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Abstract. In this paper, Arc Based Ant Colony Optimization Algorithm (ABACOA)
is used to solve sewer network design optimization problem with proposing two di�erent
formulations. In both of the proposed formulations, i.e. UABAC and CABAC, the cover
depths of sewer network nodes are taken as decision variables of the problem. The
constrained version of ABACOA (CABAC) is also proposed in the second formulation
to optimally determine the cover depths of the sewer network nodes. The constrained
version of ABACOA is proposed here to satisfy slope constraint explicitly leading to
reduction of search space of the problem, which is compared with that by the unconstrained
arc based ACOA (UABAC). The ABACOA has two signi�cant advantages of e�cient
implementation of the exploration and exploitation features along with an easy and
straightforward de�nition of the heuristic information for the ants over the alternative
usual point based formulation. Two benchmark test examples are solved here using the
proposed formulations, and the results are presented and compared with those obtained
by alternative point-based formulation and other existing methods. The results show the
superiority of the proposed ABACOA formulation, especially the constrained version of it,
to optimally solve the sewer network design optimization.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Nowadays, optimization is one of the most important
�elds of any engineering problems. In optimization
problems, one should �nd the minimum/maximum
of a function of many variables, called decision vari-
ables, where the arguments may be subjected to some
constraints. Cost saving is a major goal of most
engineering problems, such as design and implemen-
tation of a sewer network. Due to the high cost
associated with the construction of a sewer network,
many research studies over the last 50 years have
attempted to develop di�erent techniques in which they
are used to minimize the capital costs associated with
such infrastructure. However, optimal design of a sewer
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network is a highly constrained mixed-integer nonlinear
programming (MINLP) problem presenting a challenge
even to the modern heuristic search methods due to
continues and discrete variables, nonlinear functions,
and the high number of constraints involved [1].

Within the last decade, many researchers have
focused on the sewer network design optimization prob-
lem and proposed di�erent methods from traditional
optimization techniques to modern heuristic search
methods. The methods used for sewer network design
optimization problem can be classi�ed as: 1) Linear
Programming (LP); 2) Nonlinear programming (NLP);
3) Dynamic Programming (DP); 4) meta-heuristic; and
5) hybrid methods. Each of these methods has its
own limitations. It is worth noting that, over the
last 30 years, a new kind of approximate method,
called meta-heuristic, has been proposed that tries
to combine basic heuristic methods in higher level
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structures aimed to explore a search space e�ciently
and e�ectively. This method is based on the fact
that nature has the best built-in optimization tech-
niques for maintaining the global systems. Sharing
the information between insects, such as �nding the
shortest path of the food sources by ants, brings about
the idea of optimization techniques that have opened
a wide new �eld for research. This class of method
includes, but is not restricted to, Genetic Algorithms
(GA), Simulated Annealing (SA), Tabu Search (TS),
Particle Swarm Optimization (PSO) algorithm, Ant
Colony Optimization Algorithm (ACOA), etc. In the
last three decades, the use of this method has extremely
received the attention of the researchers in di�erent
engineering �elds. However, the main limitation of this
method is problem dependence. In other words, none
of the proposed meta-heuristic methods is unique to all
types of engineering problems. Also, the application of
this method to real-world problem is full of complexi-
ties.

In the �eld of sewer network design optimization
problem with �xed layout, many di�erent research
studies have been studied. Haestad [2] and Guo
et al. [3] have reviewed the research studies of this
�eld over the last 40 years. In general, traditional
methods [4], LP [5-7], NLP [8,9], DP [10-16], meta-
heuristic [17-32], and hybrid methods [33-38] have been
used in this �eld.

The ACOA is one of the meta-heuristic methods
in which it mimics the natural foraging behavior of a
colony of real ants to �nd the shortest path between the
food source and their nest. When ants are traveling,
they deposit a substance called pheromone forming
a pheromone trail, which is more attractive to other
ants to follow them. Ants can smell the pheromone
and when choosing their path, they incline to choose,
in all probability, paths marked by strong pheromone
concentrations. It has been shown experimentally that
this pheromone trail following behavior can give rise,
once employed by a colony of ants, to the emergence
of the shortest paths. This particular behavior of ant
colonies has inspired the ACOA in which a colony
of arti�cial ants cooperates to �nd good solutions for
discrete optimization problems. The basic algorithm of
ACOA is the Ant System (AS). Many other algorithms,
such as Ant Colony System (ACS), elitist Ant System
(ASelite), elitist-rank Ant System (ASrank), and Max-
Min Ant System (MMAS), have been introduced to
improve the performance of the AS.

