
ow.
Experimental data are taken from Figure 12(a) of [31].

Figure 13. Orientation angle of Brownian particles with
r = 0:45 at Pe = 144 in a simple shear 
ow. Experimental
data are taken from Figure 13(a) of [31].

used the Bentonite particles whose density di�ers from
that of the carrier 
uid. The results of the considered
closure models stand at a sharp distance from the
experiment than those of the Monte-Carlo simulation.
The IBOF closure is more accurate.

Figure 14 shows the instantaneous orientation of
Brownian particles with r = 0:1 at Pe = 100 on the
unit sphere. Comparison with Figure 8 turns out, as
expected, that although the particles are still a�ected
by the external 
ow, their orientation is distributed
more randomly. At Pe = 100, the 
ow is still
strong enough to partially align the particles with
the principal shear direction. However, the Brownian
motion randomizes the orientation so that the pure
periodic behavior of Brownian particles cannot be
observed anymore.

The non-Newtonian stress budget of the suspen-
sion is also investigated. As explained in Subsec-
tion 2.5, the total non-Newtonian stress consists of
two parts: the viscous and the elastic stresses. To
show the viscoelastic behavior of a dilute suspension of
Brownian disklike particles in a simple shear 
ow, the
non-Newtonain, viscous, and elastic stresses are plotted
in Figure 15 for Pe ! 1, Pe = 100, and Pe = 10.
As it is expected, the elastic stress vanishes for non-
Brownian stress so that the non-Newtonian identically
equals its viscous part. As the strength of the Brownian
motion increases, the elastic stress becomes more and
more signi�cant. Total and partial stress powers are
depicted in Figure 16 for r = 0:2 and Pe = 10. It
is observed that the viscous e�ects are much more
pronounced than the elastic e�ects.

4. Conclusions

In this paper, the orientation behavior of a dilute
suspension of Brownian rigid disklike particles in a
simple shear 
ow is studied by numerical means. Also,
the viscoelasticity of such a suspension is analyzed
by considering the stress budget of the two-phase
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Figure 14. Instantaneous orientation distribution of Brownian particles on the unit sphere from the direct Monte-Carlo
simulation with 5000 particles (r = 0:1, Pe = 100) in a dimensionless half period _
T=2 of non-Brownian particles; every
10th particle is shown.

Figure 15. Non-Newtonian stress budget of Brownian disklike particles with r = 0:2 in a simple shear 
ow at various Pe.
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Figure 16. Total, viscous and elastic stress powers of
Brownian particles with r = 0:2 at Pe = 10 in a simple
shear 
ow.

material. Di�erent P�eclet numbers and shape factors
of particles are considered and various results are
presented, e.g. particle orientations in space, viscous
and elastic contributions to the non-Newtonian stress
tensor, etc. The accuracy of moment approximation
method and moment closure models is studied by
comparing their results with those of a direct Monte-
Carlo solver which provides an exact solution. Also, the
results are compared with the available experimental
and analytical data. It turns out that none of the
closure models considered here can exactly reproduce
the Monte-Carlo results. The IBOF closure seems to be
more accurate than the hybrid closure. Non-Brownian
disk, under simple shear 
ow condition, reveals periodic
orientation dynamics in time, whereas the dynamics
deviates from periodic behavior by the action of rotary
Brownian motion, and aperiodic behavior is observed.
Also, the results tend towards a steady-state solution,
provided that the rotary Brownian motion is strong
enough.
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