Due to the iterative nature of the solution gen-
erations of meta-heuristic methods, the solution space
uses the knowledge about solutions that have already
been found to further guide the search. The searching
behavior of the method can be described by two
main features, named exploration and exploitation.
It is worth noting that the exploration is the ability

of the algorithm to search extensively through the
solution space, and the exploitation is the ability of the
method to search more comprehensively in the local
neighborhood where good solutions have previously
been found. However, these features are in con
ict
with each other. One of the most di�cult aspects to
pay attention to in meta-heuristic method is the trade-
o� between these two features. To obtain good results,
an agent should prefer actions tried in the past and
found to be e�ective in producing proper solutions, but
to discover them, he has to try actions not previously
selected [39].

In this paper, a new formulation, i.e. Arc Based
ACOA (ABACOA) formulation, is used to solve sewer
network design optimization problem. The ABACOA
was previously proposed for single and multi-reservoir
operation problems by Moeini and Afshar [39,40].
The ABACOA has two signi�cant advantages over
the alternative point-based formulation as presented
in the following. First, the pheromone trails are
associated with the arcs of the graph leading to a
more e�cient implementation of the exploration and
exploitation features of the ACOA. Second, each arc
of the proposed graph is representative of downstream
and upstream cover depths of each nodal pipe, and
hence, average pipe cover depths lead to an easy and
straightforward de�nition of the heuristic information
for the ants, so there will be a useful property that
is absent in the existing alternative formulations. It is
worth noting that the performances and abilities of this
new formulation, ABACOA, should be studied to solve
di�erent optimization problems, such as sewer network
design optimization problem, considered here.

To show the unique feature of the proposed
ABACOA, in this paper, this algorithm is used to
solve sewer network design optimization problem by
proposing two di�erent formulations. In both formu-
lations, the cover depths of sewer network nodes are
taken as decision variables of the problem. In the
�rst formulation, named UABAC, the unconstrained
version of ABACOA is used to determine the cover
depths of sewer network nodes. However, in the second
formulation, named CABAC, the characteristics of the
arc based de�nition of the problem along with the serial
features of sewer network problem are then used to
develop a constrained version of the formulation. The
constrained version of the ABACOA is proposed here
for the explicit satisfaction of slope constraint. The
constrained version is used to recognize the infeasible
regions of the search space and remove them from the
search space of the problem. Two benchmark test
examples are solved here using the proposed methods,
and the results are presented and compared with
unconstrained and constrained versions of point-based
ACOA (PBACOA) and with those obtained by the
other existing methods.
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2. Sewer network design optimization model

Sewer network is one of the most important infras-
tructures of modern city which is designed to collect
sewerages from city and transfer them to wastewater
treatment plants. A sewer network consists of man-
holes, pipes, lifts and pumping stations, and other
appurtenances. Sewer network is a more expensive in-
frastructure. Therefore, an optimization model should
be de�ned to design the least-cost sewer network. The
sewer network components can be optimally found by
solving this optimization model [1].

The objective functions and constraints of the
optimization model should be de�ned and be solved
by e�ective methods in order to �nd sewer network
parameters such as pipe diameters, slopes, average pipe
cover depths, drops and pumping station locations and
heights. The objective function of this optimization
model is minimization of sewer network construction
cost. In the absence of any pumps and drops, it
can be formulated for gravitational sewer network as
follows [37]:

Minimize C=
NPX
l=1

LlKpip(dl; El)+
NMX
nm=1

Kman(hnm);
(1)

where:
C Construction cost function of sewer

network
NP Total number of sewer pipes
NM Total number of manholes
Ll Length of pipe l (l = 1; :::; NP )
Kpip The unit cost of sewer pipe provision

and installation de�ned as a function
of its diameter (dl) and average cover
depth (El)

Kman The construction cost of manhole as a
function of manhole height (hnm)

Furthermore, the constraints of the sewer network
design optimization model with a pre-speci�ed layout
are hydraulic, operational, and availability constraints
which are formulated as:

Vmin � Vl � Vmax 8l = 1; :::; NP; (2)

Sl � Smin 8l = 1; :::; NP; (3)

Emin � El � Emax 8l = 1; :::; NP; (4)

�min � �l � �max 8l = 1; :::; NP; (5)

�l =
�y
d

�
l

8l = 1; :::; NP; (6)

Ql =
1
n
alr

2=3
l S1=2

l 8l = 1; :::; NP; (7)

dl 2 D 8l = 1; :::; NP; (8)

dl � dl 8l = 1; :::; NP; (9)

where:
Vl Flow velocity of pipe l at the design


ow
Vmax Maximum allowable velocity of sewer


ow
Vmin Minimum allowable velocity of sewer


ow
Sl Slope of the sewer pipe
Smin Minimum sewer pipe slope
Emin Minimum cover depth of sewer pipe
Emax Maximum cover depth of sewer pipe
El Average cover depth of pipe l
dl Diameter of sewer pipe l
yl Sewer 
ow depth in pipe l
�max Maximum allowable relative 
ow depth
�min Minimum allowable relative 
ow depth
�l Relative 
ow depth of pipe l
Ql The discharge of sewer pipe l
al Wetted cross-section area of sewer pipe

l at sewer 
ow depth of yl
rl Hydraulic radius of the sewer pipe l at

sewer 
ow depth of yl
n Manning coe�cient
D Discrete set of commercially available

sewer pipe diameters assumed equal
for all pipes of the network

dl Set of downstream pipe diameters of
pipe l

This optimization model of the sewer network
design with a pre-speci�ed layout (Eqs. (1) to (9)) is
a highly constrained mixed-integer nonlinear problem
(MINLP) in which the complexity of the problem
requires that an e�ective method be proposed to solve
it.

3. The proposed methods for solving
optimization model

Herein, ACOA is used to solve sewer network design
optimization problem. The basic steps of the ACOA
for solving optimization problem were presented by
Afshar and Moeini [41], and therefore, will not be
presented here. However, Figure 1 shows the basic
steps of ACOA procedure brie
y to solve optimization
problem. Formulation of an optimization problem
by ACOA requires that the problem be de�ned as
graph G = (DP;OPi;CO). This graph is de�ned by
a set of nodes referred to as decision points, DP =
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Figure 1. ACOA procedure to solve optimization problem.

fdp1; dp2; :::; dpIg, and edges referred to as options
available at each decision point i, OPi = fopijg with
corresponding costs CO = fcoijg, [1].

Here, an arc based formulation of ACOA is
proposed by de�ning another form of the graph for
its e�cient application to solve sewer network design
optimization problem. This formulation has two sig-
ni�cant advantages over the alternative usual point
based formulation. The signi�cance of the proposed
formulation is that each arc of the new de�ned graph
is representative of some parameters leading to an
easy and straightforward de�nition of the heuristic
information for the ants, which is a useful property
absent in the existing alternative point-based formula-

tion. Furthermore, the pheromone trails are associated
with the arcs of the new de�ned graph leading to
more e�cient implementation of the exploration and
exploitation features of the ACOA. The characteristics
of the arc based ACOA along with the serial feature
of sewer network optimization problem are also used
to develop a constrained version of arc based ACOA.
Furthermore, usual form of the graph for ACOA is also
used to propose unconstrained and constrained point-
based ACOA formulations, i.e. UPBAC and CPBAC,
respectively, for comparison purposes. It should be
noted that these formulations are the modi�ed forms
of Afshar's [21] formulations with minor corrections.

It is worth noting that the problem graph is
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very much dependent on the decision variables of the
problem. Here, in the absence of pumps and drops, the
cover depths of the sewer network nodes are considered
as the decision variables of the problem leading to an
easy de�nition of the problem graph. Furthermore,
an assumption used here is that the gravitational
sewer network is considered. This assumption leads
to the fact that, for each node, the downstream nodal
elevations of entering pipes are the same as upstream
nodal elevations of outgoing pipe.

It should be noted that the proposed formulations
are used here for sewer network with prede�ned layout,
and therefore, the sewer discharge is known. In other
words, the steady-state condition is considered for hy-
draulic model. Furthermore, the proposed formulations
are outlined here using MMAS for sewer network design
optimization problem.

3.1. Unconstrained Point-Based ACOA
(UPBAC)

In this formulation, named UPBAC, the conventional
application of ACOA based on the usual form of
the graph is used to determine decision variables.
By considering the sewer network nodes as decision
points, the options available at each decision point
are represented by all �nite numbers of discrete cover
depths of sewer network nodes. The graph representa-
tion of this formulation is shown in Figure 2, where
vertical lines represent the decision points (nodes),
circles represent the components of nodal cover depths
(j = 1; :::; J) at each decision point i (i = 1; :::; I), the
dash lines represent potential solutions on the graph,
bold circles represent nodal cover depths selected by
arbitrary ant, and �nally, the bold lines represent a
trial solution on the graph constructed by an arbi-
trary ant. In this formulation, each ant starts its
movement from an arbitrary decision point and selects
a cover depth from the set of available cover depths
for each node. It should be noted that based on the
methodology of UPBAC formulation, the construction
of layout with negative slope is possible in which it
is an infeasible solution. Here, penalty method is
used to avoid infeasible solution, which is explained
later.

By determining the nodal cover depths, nodal
elevations and pipe slopes of sewer network, the sewer

Figure 2. Problem graph of unconstrained version of
point based ACOA.

network pipes' diameters should be determined to
complete the design process. Di�erent methods can
be used to calculate the pipe diameters when the pipe
slopes are known at steady-state condition. Here, the
pipe diameters are calculated explicitly, such that all
the constraints are fully satis�ed, if possible. Therefore,
by starting the design processes from upstream pipes,
the smallest commercially available diameter fully sat-
isfying Constraints (2), (5), (6), (8), and (9) is taken
as sewer pipe diameter.

3.2. Constrained Point-Based ACOA
(CPBAC)

In CPBAC formulation, the constrained version of
ACOA based on the usual form of the graph is used to
determine decision variables. The constrained version
of point-based ACOA is proposed for the explicit
enforcement of the problem constraints by limiting the
ant's options to feasible ones at each decision point of
the problem. This leads to limiting the search space
of the problem to feasible region, and therefore will
be shown to improve convergence characteristics and
obtain better results.

By considering the sewer network nodes as deci-
sion points, in this formulation, the options available at
each decision point are represented by a �nite number
of discrete cover depths of sewer network nodes, which
have satis�ed minimum slope constraint. Here, for a
sewer network with prede�ned layout, each ant starts
its movement form inlets and selects an option, cover
depth, from the available feasible options' list. In
other words, the feasible cover depths of downstream
nodes can be easily de�ned using known upstream cover
depths and minimum slope constraint. Figure 3 repre-
sents the graph of this formulation, where vertical lines
represent the decision points (sewer network nodes),
circles represent the components of nodal cover depths
(j = 1; :::; J) at each decision point i (i = 1; :::; I)
with the dashed ones representing the infeasible and
the solid one representing feasible cover depths, the
dash lines represent potential solutions on the graph,
bold circles represent nodal cover depths selected by
arbitrary ant, and �nally, the bold lines represent a
trial solution on the graph constructed by an arbitrary
ant. It is worth noting that, in contrast to UPBAC
formulation, in this formulation, each ant starts its

Figure 3. Problem graph of constrained version of point
based ACOA.
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movement from inlets of sewer network and selects a
cover depth from feasible cover depths' list, which is
much smaller than original list. By determining the
nodal cover depths, other parameters are determined
such as UPBAC formulation.

3.3. Unconstrained Arc Based ACOA
(UABAC)

In UABAC formulation, the arc based ACOA is used
to determine decision variables. With the nodal
cover depths taken as the decision variables, in this
formulation, the allowable range of the nodal cover
depths is discretised into a �xed number of J discrete
values, and each discrete point j (j = 1; 2; :::; J) is
taken as the decision point of the problem. The
set of options, OPi, available at a decision point i
will then be represented by a total number of J arcs
joining the decision point, i, representing the jth
discrete upstream nodal cover depth to all discrete
downstream nodal cover depths of corresponding pipe.
Figure 4 represents the graph of this formulation, where
vertical lines represent the sewer network nodes, circles
represent the components of discretized nodal cover
depths (j = 1; ::; J) representing decision points dpi
(i = 1; :::; I), the dash lines represent arcs connecting
two decision points, bold circles represent nodal cover
depths selected by arbitrary ant, and �nally, the bold
lines represent a trial solution on the graph constructed
by an arbitrary ant.

It is worth noting that, in this formulation, each
ant starts its movement from inlets and it only has
to choose one arc out of the total number of J
arcs joining the decision point under consideration to
the decision points of the corresponding pipe which
represent upstream and downstream nodal elevations
of each pipe, respectively. Once an option, an arc,
is chosen by an ant, the next decision point to move
to is known. This process continues when all decision
points of the problem are covered by ant. Finally, by
determining the nodal cover depths, other parameters
are determined such as UPBAC formulation. It should
be noted that based on the methodology of this
formulation, the construction of layout with negative
slope is possible in which it is an infeasible solution.

Figure 4. Problem graph of unconstrained version of arc
based ACOA.

Here, penalty method is also used to avoid infeasible
solution, which is explained later.

The arc based formulation has signi�cant ad-
vantages over the alternative point-based formulation,
which are presented before. Heuristic information,
�ij , is a useful component of the ACOA in which the
proper de�nition of it is required for the best algorithm
performance. Generally, heuristic value represents the
costs of choosing option j at point i, and therefore,
related to the cost function equation. Here, based
on the sewer network cost function of Eq. (1), the
cost function of sewer network is only related to the
average cover depths and diameters of sewer pipe,
and therefore, the heuristic information can be easily
computed in the proposed arc based formulation. As
noted earlier, in the proposed arc based formulation,
each arc will uniquely de�ne the value of the upstream
and downstream nodal cover depths of each pipe. This
in turn leads to the possibility of de�ning average cover
depth of each pipe, El, leading to the possibility of
de�ning heuristic information. In other words, this in
turn leads to the possibility of de�ning some part of
cost function, and consequently heuristic information
for each arc. This possibility does not exist in the
alternative usual point-based formulation in which each
option only de�nes the value of the cover depths
of corresponding nodes with which no cost can be
associated. The heuristic information of the problem
can, therefore, be de�ned as:

�ij =
1

kpip(El)
;

El =
Ei + Ej

2
; (10)

where all parameters have been de�ned before. Fur-
thermore, in the proposed arc based formulation, the
pheromone trails are now associated with the arcs of
the graph leading to more e�cient implementation of
the exploration and exploitation mechanisms of the
ACOAs. These points will be veri�ed later when
considering numerical examples.

3.4. Constrained Arc Based ACOA (CABAC)
In this formulation, named CABAC, the proposed arc
based ACOA formulation is augmented with the inter-
racial building capability of ACOA by proposing the
constrained version of arc based ACOA formulation.
The constrained version of arc based ACOA is proposed
for the explicit enforcement of the minimum slope
constraint by limiting the ant's options to feasible ones
at each decision point of the problem.

With the nodal cover depths also taken as the
decision variables, in this formulation, the allowable
range of the nodal cover depths is discretized into a
�xed number of J discrete value, and each discrete
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Figure 5. Problem graph of constrained version of arc
based ACOA.

point j (j = 1; 2; :::; J) is taken as the decision point
of the problem. The set of options, OPi, available
at a decision point i, will then be represented by
a number of J arcs joining the decision point i,
representing the jth discrete upstream nodal cover
depth, to some discrete downstream nodal cover depths
of the corresponding pipe satisfying minimum slope
constraint. In other words, in the proposed CABAC,
the ant is forced to choose an option only from those
arcs which have satis�ed minimum slope constraint.
The modi�ed graph representation of the problem for
the application of the proposed CABAC is shown in
Figure 5, in which, circles represent the components
of discretized nodal cover depths (j = 1; :::; J) repre-
senting decision points, dpi (i = 1; :::; I), in which the
dash circle represents the infeasible ones; the dash lines
represent arcs connecting two decision points satisfying
minimum pipe slope constraint; bold circles represent
nodal cover depths selected by an arbitrary ant; �nally,
the bold lines represent a trial solution on the graph
constructed by an arbitrary ant. It can be clearly
seen from Figure 5 that the resulting search space
is much smaller than the original search space, as
shown in Figure 4. Therefore, it is expected that
the resulting formulation will perform better than the
UABAC.

It is worth noting that the proposed formulations,
UPBAC, CPBAC, UABAC, and CABAC, however,
may lead to trial solutions that may violate some of the
problem constraints. To discourage the ants to make
decisions which constitute an infeasible solution, higher
costs are associated with the solutions that violate the
problem constraints. This is achieved via the use of a
penalty method in which the total cost of the problems
is considered as the sum of the problems cost and
penalty cost as follows:

Cp = C + �p �
KX
k=1

CSVk; (11)

where C is the cost function associated with the
objective functions (Eq. (1)); Cp is the penalized cost
function; CSVk is the value of the kth constraint
violation; and �p represents the penalty parameter.

4. Test examples, results, and discussions

In this section, the performance of the proposed formu-
lations is tested against two benchmark examples from
the literature. The �rst one (test example I) is the case
of a network originally proposed by Mays and Yen [42],
then considered again by Mays and Wenzel [43], and
also solved by other researchers. This sewer network
has 21 nodes and 20 pipes (Figure 6). This network
is constrained to a maximum 
ow velocity of 12 fps,
minimum 
ow velocity of 2 fps, maximum relative 
ow
depth of 0.9, minimum relative 
ow depth of 0.1, and
minimum cover depth of 8 ft. It is assumed here that
the pipes have the variable Manning coe�cient with
the value of 0.013 at full condition. Details of the
network, including nodal ground elevations and length
and design discharge of each pipe, are given in Table 1.
Commercial pipe diameters are 12, 15, 18, 21, 24, 30,
36, 42, and 48 inches, and other problem data of this
test example are presented in the paper of Mays and
Wenzel [43]. Here, the following relation is used for
pipe installation and manhole costs:

Kpip =

8>>>>>>>>>>><>>>>>>>>>>>:

10:98dl + 0:8El � 5:98
if dl � 30 and El � 100

5:94dl + 1:166El + 0:504dlEl � 9:64
if dl � 30 and El � 100

30:0dl + 4:9El � 105:9
if dl > 30

Kman = 250 + h2
m: (12)

The second one (test example II) is the case of a part of
the network designed by Mansoury and Khanjani [44]
for `Kerman' city, Iran. This sewer network has 21
nodes and 20 pipes (Figure 7). This network is
constrained to a maximum 
ow velocity of 3 m/s,
minimum 
ow velocity of 0.6 m/s, maximum relative

ow depth of 0.82, minimum relative 
ow depth of
0.1, and minimum cover depth of 2.45 m. Constant

Figure 6. Test example I sewer network layout.
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Table 1. Data of test example I.

Pipe
no.

Node
no.

Ground
elevation

(ft)
Length

(ft)

Design
discharge

(cfs)
Up Down Up Down

1 11 22 500 495 350 4
2 22 33 495 487 400 3
3 33 42 487 480 350 2
4 12 32 490 485 400 4
5 32 42 485 480 430 4
6 42 52 480 470 550 5
7 23 34 490 485 500 8
8 34 43 485 475 450 4
9 43 52 475 470 350 4
10 52 61 470 465 500 6
11 31 41 485 475 500 9
12 41 51 475 470 350 7
13 51 61 470 465 350 4
14 61 71 465 455 565 7
15 44 53 460 464 400 4
16 53 62 464 460 300 2
17 62 71 460 455 345 3
18 71 81 455 451 400 7
19 81 91 451 448 500 2
20 91 10 448 445 612 5

Figure 7. Test example II sewer network layout.

Manning coe�cient is considered as 0.013. Details of
the network, including nodal ground elevations and
length and design discharge of each pipe, are given in
Table 2. Commercial pipe diameters are 200, 250, 300,
400, 500, 600, and 700 millimetres, and other problem
data of this test example are presented in the paper
of Mansoury and Khanjani [44]. Here, the following
relation is used for pipe installation and manhole costs:

Kpip = 1:93e3:43dl + 0:812El + 0:437E1:53
l dl;

Kman = 41:46hm: (13)

Table 2. Data of test example II.

Pipe
no.

Node
no.

Ground
elevation

(m)
Length

(m)

Design
discharge

(m3/s)
Up Down Up Down

1 1 4 74.59 73.66 260 27.9
2 2 9 70.7 69.9 300 54.9
3 3 15 73 71.50 400 21.1
4 4 5 73.66 72.1 460 30.4
5 5 6 72.1 71.99 260 32.4
6 6 7 71.19 69.85 300 34
7 7 8 69.85 68.24 450 36.6
8 8 12 68.24 67.82 400 38.7
9 9 10 69.9 69.3 270 56.2
10 10 11 69.3 68.4 310 58
11 11 12 68.4 67.28 440 59.6
12 12 13 67.28 66.22 470 96.7
13 13 14 66.22 65.82 350 101.2
14 14 20 65.82 65.42 340 104.7
15 15 16 71.5 70.1 400 26.4
16 16 17 70.1 68.6 400 30
17 17 18 68.6 66.8 500 31.9
18 18 19 66.8 66.1 400 40.3
19 19 20 66.1 65.42 590 44.6
20 20 21 65.42 64.5 320 165.9

A set of preliminary runs is �rst done to �nd the proper
values of MMAS parameters as shown in Table 3 for
the proposed formulations. All the results presented
hereafter are based on a uniform discretisation of the
allowable range of cover depths into 30 intervals for all
the proposed formulations and test examples. It should
be noted that in PBACOA formulations, no heuristic
information can be de�ned, and therefore, the value of
� = 0:0 is used.

The results of 10 runs carried out using di�er-
ent randomly generated initial guesses for the test
examples along with the scaled standard deviation, the
number of �nal feasible solutions, and the number of
function evaluations and CPU time to get minimum
solution cost are presented in Table 4. It is clearly seen
from Table 4 that all measures of the quality of the
�nal solutions, such as the minimum, maximum and
average costs, the number of �nal feasible solutions,
and the numbers of function evaluations to get mini-
mum solution cost, are improved when using ABACOA
compared to PBACOA. Furthermore, it is seen that
constrained versions of each PBACOA and ABACOA
have been able to outperform the corresponding un-
constrained version of these formulations regarding the
quality of the solution due to the fact that the search
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Table 3. Values of MMAS parameters.

Test
example

Formulation Iteration Ant Function
evaluation

� � � pbest

I PBACOA 1000 200 200000 1 0 0.95 0.2
ABACOA 1000 200 200000 1 0.2 0.95 0.2

II PBACOA 1000 200 200000 1 0 0.95 0.2
ABACOA 1000 200 200000 1 0.1 0.95 0.2

Table 4. Maximum, minimum, and average solution cost values over 10 runs obtained with the proposed formulations.

T
es

t
ex

am
p
le

Fo
rm

u
la

ti
on

Solution cost value Scaled
standard
deviation

No. of runs
with �nal
feasible
solution

No. of function
evaluations to
get minimum
solution cost

CPU time
to get

minimum
solution cost

Minimum Maximum Average value value (sec)

I

UPBAC 237200 245751 240072 0.0106 10 158800 97
CPBAC 236287 239113 237757 0.0048 10 82400 58
UABAC 236287 242390 238497 0.0083 10 47200 100
CABAC 236287 237978 236658 0.0022 10 42800 63

II

UPBAC 78362.9 90725.7 82063.4 0.0561 10 147000 88
CPBAC 78190.4 79402.7 78780.7 0.0079 10 25600 14
UABAC 77674.1 90143.7 81191.2 0.0429 10 124000 98
CABAC 77674.1 77674.1 77674.1 0 10 15800 18

Figure 8. Variation of average solution cost values of test
example I using unconstrained and constrained versions of
ABACOA.

space size of the problem is much smaller than those of
the unconstrained formulations.

Figures 8 and 9 show convergence curves of the
average solution costs obtained in ten runs using uncon-
strained version of ABACOA compared to constrained
version of it for test examples I and II, respectively.
These �gures indicate the superior performance of
the constrained version of this formulation compared
to unconstrained version of it in which the proposed
constrained version leads to lower cost of the �nal
solution during the evolution process. Furthermore,
Figures 10 and 11 show convergence curves of the
average solution costs obtained in ten runs using
CPBAC and CABAC formulations for test examples

Figure 9. Variation of average solution cost values of test
example II using unconstrained and constrained versions
of ABACOA.

I and II, respectively. These �gures indicate superior
performance of the CABAC compared to CPBAC.
Finally, Figures 12 and 13 show the characteristics of
the optimal solution obtained for test examples I and
II, respectively, using CABAC in which the numbers in
parentheses are nodal cover depths.

Test example I was solved by Mays and Wenzel us-
ing Di�erential Dynamic Programming (DDP) and the
optimal solution of 265775 was reported [43]. Robinson
and Labadie solved this problem later using DP, and
the optimal solution of 275218 was reported [45]. This
problem was later solved by Miles and Heaney using
a spreadsheet template and 245874 was reported [46].
Furthermore, this problem was also solved by Afshar
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Figure 10. Variation of average solution cost values of
test example I using CPBAC and CABAC.

Figure 11. Variation of average solution cost values of
test example II using CPBAC and CABAC.

proposing ACOA-AR (Adaptive Re�nement process
for ACOA), PCACOA, RPSO (Rebirthing Particle
Swarm Optimization), and CACOA methods; the op-
timal solutions of 241496, 242539, 242162, and 242119
were respectively reported requiring 29900, 13900,
30000, and 20000 function evaluations [21,23,47,48]. In
addition, Afshar et al. used Cellular Automata (CA)

method in which it required 72 function evaluations to
get the optimal solution of 253483 for this problem [24].
Later, Afshar and Rohani proposed discrete and con-
tinuous CA based hybrid methods to solve this prob-
lem, and the optimal solutions of 247412 and 248100
were reported requiring 69 and 7 function evaluations,
respectively [35]. A GA-based model was proposed by
Palumbo et al. to get the optimal solution of 251971
for this problem [26]. Finally, Yeh et al. used TS and
SA to solve this problem, and the optimal solutions of
241770 and 244571 were respectively reported requiring
1034809 and 15932235 function evaluations [27]. These
results can be compared with the cost value of 236287
obtained with 42800 function evaluations using the
proposed CABAC for test example I, indicating the
superiority of the proposed formulation with proper
computational e�ort.

Test example II was solved, �rstly, by Mansouri
and Khanjani using GA and NLP, and the optimal
solution of 83116 was reported [44]. NLP-BFGS,
NLP-Fletcher-Reeves, and GA were used later by
Setoodeh to solve this test example, and he reported
the optimal solutions of 82732, 81553, and 77736,
respectively [49]. Afshar et al. proposed CA method
to solve this problem in which it required 15 function
evaluations to get the optimal solution of 80879 [24].
Finally, this problem was solved by Afshar and Rohani
who proposed discrete and continuous CA based hybrid
methods, and the optimal solutions of 77327 and 77433
were reported requiring 45 and 38 function evaluations,
respectively [35]. These results can be compared with
the cost value of 77674.1 obtained with 15800 function
evaluations using the proposed CABAC for this test
example, indicating the superiority of the proposed
formulation with proper computational e�ort.

Figure 12. Characteristics of the optimal solution of example I using CABAC.
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Figure 13. Characteristics of the optimal solution of test example II using CABAC.

5. Conclusions

Here, two di�erent formulations of Arc Based Ant
Colony Optimization Algorithm (ABACOA) were pro-
posed to solve sewer network design optimization prob-
lem considering the cover depths of sewer network
nodes as decision variables of the problem. Here,
in the second formulation, the constrained version of
ABACOA was proposed to satisfy slope constraint
explicitly leading to reduction of search space of the
problem. Two benchmark test examples were solved
here using the proposed formulations, and the results
were presented and compared with those obtained with
alternative usual point-based formulation and other
existing methods. Comparison of the results showed
superiority of the proposed ABACOA to optimally
solve the sewer network design optimization in which it
has two distinct advantages of e�cient implementation
of the exploration and exploitation features and also
an easy de�nition of the heuristic information for the
ants over the alternative usual point-based formulation.
Furthermore, the results indicate the ability of the
constrained version of ABACOA to e�ciently and
e�ectively solve this problem in which it was shown
to produce better results with smaller computational
e�ort and less sensitivity to the randomly generated
initial guess represented by the scaled standard devi-
ation of the solutions produced in ten di�erent runs
in comparison with all other proposed formulations. In
other words, the average solution costs of test examples
I and II were improved 0.8% and 4.5%, respectively,
using CABAC in comparison with UABAC. In addi-
tion, the average solution costs of test examples I and
II were improved 0.5% and 1.5%, respectively, using
arc based ACOA in comparison with point-based ones.

Finally, the obtained results of the proposed CABAC
formulation for both of the test examples were better
than all available results.
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